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Abstract: It is important that a shared application allow a latecomer to join other users 
who are already working together with the application. We have developed a 
latecomer accommodation service framework for centralized shared systems 
(applications and infrastructures). It employs an independent latecomer 
accommodation server that is dynamically composable with its clients. The 
server, also called the logger, logs a shared application's user interface (UI) 
changes in response to calls made by the client, also called the loggable. Later, 
when the time comes to accommodate a latccomer, the logger replays the 
logged changes to the loggable, which, in tum, creates the latecomer's user 
interface. To deal with UI protocols at different levels of abstraction, we have 
defined the API in terms of a generic UI model. This reduces the burden on a 
loggable from a complete service implementation to a translation between its 
specific UI protocol and our generic UI model. To reduce the space and time 
overhead, the logger performs complex log compression. The extent of 
compression depends on the amount of semantic knowledge that the loggable 
provides to the logger. In this paper, we motivate, describe and illustrate the 
approach, and outline how it is implemented. 
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1. INTRODUCTION 

The composition of users participating in a collaboration session with a shared 
application can change dynamically. A collaboration session can begin with some 
number of users, and later, some additional users may late-join the collaboration 
session, and some users may leave early. Moreover, users may not be able to finish 
the collaboration within one session - they may have to stop the session temporarily, 
and resume later at another session using the previous session state. Latecomer 
accommodation service allows latecomers/resumers to join/resume a collaboration 
session that has already made some progress. We will use the term, latecomer, to 
also mean resumer. 

The essential part of the latecomer accommodation service is to create a new 
user interface for the latecomer that shows some part of the shared application state. 
How this is accomplished can vary. The exact part of the state shown may depend 
on the latecomer's role in the collaboration. Moreover, before displaying the state, 
the latecomer accommodation service may also show a quick animation of how the 
user interface reached its current state. 

In general, implementing a latecomer accommodation service is difficult, and 
hence, should ideally be done by a collaboration infrastructure. This is the approach 
taken in many systems such as Suite (Dewan, Choudhary, 1992), XTV (Chung, 
Jeffay, Abdel-Wahab, 1994), a system by (Manohar, Prakash, 1995), and Habanero 
(NCSA). However, each of these systems provides its own latecomer 
accommodation service. Thus, there is no code sharing among these systems. 
Moreover, the latecomer accommodation service is tightly integrated with other 
aspects of the system. It is not possible for applications to use the latecomer service 
without using other protocols offered by the system such as those for user interface, 
concurrency control, and access control. It is often the case that these protocols are 
too rigid for an application. 

Therefore, it would be useful to provide an independent latecomer 
accommodation service that can be used by a variety of systems and applications. In 
this paper, we present our first step towards such a service. It has the following 
distinguishing features. 

- Composability: We provide a separate server module that is dynamically 
composable with a latecomer client (a system or an application). The latecomer 
server can share the same address space with the client, or be in a different 
address space of the same host, or on a different host. It exports an API that 
separates the latecomer accommodation service from other collaboration 
functions. Through the API, the latecomer client sends the UI state change 
information as often as necessary, and the latecomer server logs this information. 
When the time comes to accommodate a latecomer, the latecomer server replays 
the log back to the latecomer client. The latecomer client, in turn, can use the 
replayed log to create the latecomer's user interface. Our log and replay approach 
implies "You Get What You Log" - the latecomer client determines what actions 
are logged and replayed. Since we are using a log and replay approach, we will 
refer to the latecomer server as the logger, and the latecomer client as the 
loggable. 
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- Genericity: Different loggables can provide UI change information based on 
different VI protocols, which can be at different levels of abstraction. In order to 
support various protocols, the logger's API is based on a generic VI model that 
makes few assumptions about how a shared application makes changes to its user 
interface. 

- Log Compression: Our log and replay approach allows animation of how the user 
interface reached its current state before the latecomer joins the session. However, 
it may be the case that the latecomer does not want such animation, but simply 
wants to see the current UI state as quickly as possible. We provide special 
support for such a situation by compressing the log so that not all of the VI 
changes sent by the loggable are actually logged. The extent of the compression 
performed by the logger is proportional to the amount of semantic information 
given to it by the loggable. 

- Ease of Programming: The service should not require a significant burden on the 
loggable. Instead of implementing the latecomer service, the loggable takes on a 
translation role, simply converting between its specific UI protocol and our 
generic model. Such a translation module can be built for a whole class of systems 
and applications, and we believe that the effort required to build such a module is 
small. 

