
Generic and Composable Latecomer
Accommodation Service for Centralized Shared
Systems

GoopeeJ Chung, Prasun Dewan and Sadagopan Rajaram
Department of Computer Science, University of North Carolina at Chapel Hill, Chapel
Hill, NC 27599-3175, {chungg,dewan,rajaramj@cs.unc.edu

Key words: multi-user interface, collaboration system, logging, groupware, latecomer,
newcomer, window system, genericity, composability

Abstract: It is important that a shared application allow a latecomer to join other users
who are already working together with the application. We have developed a
latecomer accommodation service framework for centralized shared systems
(applications and infrastructures). It employs an independent latecomer
accommodation server that is dynamically composable with its clients. The
server, also called the logger, logs a shared application's user interface (UI)
changes in response to calls made by the client, also called the loggable. Later,
when the time comes to accommodate a latccomer, the logger replays the
logged changes to the loggable, which, in tum, creates the latecomer's user
interface. To deal with UI protocols at different levels of abstraction, we have
defined the API in terms of a generic UI model. This reduces the burden on a
loggable from a complete service implementation to a translation between its
specific UI protocol and our generic UI model. To reduce the space and time
overhead, the logger performs complex log compression. The extent of
compression depends on the amount of semantic knowledge that the loggable
provides to the logger. In this paper, we motivate, describe and illustrate the
approach, and outline how it is implemented.

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35349-4_22

© IFIP International Federation for Information Processing 1999
S. Chatty et al. (eds.), Engineering for Human-Computer Interaction

http://dx.doi.org/10.1007/978-0-387-35349-4_22

1. INTRODUCTION

The composition of users participating in a collaboration session with a shared
application can change dynamically. A collaboration session can begin with some
number of users, and later, some additional users may late-join the collaboration
session, and some users may leave early. Moreover, users may not be able to finish
the collaboration within one session - they may have to stop the session temporarily,
and resume later at another session using the previous session state. Latecomer
accommodation service allows latecomers/resumers to join/resume a collaboration
session that has already made some progress. We will use the term, latecomer, to
also mean resumer.

The essential part of the latecomer accommodation service is to create a new
user interface for the latecomer that shows some part of the shared application state.
How this is accomplished can vary. The exact part of the state shown may depend
on the latecomer's role in the collaboration. Moreover, before displaying the state,
the latecomer accommodation service may also show a quick animation of how the
user interface reached its current state.

In general, implementing a latecomer accommodation service is difficult, and
hence, should ideally be done by a collaboration infrastructure. This is the approach
taken in many systems such as Suite (Dewan, Choudhary, 1992), XTV (Chung,
Jeffay, Abdel-Wahab, 1994), a system by (Manohar, Prakash, 1995), and Habanero
(NCSA). However, each of these systems provides its own latecomer
accommodation service. Thus, there is no code sharing among these systems.
Moreover, the latecomer accommodation service is tightly integrated with other
aspects of the system. It is not possible for applications to use the latecomer service
without using other protocols offered by the system such as those for user interface,
concurrency control, and access control. It is often the case that these protocols are
too rigid for an application.

Therefore, it would be useful to provide an independent latecomer
accommodation service that can be used by a variety of systems and applications. In
this paper, we present our first step towards such a service. It has the following
distinguishing features.

- Composability: We provide a separate server module that is dynamically
composable with a latecomer client (a system or an application). The latecomer
server can share the same address space with the client, or be in a different
address space of the same host, or on a different host. It exports an API that
separates the latecomer accommodation service from other collaboration
functions. Through the API, the latecomer client sends the UI state change
information as often as necessary, and the latecomer server logs this information.
When the time comes to accommodate a latecomer, the latecomer server replays
the log back to the latecomer client. The latecomer client, in turn, can use the
replayed log to create the latecomer's user interface. Our log and replay approach
implies "You Get What You Log" - the latecomer client determines what actions
are logged and replayed. Since we are using a log and replay approach, we will
refer to the latecomer server as the logger, and the latecomer client as the
loggable.

130

- Genericity: Different loggables can provide UI change information based on
different VI protocols, which can be at different levels of abstraction. In order to
support various protocols, the logger's API is based on a generic VI model that
makes few assumptions about how a shared application makes changes to its user
interface.

- Log Compression: Our log and replay approach allows animation of how the user
interface reached its current state before the latecomer joins the session. However,
it may be the case that the latecomer does not want such animation, but simply
wants to see the current UI state as quickly as possible. We provide special
support for such a situation by compressing the log so that not all of the VI
changes sent by the loggable are actually logged. The extent of the compression
performed by the logger is proportional to the amount of semantic information
given to it by the loggable.