The rest of the paper is organized as follows. We first describe the related work 
on which our research is based. Next, we describe our approach. Finally, we give 
conclusions and directions for future work. 

2. RELATED WORK 

Many collaboration systems such as Suite (Dewan, Choudhary, 1992), XTV 
(Chung, Jeffay, Abdel-Wahab, 1994), GroupKit (Roseman, Greenberg, 1996), a 
system by (Manohar, Prakash, 1995), and Habanero (NCSA) support latecomer 
accommodation using different approaches. 

Suite is a collaboration infrastructure that provides to its application 
programmers the high-level abstraction of a shared active variable. Suite determines 
how an active variable is displayed based on its type. The Suite architecture is based 
on the model-view framework - where a central model implements the shared 
application state, and multiple views implement interfaces of different users. Suite 
allows different users' views to be different, thereby supporting non-WYSIWIS 
interaction. It also supports transactions, where not every change made to a view is 
immediately committed in the model. When a latecomer joins a collaboration 
session, Suite calls a load method on the model, which sends to the latecomer's view 
data structures that have been committed by pre-existing views. Thus, the new user 
cannot see any uncommitted values. 

XTV is an extension of a single-user window system called X that allows users 
to share existing single-user X applications. The X window system provides to its 
application programmers the abstraction of a window, which is much lower level 
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than Suite's active variable. An X application sends to an X server a series of 
requests to create and update windows, and the X server sends to the X application 
user input in the form of low-level mouse and keyboard events. XTV enables 
sharing of a single-user X application by intercepting and distributing the X requests 
to multiple X servers, and by relaying the user input events from the multiple servers 
to the shared application. The latecomer accommodation service in XTV works by 
logging the low-level window requests from the shared application, and replaying 
them to the latecomer's X server. XTV has to use the logging approach since it is not 
possible to look inside existing X applications for internal data structures. This is 
different from Suite, which has its application export the data structures. XTV also 
performs log compression by maintaining only the current UI state. However, the 
log compression algorithm is closely tied to the X protocol. 

These two systems assume a single centralized component that represents the 
shared application state, and multiple UI components for different users. Some 
collaboration systems replicate the shared application component as well as creating 
mUltiple UI components. A replicated system provides good response times to its 
users, because all of their input is locally processed. However, it must perform an 
additionai step of replicating the shared application component for the latecomer. 
The replicated approach is taken by many systems such as GroupKit, a system by 
(Manohar, Prakash, 1995), and Habanero, and we wi11look at those systems now. 

GroupKit is a toolkit that lets developers build groupware applications. In 
GroupKit, when a latecomer joins a collaboration session, the run-time infrastructure 
sends an event called updateEntrant to an existing application replica, which, in turn, 
communicates with the latecomer's replica to update the latecomer's user interface. 
What specific actions are taken during this time totally depends on the shared 
application. For example, a group drawing program could send the entire drawing to 
the latecomer, and a text chatting program could send the text contents of all the 
existing chat windows. Therefore, the latecomer accommodation service is flexible 
in that it can be whatever the application needs. However, it has to be implemented 
manually by the application programmer. 

A system by (Manohar, Prakash, 1995) allows flexible support for resuming a 
collaboration session by using a data artifact called a session object. A session object 
captures a user's interaction with an application, and records window events such as 
mouse and keyboard actions. When a latecomer resumes the collaboration session, 
the system replays the session object's window events to a fresh copy of the 
application, and, in this process, the application creates the user interface for the 
latecomer. During replay, the system shows the previous user's actual interaction as 
faithfully as possible by controlling the rate of replay. The system also provides a 
VCR-like user interface, so that the latecomer can pause, skip, and fasten the replay. 
In order to support skipping to an upcoming portion of replay, the session object 
also has intermittent state checkpoints where the previous application wrote its entire 
current state information. The new application can use one of these checkpoints to 
load the entire application state without replaying prior window events. The system 
reduces the burden on the application programmer since history replay is managed 
by it. This is unlike GroupKit, where an application has to be totally responsible for 
latecomer accommodation. This is more like the XTV approach, which also logs and 
replays window system level protocols. But it is different from XTV in the 
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following respects. First, it works for a replicated system as mentioned before. 
Second, it allows UI change animation, and allows users to control its replay, while 
XTV simply creates the current UI state. Third, unlike XTV, it does not compress 
events. 