- Ease of Programming: The service should not require a significant burden on the
loggable. Instead of implementing the latecomer service, the loggable takes on a
translation role, simply converting between its specific UI protocol and our
generic model. Such a translation module can be built for a whole class of systems
and applications, and we believe that the effort required to build such a module is
small.

The rest of the paper is organized as follows. We first describe the related work
on which our research is based. Next, we describe our approach. Finally, we give
conclusions and directions for future work.

2. RELATED WORK

Many collaboration systems such as Suite (Dewan, Choudhary, 1992), XTV
(Chung, Jeffay, Abdel-Wahab, 1994), GroupKit (Roseman, Greenberg, 1996), a
system by (Manohar, Prakash, 1995), and Habanero (NCSA) support latecomer
accommodation using different approaches.

Suite is a collaboration infrastructure that provides to its application
programmers the high-level abstraction of a shared active variable. Suite determines
how an active variable is displayed based on its type. The Suite architecture is based
on the model-view framework - where a central model implements the shared
application state, and multiple views implement interfaces of different users. Suite
allows different users' views to be different, thereby supporting non-WYSIWIS
interaction. It also supports transactions, where not every change made to a view is
immediately committed in the model. When a latecomer joins a collaboration
session, Suite calls a load method on the model, which sends to the latecomer's view
data structures that have been committed by pre-existing views. Thus, the new user
cannot see any uncommitted values.

XTV is an extension of a single-user window system called X that allows users
to share existing single-user X applications. The X window system provides to its
application programmers the abstraction of a window, which is much lower level

131

than Suite's active variable. An X application sends to an X server a series of
requests to create and update windows, and the X server sends to the X application
user input in the form of low-level mouse and keyboard events. XTV enables
sharing of a single-user X application by intercepting and distributing the X requests
to multiple X servers, and by relaying the user input events from the multiple servers
to the shared application. The latecomer accommodation service in XTV works by
logging the low-level window requests from the shared application, and replaying
them to the latecomer's X server. XTV has to use the logging approach since it is not
possible to look inside existing X applications for internal data structures. This is
different from Suite, which has its application export the data structures. XTV also
performs log compression by maintaining only the current UI state. However, the
log compression algorithm is closely tied to the X protocol.

These two systems assume a single centralized component that represents the
shared application state, and multiple UI components for different users. Some
collaboration systems replicate the shared application component as well as creating
mUltiple UI components. A replicated system provides good response times to its
users, because all of their input is locally processed. However, it must perform an
additionai step of replicating the shared application component for the latecomer.
The replicated approach is taken by many systems such as GroupKit, a system by
(Manohar, Prakash, 1995), and Habanero, and we wi11look at those systems now.

GroupKit is a toolkit that lets developers build groupware applications. In
GroupKit, when a latecomer joins a collaboration session, the run-time infrastructure
sends an event called updateEntrant to an existing application replica, which, in turn,
communicates with the latecomer's replica to update the latecomer's user interface.
What specific actions are taken during this time totally depends on the shared
application. For example, a group drawing program could send the entire drawing to
the latecomer, and a text chatting program could send the text contents of all the
existing chat windows. Therefore, the latecomer accommodation service is flexible
in that it can be whatever the application needs. However, it has to be implemented
manually by the application programmer.

A system by (Manohar, Prakash, 1995) allows flexible support for resuming a
collaboration session by using a data artifact called a session object. A session object
captures a user's interaction with an application, and records window events such as
mouse and keyboard actions. When a latecomer resumes the collaboration session,
the system replays the session object's window events to a fresh copy of the
application, and, in this process, the application creates the user interface for the
latecomer. During replay, the system shows the previous user's actual interaction as
faithfully as possible by controlling the rate of replay. The system also provides a
VCR-like user interface, so that the latecomer can pause, skip, and fasten the replay.
In order to support skipping to an upcoming portion of replay, the session object
also has intermittent state checkpoints where the previous application wrote its entire
current state information. The new application can use one of these checkpoints to
load the entire application state without replaying prior window events. The system
reduces the burden on the application programmer since history replay is managed
by it. This is unlike GroupKit, where an application has to be totally responsible for
latecomer accommodation. This is more like the XTV approach, which also logs and
replays window system level protocols. But it is different from XTV in the

132

following respects. First, it works for a replicated system as mentioned before.
Second, it allows UI change animation, and allows users to control its replay, while
XTV simply creates the current UI state. Third, unlike XTV, it does not compress
events.