Habanero is a collaboration system that allows users to interact with a shared 
application called a hablet. A hablet is a Java applet program extended for multi-user 
collaboration. When a latecomer arrives, Habanero calls a marshaliSelf method that 
is to be implemented by the hablet. In response to this call, the hablet marshalls itself 
(i.e. saves its state information) to a marshall object. Habanero, then, migrates this 
marshall object along with the hablet code to the latecomer's workstation, where the 
migrated hablet code unmarshalls the previous hablet state from the marshall object. 
In addition to updating its state, the migrated hablet has to update the latecomer's 
user interface. Habanero also supports session record and replay feature, but this is a 
separate mechanism that is automatically supported by the system. Therefore, a 
hablet programmer is to be concerned only about marshalling and un marshalling the 
hablet state when it comes to latecomer accommodation. 

As we can see, none of these systems (both centralized and replicated) has a 
separate module for latecomer accommodation service; the latecomer 
accommodation service is closely integrated with the system or individually 
implemented by each application. Moreover, an application that wants to use the 
latecomer accommodation service from one of these systems must follow all the 
protocols offered by the system, including those not relevant to latecomer 
accommodation such as the active variable abstraction of Suite, the low level X 
protocol of XTV, the groupware programming abstractions of GroupKit, the 
window events protocol of the system by (Manohar, Prakash, 1995), and the Java 
applet "habanerization" of Habanero. In the next section, we will describe how these 
limitations can be overcome for a centralized system. We leave handling latecomers 
in a replicated system as future work. 

3. APPROACH 

3.1 Architecture 

The architecture that should be formed for our latecomer accommodation service 
to work is illustrated in Figure 1. This architecture assumes that a shared system 
consists of an application client and mUltiple UI servers, one for each user. Each 
server manages the interface of a user for the client. The client sends requests to 
change the user interface in terms of some UI abstraction the server defines, such as 
a window or an active variable. The client can also ask the server to notify the client 
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Figure 1. Latecomer Accommodation Service Architecture. 

through events when certain aspects of the user interface are changed by the user 
(for example, mouse movements or active variable changes). Therefore, in a shared 
system, a client and multiple servers send messages (requests and events) back and 
forth following a specific UI protocol based on the UI abstraction. 

A logger and a loggable work together to provide latecomer accommodation 
service for the shared system. The logger is a separate, log and replay module. The 
loggable is positioned between the client and the servers, and listens to messages 
exchanged between them. The logger and the loggable talk to each other using a 
generic UI protocol to which a specific UI protocol can be translated. 

The loggable translates requests from the client into abstract primitives defined 
by our generic model, and sends them to the logger, which, in turn, logs them. The 
loggable has the discretion to decide which request it translates and sends to the 
logger. When a latecomer needs to be accommodated, the loggable asks the logger 
to replay the abstract primitives that are needed to create the latecomer's user 
interface. The logger, in response, sends these primitives. When the loggable 
receives a primitive, it reverse-translates the abstract primitive to a request of the 
specific UI protocol. Once the translation is done, the loggable sends the request to 
the latecomer's UI server. 

The major factor in determining the efficiency of our latecomer accommodation 
service module is the compression ratio of the actual log size to the total size of all 
the primitives sent by the loggable. The compression ratio is greatly affected by how 
much semantic information the loggable can provide about the client requests. We 
roughly classify the extent of information into three cases, and provide an approach 
for each case. We will describe the three approaches in the sections that follow. 
Each approach assumes a different model of how the client makes changes to the 
user interface depending on the amount of semantic information that it can get from 
the loggable. Each approach will be a generalization of the previous approach, and 
assumes more semantic knowledge. We could have described the third approach 
directly, but we are doing it incrementally for motivation and explanation purposes. 
Since our implementation is in Java, we use Java syntax for describing operations 
defined by our approaches. 
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3.2 Brute Force Approach 

This approach is to accommodate loggables that cannot provide any semantic 
information about a client request. The basic idea here is to record all the client 
requests in the log, and replay without modification to a new server. The main 
complication in this approach is the synchronization, which is described using 
Figure 2. 

Initially, the logger and loggable start in the log and play modes, respectively. 
While in the play mode, the loggable treats each client request as just an encoded 
message that it knows nothing about, and simply relays the message as is to the 
logger. The loggable calls 10gMessage(Object message) to send the message to the 
logger. The logger logs each of these messages in chronological order. When the 
time comes to accommodate a latecomer, the loggable sends a REPLAY signal 
asking the logger to start replaying the logged messages. On sending/receiving the 

(a) for the logger 

(b) for the loggable 

Figure 2. Mode Transition Diagram. 

REPLAY signal, the loggable and logger go into the concurrent play/replay and 
concurrent log/replay modes respectively. 

While in the concurrent log/replay mode, the logger simply replays the logged 
messages one by one to the loggable in exactly the same order in which they were 
logged. The loggable can, in turn, send these replayed messages directly to the 
latecomer's UI server. 

While replay is going on, the client can send new messages to the loggable, 
which, in turn, sends them to the logger as well as to the pre-existing UI servers. The 
logger simply appends the new messages to the message log. When the logger has 
consumed the entire message log, it sends an END_OF _LOG signal to the loggable, 
and goes into the synchronize mode. The loggable responds to the END_OF _LOG 
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signal with an ACK signal, and goes into the buffer mode. The ACK signal defines a 
synchronization point, and it indicates to the logger that the loggable will send no 
new message until the logger replays all the messages sent so far and goes back into 
the log mode. 

While in the synchronize mode, the logger waits for the ACK signal to arrive. 
While waiting, the logger can receive additional new client messages that the 
loggable may have sent before the ACK signal. The logger simply records these 
messages in the log, and replays them at the same time. When it finally receives the 
ACK signal, the logger sends a REPLAY_FINISH signal to the 10ggabJe, and goes 
back into the log mode. The buffer mode for the 10ggabJe is the same as the 
concurrent play/replay mode except that the log gable now buffers any new messages 
in its own temporary Jog. As soon as the loggable receives the REPLAY_FINISH 
signal from the logger, it sends the buffered new messages directly to the 
latecomer's UI server and to the logger, and then goes back into the play mode. 

This brute force approach is inefficient because every client message has to be 
logged and replayed. This can consume a large amount of memory as the 
collaboration can last a long time. Additionally, the time needed to create the 
latecomer's user interface is strictly proportional to the entire collaboration time. If 
we have some semantic information about each of the client messages, we may be 
able to use less log space, and drastically reduce the time needed to create a 
latecomer's user interface. The following section describes a better approach 
assuming that the loggable can provide some semantic information about the client 
messages. 

3.3 Independent Objects Approach 

When we want to create the latecomer's user interface as quickly as possible, it 
is not necessary to show how the interface changed since the collaboration started. It 
is sufficient to show only the current state of the interface. For example, if the users 
changed the background color of a window many times, we do not have to save the 
history of all the background color changes, but only the latest background color. 

Our approach here is based on observations such as this one, and its entire basic 
model of how the client makes changes to the UI server assumes that each of the 
client requests can be translated into one of the following abstract primitives. 

- instantiate: The client instantiates some objects (e.g. windows, or active variables) 
on the UI server for interaction with the user. 

- modify attributes: The client asks the server to change some attributes of an 
interaction object by specifying their new values. For example, the client can 
change the background color attribute of a window by specifying its new color 
value. An attribute value may not just be data, it may be a high level command 
that changes the attribute value. For example, it may be a command to draw a 
circle on a window foreground (which we assume to be modelled as an attribute 
of the window). The logger does not need to interpret the attribute values. It 
simply passes them to the loggable in the form it received them. 

- destroy: When one of the interaction objects is no longer necessary, the client can 
send a request to destroy it. 
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For our approach to work, we require that the loggable translate the client's 
requests into the abstract primitives given above, and send them to the logger in 
order to report how the client is making changes to the user interface. 

The logger maintains a record for each object instantiated by the client, and 
represents each attribute as a field of the record. Whenever the client modifies one of 
the attribute values, the logger replaces the old value with the new one for the 
corresponding field. The client can also modify attribute values of objects it did not 
instantiate when the objects are shared with other clients. For example, in the X 
window system, multiple clients can make changes to the shared default colormap. 
In this case, the logger depends on the loggable to report the objects as pre-existing 
before any modify primitives are applied to them. Since most of the client requests 
will involve changing certain attributes of interaction objects, this approach can 
accomplish drastic saving of the memory space needed to log the UI changes. 
Furthermore, we can accomplish more saving of log space by freeing memory 
allocated for objects that have been destroyed. 