Habanero is a collaboration system that allows users to interact with a shared
application called a hablet. A hablet is a Java applet program extended for multi-user
collaboration. When a latecomer arrives, Habanero calls a marshaliSelf method that
is to be implemented by the hablet. In response to this call, the hablet marshalls itself
(i.e. saves its state information) to a marshall object. Habanero, then, migrates this
marshall object along with the hablet code to the latecomer's workstation, where the
migrated hablet code unmarshalls the previous hablet state from the marshall object.
In addition to updating its state, the migrated hablet has to update the latecomer's
user interface. Habanero also supports session record and replay feature, but this is a
separate mechanism that is automatically supported by the system. Therefore, a
hablet programmer is to be concerned only about marshalling and un marshalling the
hablet state when it comes to latecomer accommodation.

As we can see, none of these systems (both centralized and replicated) has a
separate module for latecomer accommodation service; the latecomer
accommodation service is closely integrated with the system or individually
implemented by each application. Moreover, an application that wants to use the
latecomer accommodation service from one of these systems must follow all the
protocols offered by the system, including those not relevant to latecomer
accommodation such as the active variable abstraction of Suite, the low level X
protocol of XTV, the groupware programming abstractions of GroupKit, the
window events protocol of the system by (Manohar, Prakash, 1995), and the Java
applet "habanerization" of Habanero. In the next section, we will describe how these
limitations can be overcome for a centralized system. We leave handling latecomers
in a replicated system as future work.

3. APPROACH

3.1 Architecture

The architecture that should be formed for our latecomer accommodation service
to work is illustrated in Figure 1. This architecture assumes that a shared system
consists of an application client and mUltiple UI servers, one for each user. Each
server manages the interface of a user for the client. The client sends requests to
change the user interface in terms of some UI abstraction the server defines, such as
a window or an active variable. The client can also ask the server to notify the client

133

r<· .. >
k-» Generic UI protocol!
t .. u :

Logger r-----

Figure 1. Latecomer Accommodation Service Architecture.

through events when certain aspects of the user interface are changed by the user
(for example, mouse movements or active variable changes). Therefore, in a shared
system, a client and multiple servers send messages (requests and events) back and
forth following a specific UI protocol based on the UI abstraction.

A logger and a loggable work together to provide latecomer accommodation
service for the shared system. The logger is a separate, log and replay module. The
loggable is positioned between the client and the servers, and listens to messages
exchanged between them. The logger and the loggable talk to each other using a
generic UI protocol to which a specific UI protocol can be translated.

The loggable translates requests from the client into abstract primitives defined
by our generic model, and sends them to the logger, which, in turn, logs them. The
loggable has the discretion to decide which request it translates and sends to the
logger. When a latecomer needs to be accommodated, the loggable asks the logger
to replay the abstract primitives that are needed to create the latecomer's user
interface. The logger, in response, sends these primitives. When the loggable
receives a primitive, it reverse-translates the abstract primitive to a request of the
specific UI protocol. Once the translation is done, the loggable sends the request to
the latecomer's UI server.

The major factor in determining the efficiency of our latecomer accommodation
service module is the compression ratio of the actual log size to the total size of all
the primitives sent by the loggable. The compression ratio is greatly affected by how
much semantic information the loggable can provide about the client requests. We
roughly classify the extent of information into three cases, and provide an approach
for each case. We will describe the three approaches in the sections that follow.
Each approach assumes a different model of how the client makes changes to the
user interface depending on the amount of semantic information that it can get from
the loggable. Each approach will be a generalization of the previous approach, and
assumes more semantic knowledge. We could have described the third approach
directly, but we are doing it incrementally for motivation and explanation purposes.
Since our implementation is in Java, we use Java syntax for describing operations
defined by our approaches.

134

3.2 Brute Force Approach

This approach is to accommodate loggables that cannot provide any semantic
information about a client request. The basic idea here is to record all the client
requests in the log, and replay without modification to a new server. The main
complication in this approach is the synchronization, which is described using
Figure 2.

Initially, the logger and loggable start in the log and play modes, respectively.
While in the play mode, the loggable treats each client request as just an encoded
message that it knows nothing about, and simply relays the message as is to the
logger. The loggable calls 10gMessage(Object message) to send the message to the
logger. The logger logs each of these messages in chronological order. When the
time comes to accommodate a latecomer, the loggable sends a REPLAY signal
asking the logger to start replaying the logged messages. On sending/receiving the

(a) for the logger

(b) for the loggable

Figure 2. Mode Transition Diagram.

REPLAY signal, the loggable and logger go into the concurrent play/replay and
concurrent log/replay modes respectively.

While in the concurrent log/replay mode, the logger simply replays the logged
messages one by one to the loggable in exactly the same order in which they were
logged. The loggable can, in turn, send these replayed messages directly to the
latecomer's UI server.

While replay is going on, the client can send new messages to the loggable,
which, in turn, sends them to the logger as well as to the pre-existing UI servers. The
logger simply appends the new messages to the message log. When the logger has
consumed the entire message log, it sends an END_OF _LOG signal to the loggable,
and goes into the synchronize mode. The loggable responds to the END_OF _LOG

135

signal with an ACK signal, and goes into the buffer mode. The ACK signal defines a
synchronization point, and it indicates to the logger that the loggable will send no
new message until the logger replays all the messages sent so far and goes back into
the log mode.

While in the synchronize mode, the logger waits for the ACK signal to arrive.
While waiting, the logger can receive additional new client messages that the
loggable may have sent before the ACK signal. The logger simply records these
messages in the log, and replays them at the same time. When it finally receives the
ACK signal, the logger sends a REPLAY_FINISH signal to the 10ggabJe, and goes
back into the log mode. The buffer mode for the 10ggabJe is the same as the
concurrent play/replay mode except that the log gable now buffers any new messages
in its own temporary Jog. As soon as the loggable receives the REPLAY_FINISH
signal from the logger, it sends the buffered new messages directly to the
latecomer's UI server and to the logger, and then goes back into the play mode.

This brute force approach is inefficient because every client message has to be
logged and replayed. This can consume a large amount of memory as the
collaboration can last a long time. Additionally, the time needed to create the
latecomer's user interface is strictly proportional to the entire collaboration time. If
we have some semantic information about each of the client messages, we may be
able to use less log space, and drastically reduce the time needed to create a
latecomer's user interface. The following section describes a better approach
assuming that the loggable can provide some semantic information about the client
messages.

3.3 Independent Objects Approach

When we want to create the latecomer's user interface as quickly as possible, it
is not necessary to show how the interface changed since the collaboration started. It
is sufficient to show only the current state of the interface. For example, if the users
changed the background color of a window many times, we do not have to save the
history of all the background color changes, but only the latest background color.

Our approach here is based on observations such as this one, and its entire basic
model of how the client makes changes to the UI server assumes that each of the
client requests can be translated into one of the following abstract primitives.

- instantiate: The client instantiates some objects (e.g. windows, or active variables)
on the UI server for interaction with the user.

- modify attributes: The client asks the server to change some attributes of an
interaction object by specifying their new values. For example, the client can
change the background color attribute of a window by specifying its new color
value. An attribute value may not just be data, it may be a high level command
that changes the attribute value. For example, it may be a command to draw a
circle on a window foreground (which we assume to be modelled as an attribute
of the window). The logger does not need to interpret the attribute values. It
simply passes them to the loggable in the form it received them.

- destroy: When one of the interaction objects is no longer necessary, the client can
send a request to destroy it.

136

For our approach to work, we require that the loggable translate the client's
requests into the abstract primitives given above, and send them to the logger in
order to report how the client is making changes to the user interface.

The logger maintains a record for each object instantiated by the client, and
represents each attribute as a field of the record. Whenever the client modifies one of
the attribute values, the logger replaces the old value with the new one for the
corresponding field. The client can also modify attribute values of objects it did not
instantiate when the objects are shared with other clients. For example, in the X
window system, multiple clients can make changes to the shared default colormap.
In this case, the logger depends on the loggable to report the objects as pre-existing
before any modify primitives are applied to them. Since most of the client requests
will involve changing certain attributes of interaction objects, this approach can
accomplish drastic saving of the memory space needed to log the UI changes.
Furthermore, we can accomplish more saving of log space by freeing memory
allocated for objects that have been destroyed.

Now, when creating a latecomer's user interface, all the logger needs to do is
just replay to the loggable the primitives to instantiate the objects (modify in case
the objects are pre-existing) with the current attribute values, and the loggable can,
in turn, translate the primitives into corresponding client requests and send them to
the latecomer's UI server.

However, the model we assume in this approach so far may be too simple for
some cases, since the client can make cumulative changes to an object attribute. For
example, let us say that a logger and a loggable are working to provide latecomer
service for a text editor application. The loggable has modelled the text window as a
single object on the logger, and the foreground of the text window as a single
attribute of the object. The loggable's intention is to translate a client request that
displays characters on the window into a modify attribute - the loggable uses the
request itself (without modification) as the value parameter of a modify primitive
that changes the foreground attribute. When the "value" is replayed later, the
loggable can simply send the "value" to the latecomer's UI server. The text editor
client can display characters one after another through different text drawing
requests as the users enter them using the keyboard. Instead of refreshing the whole
window foreground each time a new character needs to be displayed, each request
can change a part of the screen where the new character needs to be displayed. We
refer to such a value change as cumulative since it cannot replace the previous value
of the associated attribute. We extend our model to allow the loggable to specify the
cumulative nature of some attribute value changes.