Now, when creating a latecomer's user interface, all the logger needs to do is 
just replay to the loggable the primitives to instantiate the objects (modify in case 
the objects are pre-existing) with the current attribute values, and the loggable can, 
in turn, translate the primitives into corresponding client requests and send them to 
the latecomer's UI server. 

However, the model we assume in this approach so far may be too simple for 
some cases, since the client can make cumulative changes to an object attribute. For 
example, let us say that a logger and a loggable are working to provide latecomer 
service for a text editor application. The loggable has modelled the text window as a 
single object on the logger, and the foreground of the text window as a single 
attribute of the object. The loggable's intention is to translate a client request that 
displays characters on the window into a modify attribute - the loggable uses the 
request itself (without modification) as the value parameter of a modify primitive 
that changes the foreground attribute. When the "value" is replayed later, the 
loggable can simply send the "value" to the latecomer's UI server. The text editor 
client can display characters one after another through different text drawing 
requests as the users enter them using the keyboard. Instead of refreshing the whole 
window foreground each time a new character needs to be displayed, each request 
can change a part of the screen where the new character needs to be displayed. We 
refer to such a value change as cumulative since it cannot replace the previous value 
of the associated attribute. We extend our model to allow the loggable to specify the 
cumulative nature of some attribute value changes. 

With this change in our model, the logger now looks at the cumulative nature of 
the value change, and if it is cumulative, it simply appends the new value to the 
previous value of the associated attribute. When a non-cumulative (replacing) value 
change needs to be applied to an attribute, the whole list of values attached to the 
attribute is replaced by the new value. During replay, the logger replays the value 
changes in the list one by one in chronological order. 

Another good use of this extension arises when the loggable wants the logger to 
log the history of value changes even when they are not actually cumulative in 
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nature. For example, as mentioned before, a latecomer may want to view the history 
of all the changes in a certain window. 

Hence, the log space we need to use is more or less proportional to the number 
of objects that the client is maintaining on the UI server, but not exactly proportional 
due to some cumulative value changes. Moreover, the time needed to create the 
latecomer's user interface is not necessarily subject to the length of the total 
collaboration time. 

The mode changes that the logger and the loggable take are basically the same as 
in the brute force approach. However, the logger in the concurrent log/replay mode 
works a little differently in how it deals with new primitives coming from the 
loggable. 

If the new primitive involves an object that has already been set up on the 
latecomer's UI server, the new primitive is simply applied to the object record for a 
future latecomer accommodation service, and also sent to the loggable as a replay 
primitive. If the new primitive is about an object that is yet to be set up on the 
latecomer's UI server, it is simply applied to the object record, but is not sent to the 
loggable as a replay primitive. This is because the new primitive's effect will be 
replayed later when the logger gets to the associated object. Finally, if the primitive 
is about an object which the logger is in the middle of setting up on the latecomer's 
UI server, the application of the primitive to the record is temporarily delayed until 
the object is completely set up, and when the set up is complete for the object, the 
delayed primitives are applied to the object record for a future latecomer 
accommodation service, and sent to the loggable one by one in the order that they 
were received by the logger. 

Our independent objects approach subsumes the previous brute force approach. 
If the loggable is sending client messages using the model assumed in the brute 
force approach, we simply instantiate one log object with one attribute, and we treat 
each client message as a cumulative value change to the attribute of the log object, 
thereby simulating the brute force logging of the previous approach. 

3.4 Dependency Handling Approach 

We saw in our previous approach that cumulativeness of attribute value changes 
enforces an order during replay. A cumulative value change for an object attribute 
cannot be replayed unless its previous value change is first replayed. Put another 
way, cumulativeness of an attribute value change forms a replay dependency of the 
attribute value change on its predecessor. Since this particular form of dependency is 
made within the same object, we cal1 it an intra-object dependency (or cumulative 
dependency). In this subsection, we extend our model to include clients issuing 
primitives that create other kinds of dependencies (i.e. inter-object dependencies), 
and describe how it affects our log and replay approach. We first motivate the need 
to make such dependencies. 

Windows for some applications often have repetitive tiles of an arbitrary pattern 
as the background. If the application client were to draw the repetitive pattern on the 
entire window, it would be very cumbersome and error-prone. To make 
programming easier in such a case, window systems such as X provide the 
programmers with a scratch-pad-like abstraction, called a pixmap, which itself is not 
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directly displayable, but can be used in combination with other abstractions such as 
windows. To create a window with a tiled background in X, the X client would first 
draw the unit pattern on a pixmap, and modify the window's background attribute to 
refer to the pixmap. In response to the request, the X server can copy the pixmap 
content and repeatedly draw the pattern on the window. Later, the client can modify 
the pixmap to use it for some other purposes, or delete it when it is no longer needed 
without affecting the background pattern of the window. 

In this example, the tiled window (depender) object is said to depend on the 
pixmap (dependee) object. Such dependency relationships between different objects 
(inter-object dependencies) affect how we log and replay the client request 
primitives in the following ways. 

First, dependencies affect the order in which we instantiate and modify objects 
on the latecomer's VI server during replay. In our example, primitives that create the 
pixmap, and update it with the attribute values should be replayed before the 
primitive that forms the window's dependency on the pixmap. 

Second, a destroy primitive from the loggable does not mean an immediate 
removal of the associated object record from the logger, because some other object 
may have formed a dependency on it. If we do remove the record, we would not be 
able to build the dependee object on the latecomer's VI server at all, which, in turn, 
means that the depender object cannot have one of its attributes set correctly. 

We represent each of the dependencies as a directed edge that has its tail on the 
depender object node and its head on the dependee object node. The graph thus 
created can be used to replay client request primitives in the correct order: i.e. replay 
the dependee object first, and then the depender object. Also, when we delete a node 
in response to a destroy primitive, we check whether an edge has its head on the 
associated node: i.e. whether any other object depends on it. If there is indeed a 
depender object, we do not delete the object node, but we just mark it as destroyed. 
If there is no depender object, we delete the object node along with all the edges that 
originate from the deleted node. Then, we recursively follow the deleted edges to 
find and delete any node that could not be deleted because its depender node still 
existed. 

There is another, related, problem to be resolved, however. This problem occurs 
when the client tries to modify a dependee object. We cannot apply the attribute 
value changes implied in the modify primitive to the object because we assume that 
its depender object depends on all the current attribute values of the object. We 
resolve this problem by object versioning. We consider the instantiation of an object 
as creating the first version of the object, which becomes its current version. Later, 
the loggable may send a primitive that modifies the object. In response to this 
primitive, the logger first finds out whether any other object depends on the current 
object to be modified. If there is no such object, the logger applies the change to the 
current version of the object. Otherwise, the logger creates a new version copy of the 
current version. The new version is a copy of the previous version except that all its 
attribute values are initialized to null. The logger then applies the change to the new 
version, which becomes its current version. To indicate the replay order of the two 
versions, we create a dependency of the new version on the previous version. We 
refer to this dependency as version dependency. Any subsequent modification made 
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to the object is about the most current version of the object. With the introduction of 
versioning, the dependency graph is now made up of different versions of objects, 
some of which are connected by version and inter-object dependencies. Version 
dependency imposes another restriction on how we replay primitives: an object 
version cannot be replayed unless its previous version and all other object versions 
that depend on the previous version have been replayed. This is because we lose the 
previous version's context by replaying its next version. 

Versioning not only preserves the dependee object context for the depender 
object, but also removes cycles in the dependency diagram. Without versioning, 
cycles can occur. For example, when creating a pixmap in X, the X request should 
specify a hierarchy of windows for which the pixmap can be used, by including, as 
an attribute of the pixmap, a window that belongs to the window hierarchy. We refer 
to this window as the reference window of the pixmap. So let us say that when 
creating a pixmap A, the client specified a window B, thereby creating a dependency 
of pixmap A on window B. Now, after the client draws some basic pattern on 
pixmap A, it designates pixmap A as the background pattern of window B. 
Assuming there is no versioning, this modification creates a dependency of window 
B on pixmap A. Thus, we have a cycle formed with the two object nodes and the 

(a) Without Versioning (b) With Versioning 

Figure 3. Cycle Removal through Versioning. 

two dependency edges between them. Such a cycle creates a problem when we 
replay primitives to create objects on a latecomer's UI server: we cannot create 
window B without creating pixmap A, or vice versa, because they depend on each 
other. Deleting nodes creates a similar problem. Let us say that a primitive to 
destroy the window arrives. It cannot be deleted because pixmap A depends on it. 
Now, if a primitive to destroy pixmap A arrives, it too cannot be honored, since the 
undeleted window B depends on it. 