With this change in our model, the logger now looks at the cumulative nature of
the value change, and if it is cumulative, it simply appends the new value to the
previous value of the associated attribute. When a non-cumulative (replacing) value
change needs to be applied to an attribute, the whole list of values attached to the
attribute is replaced by the new value. During replay, the logger replays the value
changes in the list one by one in chronological order.

Another good use of this extension arises when the loggable wants the logger to
log the history of value changes even when they are not actually cumulative in

137

nature. For example, as mentioned before, a latecomer may want to view the history
of all the changes in a certain window.

Hence, the log space we need to use is more or less proportional to the number
of objects that the client is maintaining on the UI server, but not exactly proportional
due to some cumulative value changes. Moreover, the time needed to create the
latecomer's user interface is not necessarily subject to the length of the total
collaboration time.

The mode changes that the logger and the loggable take are basically the same as
in the brute force approach. However, the logger in the concurrent log/replay mode
works a little differently in how it deals with new primitives coming from the
loggable.

If the new primitive involves an object that has already been set up on the
latecomer's UI server, the new primitive is simply applied to the object record for a
future latecomer accommodation service, and also sent to the loggable as a replay
primitive. If the new primitive is about an object that is yet to be set up on the
latecomer's UI server, it is simply applied to the object record, but is not sent to the
loggable as a replay primitive. This is because the new primitive's effect will be
replayed later when the logger gets to the associated object. Finally, if the primitive
is about an object which the logger is in the middle of setting up on the latecomer's
UI server, the application of the primitive to the record is temporarily delayed until
the object is completely set up, and when the set up is complete for the object, the
delayed primitives are applied to the object record for a future latecomer
accommodation service, and sent to the loggable one by one in the order that they
were received by the logger.

Our independent objects approach subsumes the previous brute force approach.
If the loggable is sending client messages using the model assumed in the brute
force approach, we simply instantiate one log object with one attribute, and we treat
each client message as a cumulative value change to the attribute of the log object,
thereby simulating the brute force logging of the previous approach.

3.4 Dependency Handling Approach

We saw in our previous approach that cumulativeness of attribute value changes
enforces an order during replay. A cumulative value change for an object attribute
cannot be replayed unless its previous value change is first replayed. Put another
way, cumulativeness of an attribute value change forms a replay dependency of the
attribute value change on its predecessor. Since this particular form of dependency is
made within the same object, we cal1 it an intra-object dependency (or cumulative
dependency). In this subsection, we extend our model to include clients issuing
primitives that create other kinds of dependencies (i.e. inter-object dependencies),
and describe how it affects our log and replay approach. We first motivate the need
to make such dependencies.

Windows for some applications often have repetitive tiles of an arbitrary pattern
as the background. If the application client were to draw the repetitive pattern on the
entire window, it would be very cumbersome and error-prone. To make
programming easier in such a case, window systems such as X provide the
programmers with a scratch-pad-like abstraction, called a pixmap, which itself is not

138

directly displayable, but can be used in combination with other abstractions such as
windows. To create a window with a tiled background in X, the X client would first
draw the unit pattern on a pixmap, and modify the window's background attribute to
refer to the pixmap. In response to the request, the X server can copy the pixmap
content and repeatedly draw the pattern on the window. Later, the client can modify
the pixmap to use it for some other purposes, or delete it when it is no longer needed
without affecting the background pattern of the window.

In this example, the tiled window (depender) object is said to depend on the
pixmap (dependee) object. Such dependency relationships between different objects
(inter-object dependencies) affect how we log and replay the client request
primitives in the following ways.

First, dependencies affect the order in which we instantiate and modify objects
on the latecomer's VI server during replay. In our example, primitives that create the
pixmap, and update it with the attribute values should be replayed before the
primitive that forms the window's dependency on the pixmap.

Second, a destroy primitive from the loggable does not mean an immediate
removal of the associated object record from the logger, because some other object
may have formed a dependency on it. If we do remove the record, we would not be
able to build the dependee object on the latecomer's VI server at all, which, in turn,
means that the depender object cannot have one of its attributes set correctly.

We represent each of the dependencies as a directed edge that has its tail on the
depender object node and its head on the dependee object node. The graph thus
created can be used to replay client request primitives in the correct order: i.e. replay
the dependee object first, and then the depender object. Also, when we delete a node
in response to a destroy primitive, we check whether an edge has its head on the
associated node: i.e. whether any other object depends on it. If there is indeed a
depender object, we do not delete the object node, but we just mark it as destroyed.
If there is no depender object, we delete the object node along with all the edges that
originate from the deleted node. Then, we recursively follow the deleted edges to
find and delete any node that could not be deleted because its depender node still
existed.

There is another, related, problem to be resolved, however. This problem occurs
when the client tries to modify a dependee object. We cannot apply the attribute
value changes implied in the modify primitive to the object because we assume that
its depender object depends on all the current attribute values of the object. We
resolve this problem by object versioning. We consider the instantiation of an object
as creating the first version of the object, which becomes its current version. Later,
the loggable may send a primitive that modifies the object. In response to this
primitive, the logger first finds out whether any other object depends on the current
object to be modified. If there is no such object, the logger applies the change to the
current version of the object. Otherwise, the logger creates a new version copy of the
current version. The new version is a copy of the previous version except that all its
attribute values are initialized to null. The logger then applies the change to the new
version, which becomes its current version. To indicate the replay order of the two
versions, we create a dependency of the new version on the previous version. We
refer to this dependency as version dependency. Any subsequent modification made

139

to the object is about the most current version of the object. With the introduction of
versioning, the dependency graph is now made up of different versions of objects,
some of which are connected by version and inter-object dependencies. Version
dependency imposes another restriction on how we replay primitives: an object
version cannot be replayed unless its previous version and all other object versions
that depend on the previous version have been replayed. This is because we lose the
previous version's context by replaying its next version.

Versioning not only preserves the dependee object context for the depender
object, but also removes cycles in the dependency diagram. Without versioning,
cycles can occur. For example, when creating a pixmap in X, the X request should
specify a hierarchy of windows for which the pixmap can be used, by including, as
an attribute of the pixmap, a window that belongs to the window hierarchy. We refer
to this window as the reference window of the pixmap. So let us say that when
creating a pixmap A, the client specified a window B, thereby creating a dependency
of pixmap A on window B. Now, after the client draws some basic pattern on
pixmap A, it designates pixmap A as the background pattern of window B.
Assuming there is no versioning, this modification creates a dependency of window
B on pixmap A. Thus, we have a cycle formed with the two object nodes and the

(a) Without Versioning (b) With Versioning

Figure 3. Cycle Removal through Versioning.

two dependency edges between them. Such a cycle creates a problem when we
replay primitives to create objects on a latecomer's UI server: we cannot create
window B without creating pixmap A, or vice versa, because they depend on each
other. Deleting nodes creates a similar problem. Let us say that a primitive to
destroy the window arrives. It cannot be deleted because pixmap A depends on it.
Now, if a primitive to destroy pixmap A arrives, it too cannot be honored, since the
undeleted window B depends on it.

Let us illustrate how versioning works to prevent such a cycle. When making the
background pattern attribute change in window B, we find that pixmap A depends
on it. Instead of applying the new value in the current version of window B, we
create a new version B' of window B and apply the value change to B'. Since we are
effectively adding a new node (which does not have any incoming edge) and making
the dependencies from there, we never have a cycle in the dependency diagram. The
versioning process is illustrated in Figure 3.

With the guarantee that there is no cycle in the entire object dependency
diagram, we can use the same procedures described above for logging and replaying.

Our dependency handling approach follows basically the same mode changes as
described before. However, the logger in the concurrent log/replay mode works a
little differently in how it deals with each of the new primitives coming from the
loggable. Unlike the previous approach, which applies the new primitive's value

140

changes to the logger data structures and optionally sends the primitive on the fly
depending on whether the associated object has been replayed, we take a rather
simple solution for now. We log any new primitive coming from the loggable in a
temporary log. When we finish replaying all the versions in the dependency
diagram, we take each primitive in the temporary log, and send it back to tbe
loggable. Before sending the primitive, we also apply the primitive's value change"
to the dependency diagram in order to prepare for a future latecomer
accommodation service. We take this simple approach because the new primitive':;
effect during replay is not necessarily confined to a single object version due to
inter-object and version dependencies, and it is probably not worth the effort to try
to determine the new primitive's effect during replay when we can simply apply it to
the data structures and send it back to the loggable when the replay is over.

Our new dependency handling approach subsumes our previous independent
objects approach in a straightforward manner, since the previous approach is just a
special case of our new approach, where there is no dependency among different
objects.