Let us illustrate how versioning works to prevent such a cycle. When making the 
background pattern attribute change in window B, we find that pixmap A depends 
on it. Instead of applying the new value in the current version of window B, we 
create a new version B' of window B and apply the value change to B'. Since we are 
effectively adding a new node (which does not have any incoming edge) and making 
the dependencies from there, we never have a cycle in the dependency diagram. The 
versioning process is illustrated in Figure 3. 

With the guarantee that there is no cycle in the entire object dependency 
diagram, we can use the same procedures described above for logging and replaying. 

Our dependency handling approach follows basically the same mode changes as 
described before. However, the logger in the concurrent log/replay mode works a 
little differently in how it deals with each of the new primitives coming from the 
loggable. Unlike the previous approach, which applies the new primitive's value 
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changes to the logger data structures and optionally sends the primitive on the fly 
depending on whether the associated object has been replayed, we take a rather 
simple solution for now. We log any new primitive coming from the loggable in a 
temporary log. When we finish replaying all the versions in the dependency 
diagram, we take each primitive in the temporary log, and send it back to tbe 
loggable. Before sending the primitive, we also apply the primitive's value change" 
to the dependency diagram in order to prepare for a future latecomer 
accommodation service. We take this simple approach because the new primitive':; 
effect during replay is not necessarily confined to a single object version due to 
inter-object and version dependencies, and it is probably not worth the effort to try 
to determine the new primitive's effect during replay when we can simply apply it to 
the data structures and send it back to the loggable when the replay is over. 

Our new dependency handling approach subsumes our previous independent 
objects approach in a straightforward manner, since the previous approach is just a 
special case of our new approach, where there is no dependency among different 
objects. 

3.5 Evaluation and Implementation 

Figure 4. A User Interface Snapshot of an Application Program Kali 

Let us evaluate our latecomer accommodation service framework based on the 
requirements described in the introduction. It is composable by design as shown in 
its architecture (Figure 1), and it imposes no policies or protocols that are unrelated 
to latecomer accommodation support. It compresses the log by design, though the 
extent of the compression depends on the amount of semantic knowledge provided 
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by the loggable. It is easy to program since the loggable takes on a translation role 
instead of implementing the entire service. However, there is a trade-off between log 
compression and ease of programming - the more compression the service provides, 
the more work the loggable has to do in order to provide more semantic information. 
But, we still believe that even with the dependency handling approach, the effort 
required to build a loggable will be less than what is required to implement the log 
compression. For example, it is easier to describe the dependencies than to interpret 
them. Indeed, compression comes at a cost, but the loggable only has to specify the 
parameters of the compression algorithm. The framework is generic because it does 
not make any assumptions about the VI abstraction. For instance, the abstraction 
could be a Suite active variable, or an X window system window. 

We have implemented the logger in Java. So far in our paper, only X examples 
were used to motivate the description of our work. To verify that our logger 
implementation is useful for higher-level abstraction systems beyond X, we added 
latecomer accommodation service to a Java application called Kali. 

Figure 4 shows a snapshot of the user interface created by the application 
program Kali. The left portion of the interface is the control panel, while the right 
portion is the canvas on which a user can draw the pattern that he desires. The 
control panel is divided into the color panel and the group panel. The color panel 
controls what color is used to draw on the canvas while the group panel is used to 

Figure 5. Dependency Relationship among Kali State Objects. 

set a pattern to lay on the canvas. There are three alternative groups of patterns a 
user can choose from a drop-down group menu, and for each different group 
selection, the application displays a different set of patterns that the user can choose 
as buttons below the group menu. Selection of a color or a pattern affects only 
subsequent drawing the user lays on the canvas, but does not influence previous 
work. No effect is seen when the group is changed, but the canvas is cleared when a 
particular pattern is chosen for the first time after the group change. 

As illustrated in Figure 5, there are basically four states maintained within the 
application program: i.e. those of color, group, pattern, and canvas. The loggable 
models these states as four state objects, each of which has a single attribute used to 
log events that change the associated state object. Each selection in the color 
buttons, the group menu, and the pattern buttons is modeled as a single event, and it 
is non-cumulative since its effect on the associated state object replaces that of a 
previous selection event. Each event associated with the canvas state object is 
cumulative since its effect adds to the current drawing of the canvas, except that the 
first canvas event after each new group selection followed by a pattern selection is 
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non-cumulative. Figure 5 also illustrates the inter-object dependencies the loggable 
specifies to enforce a correct replay order. 