3.5 Evaluation and Implementation

Figure 4. A User Interface Snapshot of an Application Program Kali

Let us evaluate our latecomer accommodation service framework based on the
requirements described in the introduction. It is composable by design as shown in
its architecture (Figure 1), and it imposes no policies or protocols that are unrelated
to latecomer accommodation support. It compresses the log by design, though the
extent of the compression depends on the amount of semantic knowledge provided

141

by the loggable. It is easy to program since the loggable takes on a translation role
instead of implementing the entire service. However, there is a trade-off between log
compression and ease of programming - the more compression the service provides,
the more work the loggable has to do in order to provide more semantic information.
But, we still believe that even with the dependency handling approach, the effort
required to build a loggable will be less than what is required to implement the log
compression. For example, it is easier to describe the dependencies than to interpret
them. Indeed, compression comes at a cost, but the loggable only has to specify the
parameters of the compression algorithm. The framework is generic because it does
not make any assumptions about the VI abstraction. For instance, the abstraction
could be a Suite active variable, or an X window system window.

We have implemented the logger in Java. So far in our paper, only X examples
were used to motivate the description of our work. To verify that our logger
implementation is useful for higher-level abstraction systems beyond X, we added
latecomer accommodation service to a Java application called Kali.

Figure 4 shows a snapshot of the user interface created by the application
program Kali. The left portion of the interface is the control panel, while the right
portion is the canvas on which a user can draw the pattern that he desires. The
control panel is divided into the color panel and the group panel. The color panel
controls what color is used to draw on the canvas while the group panel is used to

Figure 5. Dependency Relationship among Kali State Objects.

set a pattern to lay on the canvas. There are three alternative groups of patterns a
user can choose from a drop-down group menu, and for each different group
selection, the application displays a different set of patterns that the user can choose
as buttons below the group menu. Selection of a color or a pattern affects only
subsequent drawing the user lays on the canvas, but does not influence previous
work. No effect is seen when the group is changed, but the canvas is cleared when a
particular pattern is chosen for the first time after the group change.

As illustrated in Figure 5, there are basically four states maintained within the
application program: i.e. those of color, group, pattern, and canvas. The loggable
models these states as four state objects, each of which has a single attribute used to
log events that change the associated state object. Each selection in the color
buttons, the group menu, and the pattern buttons is modeled as a single event, and it
is non-cumulative since its effect on the associated state object replaces that of a
previous selection event. Each event associated with the canvas state object is
cumulative since its effect adds to the current drawing of the canvas, except that the
first canvas event after each new group selection followed by a pattern selection is

142

non-cumulative. Figure 5 also illustrates the inter-object dependencies the loggable
specifies to enforce a correct replay order.

As can be seen from the nature of the application, logging is a more attractive
alternative since state capture is rather complex. The state is not only dispersed in
the canvas but also in the control panel since the effect of the next event in the
canvas depends on the state in the control panel. The importance of this method is
that by clearly defining the dependencies which are natural to the application, and
the properties of the attributes being logged, the entire compression is automated.
Moreover, the change to the application program was minimal - only a small portion
of event handling code within the program had to be changed to both send events to
the logger and to receive replayed events.

We ran the application using the logger for latecomer accommodation and
obtained the following statistics. Table 1 covers the entire spectrum where we use all
the events that are logged while in other cases, only necessary events are replayed.

In the first case, the control panel was used to change only the color. In the
second case, the group of patterns in the control panel was changed. In the last case,
the entire canvas was cleared and a design recreated. We had two Color events
before the group was changed to redraw a new design. In the replay, all the events
that occurred before the pattern change, which include the two color events, are
purged and we can see effective log compression. The number of replayed events
are exactly equal to the events that occur after the last clear occurred and hence offer
an advantage of a compact log.

T, hi I L a e . agger P f er ormance on L S' R d og lze e uction
Logged Events Replayed Events

Canvas Button Group Color Total Canvas
Control

Total
Panel

387 0 0 3 390 387 3 390
229 0 1 3 233 229 4 233
463 I 1 4 469 215 4 219

4. FUTURE WORK

In both of our latter two approaches, the log gable can have the logger replay the
whole history of a certain window's state changes by specifying all the drawing
requests to the window as having the cumulative characteristic. However, just
replaying the value changes of an object's attributes (e.g. just showing what went on
within only the main window of a drawing application) may not be sufficient for
some latecomers. A latecomer who is also a novice user of the shared client may
want to learn how to work with the client's interface while watching the request
replay, such as which menus are used. But simply replaying primitives according to
the dependency relationships cannot satisfy such needs, because some of the
windows used for menus may be temporarily created, used by the user, and
destroyed immediately, and hence immediately removed from the data structure. We

143

plan to define a playback dependency, which basically defines a playback sequence
of window drawing requests.

We also plan to use our system to provide a composable latecomer service for a
variety of systems. Since our implementation is coded in Java, it is easiest to
compose it with systems implemented in Java. We plan to compose it with the Java
applications we plan to build as part of the Collaboration Bus project going on in our
department.