As can be seen from the nature of the application, logging is a more attractive 
alternative since state capture is rather complex. The state is not only dispersed in 
the canvas but also in the control panel since the effect of the next event in the 
canvas depends on the state in the control panel. The importance of this method is 
that by clearly defining the dependencies which are natural to the application, and 
the properties of the attributes being logged, the entire compression is automated. 
Moreover, the change to the application program was minimal - only a small portion 
of event handling code within the program had to be changed to both send events to 
the logger and to receive replayed events. 

We ran the application using the logger for latecomer accommodation and 
obtained the following statistics. Table 1 covers the entire spectrum where we use all 
the events that are logged while in other cases, only necessary events are replayed. 

In the first case, the control panel was used to change only the color. In the 
second case, the group of patterns in the control panel was changed. In the last case, 
the entire canvas was cleared and a design recreated. We had two Color events 
before the group was changed to redraw a new design. In the replay, all the events 
that occurred before the pattern change, which include the two color events, are 
purged and we can see effective log compression. The number of replayed events 
are exactly equal to the events that occur after the last clear occurred and hence offer 
an advantage of a compact log. 

T, hi I L a e . agger P f er ormance on L S' R d og lze e uction 
Logged Events Replayed Events 

Canvas Button Group Color Total Canvas 
Control 

Total 
Panel 

387 0 0 3 390 387 3 390 
229 0 1 3 233 229 4 233 
463 I 1 4 469 215 4 219 

4. FUTURE WORK 

In both of our latter two approaches, the log gable can have the logger replay the 
whole history of a certain window's state changes by specifying all the drawing 
requests to the window as having the cumulative characteristic. However, just 
replaying the value changes of an object's attributes (e.g. just showing what went on 
within only the main window of a drawing application) may not be sufficient for 
some latecomers. A latecomer who is also a novice user of the shared client may 
want to learn how to work with the client's interface while watching the request 
replay, such as which menus are used. But simply replaying primitives according to 
the dependency relationships cannot satisfy such needs, because some of the 
windows used for menus may be temporarily created, used by the user, and 
destroyed immediately, and hence immediately removed from the data structure. We 
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plan to define a playback dependency, which basically defines a playback sequence 
of window drawing requests. 

We also plan to use our system to provide a composable latecomer service for a 
variety of systems. Since our implementation is coded in Java, it is easiest to 
compose it with systems implemented in Java. We plan to compose it with the Java 
applications we plan to build as part of the Collaboration Bus project going on in our 
department. 
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Discussion 

Ken Fishkin: I have a question about your loggable filtering. If one views an event 
as a command to a virtual machine, then the event log is like a sequence of 
commands in assembly language. So, the filtering you describe is similar to classic 
code optimisation. For instance, some of the techniques you describe in the paper are 
similar to peephole optimisation, dead code removal, and code hoisting. Would it be 
useful to strengthen this similarity and investigate the use of available code 
optimisation packages? 

Prasun Dewan: Our system is flexible, and whoever implements the loggable filter 
certainly can do any optimisation. I need to think about this similarity, however. 

Christian Gram: Can you log "Undo" and manage it without losing information? 

Prasun Dewan: Yes, I think it should work. 

John Grundy: Is Kali a single-user application? 

Prasun Dewan: Yes. We is turned it into a multi-user application, then added 
latecomer management. 

Nick Graham: You seem to be biased towards applications that are WYSIWIS, and 
artifact-based, where artifacts can be represented by a set of graphical calls. 

Prasun Dewan: As to WYSIWIS, yes. As to artifacts, I do not quite agree. It is up to 
you to describe how your application is to be rendered. 

Len Bass: How would you handle users with different levels of synchronisation? 
Would you have one logger for each? 

Prasun Dewan: Yes, we would have one logger per user in that case. 

Stephane Chatty: Can you do fast-forward and rewind through your event logs? 

Prasun Dewan: We can log enough events to support these operations, but have not 
implemented them so far. 

Franck Tarpin-Bernard: After a long session, what is the size of a log file? Isn't it 
very large? 
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Prasun Dewan: If you want fast-forward and rewind, then yes it would be very 
large, since you would have to log all events. Otherwise, you can have checkpoints 
and shorten your file. 
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