ACKNOWLEDGMENTS

This research was supported in part by National Science Foundation Grants IRI-
9408708, IRI-9508514, IRI-9627619, and CDA-9624662, and by DARPA/ONR
grant N 6600 1-96-C-8507 .

REFERENCES

Abdel-Wahab, H. M. and Feit, M. A., XTV: A Framework for Sharing X Window Clients in
Remote Synchronous Collaboration, Proceedings, IEEE Conference on Communications
Software: Communications for Distributed Applications & Systems, Chapel Hill, NC, pp.
159-167, April 1991.

Chung, G., Jeffay, K., and Abdel-Wahab, H., Dynamic Participation in Computer-based
Conferencing System, Journal of Computer Communications, 17(1): 7-16, January 1994.

Dewan, P. and Choudhary, R., A high-level flexible framework for implementing multi-user
user interfaces, ACM Transactions on Information Systems 10,4,345-380, October 1992.

Manohar, N. R. and Prakash, A., The Session Capture and Replay Paradigm for
Asynchronous Collaboration, Proceedings of the Fourth European Conference on
Computer-Supported Cooperative Work, September 10-14, Stockholm, Sweden, 149-164,
1995.

NCSA, Habanero, http://www.ncsa.uiuc.edu/SDG/Software/Habanero/.
Roseman, M. and Greenberg, S., Building Real Time Groupware with GroupKit, A

Groupware Toolkit, ACM Transactions on Computer Human Interaction, 1996.

BIOGRAPHY

Goopeel Chung is a Ph.D. student in the Department of Computer Science at the
University of North Carolina at Chapel Hill. He received a B.S. degree in Computer
Engineering from Seoul National University, and a M.S. degree in Computer
Science from University of North Carolina at Chapel Hill. His research interests are
flexible shared window systems and process migration.

Prasun Dewan is a professor in the Department of Computer Science at the
University of North Carolina at Chapel Hill. Before joining UNC-Chapel Hill, he
was on the faculty of Purdue University. He received a B.Tech. degree in Electrical
Engineering from the Indian Institute of Technology of New Delhi and a Ph.D. in

144

Computer Science from University of Wisconsin at Madison. His research interests
are in frameworks for implementing single-user and multi-user applications,
collaborative software engineering, object-oriented databases, operating systems,
process migration, mobile computing, and interoperability.

Sadagopan Rajaram received the B.Tech degree in Computer Science and
Engineering from the Indian Institute of Technology, Madras (Chennai), in 1997. He
is currently working towards his Masters degree in Computer Science from the
University of North Carolina at Chapel Hill. His interests include CSCW,
particularly in the area of access control and security.

145

Discussion

Ken Fishkin: I have a question about your loggable filtering. If one views an event
as a command to a virtual machine, then the event log is like a sequence of
commands in assembly language. So, the filtering you describe is similar to classic
code optimisation. For instance, some of the techniques you describe in the paper are
similar to peephole optimisation, dead code removal, and code hoisting. Would it be
useful to strengthen this similarity and investigate the use of available code
optimisation packages?

Prasun Dewan: Our system is flexible, and whoever implements the loggable filter
certainly can do any optimisation. I need to think about this similarity, however.

Christian Gram: Can you log "Undo" and manage it without losing information?

Prasun Dewan: Yes, I think it should work.

John Grundy: Is Kali a single-user application?

Prasun Dewan: Yes. We is turned it into a multi-user application, then added
latecomer management.

Nick Graham: You seem to be biased towards applications that are WYSIWIS, and
artifact-based, where artifacts can be represented by a set of graphical calls.

Prasun Dewan: As to WYSIWIS, yes. As to artifacts, I do not quite agree. It is up to
you to describe how your application is to be rendered.

Len Bass: How would you handle users with different levels of synchronisation?
Would you have one logger for each?

Prasun Dewan: Yes, we would have one logger per user in that case.

Stephane Chatty: Can you do fast-forward and rewind through your event logs?

Prasun Dewan: We can log enough events to support these operations, but have not
implemented them so far.

Franck Tarpin-Bernard: After a long session, what is the size of a log file? Isn't it
very large?

146

Prasun Dewan: If you want fast-forward and rewind, then yes it would be very
large, since you would have to log all events. Otherwise, you can have checkpoints
and shorten your file.

147

	Generic and Composable Latecomer Accommodation Service for Centralized Shared Systems

	1. INTRODUCTION
	2. RELATED WORK
	3. APPROACH
	3.1 Architecture
	3.2 Brute Force Approach
	3.3 Independent Objects Approach
	3.4 Dependency Handling Approach
	3.5 Evaluation and Implementation

	4. FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES
	BIOGRAPHY
	Discussion

