
Support for Iterative User Interface Prototyping:
The Sherlock Guideline Management System

D. Grammenos, D. Akoumianakis, c. Stephanidis
Institute 0/ Computer Science,
Foundation/or Research and Technology - Hellas
Science and Technology Park o/Crete.
Heraklion. Crete, GR-71I/O GREECE

Abstract: This paper is about supporting the difficult and non-trivial task of user
interface design by providing effective human factors input to early stages of
system development. The work presented in this paper is motivated by the
normative perspective that tools for working with guidelines should provide a
collaborative, extensible and evolutionary medium, offering more than mere
access to guideline reference manuals or hypertext retrieval, for early human
factors design input. To this effect, this paper presents a novel method for
working with guidelines and a supporting tool environment, namely the
Sherlock Guideline Management System. Sherlock provides an integrated
environment for articulating and depositing guidelines, accessing past
experience and propagating guidelines in the form of recommendations, to the
user interface development life-cycle. In this manner, persistency of
organisational knowledge on guidelines and evolution of the accumulated
wisdom are supported. Moreover, Sherlock provides facilities for the
automatic usability inspection of tentative designs. Finally, the paper describes
the results of a preliminary evaluation of Sherlock.

Key words: Design support, Usability, Guideline Management Systems

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35349-4_22

© IFIP International Federation for Information Processing 1999
S. Chatty et al. (eds.), Engineering for Human-Computer Interaction

http://dx.doi.org/10.1007/978-0-387-35349-4_22

1. INTRODUCTION

The proliferation of information technology products and services in everyday life,
has created a compelling need for more usable and friendly user interaction. User­
centred design (ISO, 1997) has emerged as a process for matching technological
characteristics to user needs away from the technology-centred practices of the past.
Usability engineering (Bevan et aI., 1994) is at the core of the user-centred design
process, focusing on the development of highly usable user interfaces of interactive
products and telematic services, providing the necessary methods and techniques
and emphasising iteration between the design and evaluation stages.

The adoption of user-centred design and usability engineering gave rise to an
increasing need for methods and tools that bridge the gap between design and
evaluation by offering practical, comprehensive, and, most of all, cost-effective
support, during the early phases of design. Tools for working with guidelines
(Cohen et aI., 1995) is a methodological approach supporting an iterative
development life-cycle and providing early and direct evaluation feedback. This
paper reviews currently available systems and identifies their shortcomings; and
describes the development and evaluation of a new software tool that overcomes
existing problems highlighted by recent practice and experience and takes into
account the results of previous research efforts.

For a number of years, the primary medium for propagating guidelines-based
input to interactive system development has been paper-based guidelines reference
manuals (Lim et aI., 1994). However, in the recent past, a number of tools for
working with guidelines have emerged to ease the tasks of accessing and retrieving
guidelines, applying recommendations to design prototypes and allowing more
effective human factors input to early stages of system development. The current
generation of tools for working with guidelines exhibits several shortcomings which
impede their wider use and adoption by practitioners (e.g., designers or developers
of interactive software components).

The lack of adequate tools for supporting design, as well as the reported
shortcomings and obstacles of previous research efforts, motivated the development
of a new method for working with guidelines and a supporting tool environment,
namely the Sherlock Guideline Management System. Sherlock provides an
integrated environment for articulating and depositing guidelines, accessing past
experience and propagating guidelines / recommendations to the user interface
development life-cycle, thus supporting persistency of organisational knowledge on
guidelines and evolution of the accumulated wisdom. Moreover, Sherlock provides
facilities for the automatic usability inspection of tentative design.

300

2. COMPUTER-AIDED USER INTERFACE
EVALUATION

2.1 Related work

A growing number of systems have addressed the issue of guideline management
during design activities. Their underlying assumption is that the prevailing paper­
based medium for propagating human factors knowledge (i.e., guidelines) to user
interface design is insufficient and ineffective to provide the type and level of
support designers require. In response, a number of systems have been developed to
provide on-line hypertext access to guideline reference manuals, integrate a subset
of relevant guidelines into knowledge bases that could subsequently augment the
design phase, or to automate the evaluation of certain components of a user interface
according to recommendations resulting from general or context specific guidelines.

Indicative systems which have been developed to pursue this line of work
include Reisner's work (Reisner, 1981) on assessing simplicity and consistency of
commands represented in a BNF grammar, the work by Blesser and Foley (Blesser
et aI., 1982), the EXPOSE system (Gorny, 1995), SIERRA (Vanderdonckt, 1995),
GuideBook (Ogawa, 1994), HyperSAM (Iannella, 1994).

A more recent development within this line of work is the effort to develop tools
for experience-based usability guidelines. This approach extends the scope of tools
for working with guidelines to facilitate depositing and retrieval of design
experiences and the construction of "living" design repositories. Though such a
concept is still in its infancy, there have been some examples demonstrating the
basic principles of the approach in selected application domains, such as software
engineering (Terveen et aI., 1995; Henninger et aI., 1995) and accessible user
interface design (Stephanidis et aI., 1997).

2.2 Shortcomings of the current generation of tools

The current generation of tools for working with guidelines exhibits several
shortcomings which impede their wider use and adoption by practitioners (designers
or developers of interactive software components). These shortcomings, some of
which have been identified in the relevant literature, are briefly discussed below.

Context specificity and guidelines customisation
One well-known shortcoming of the current generation of tools for working with
guidelines is their insufficiency to cope with context parameters and customisation
issues (Cohen et aI., 1995). Specifically, existing tools do not account for context­
specific variables that frequently differentiate the implications of a guideline on a
particular design, while their support for interpreting and customising the guideline
reference manual is limited (if any).

Loose coupling / integration with user interface development systems

301

Tools for working with guidelines have traditionally not been integrated with
popular user interface development systems. This means that the effect of guidelines
on a specific design can rarely be automatically articulated (Stephanidis et a!., 1997).
Instead, the vast majority of the existing tools provide support for hypertext access
and retrieval of guidelines, which, though useful, does not provide a sufficient
means for augmenting design practices.

Extensibility, maintenance and versioning of guideline knowledge
In currently available tools, guidelines are typically encoded as collections of
ergonomic design rules which are subsequently integrated with a user interface
management system. These efforts, however, offer no computer-aided support for: (a)
maintaining the guideline rule base (e.g., identifying competing guidelines, conflicting
recommendations, automatic updates); (b) extending its scope with new rules (e.g.,
dedicated programming functions for implementing new guidelines; (c) versioning of
guideline reference manuals, so as to depict specific requirements of particular design
cases.

Design augmentation is beyond guideline access
As already pointed out, tools for working with guidelines can be classified either into
systems for access to electronically encoded guidelines, or rule bases that can be
integrated with a user interface management environment. In both cases, the level of
design augmentation that may be effectively supported is primitive and limited to
posterior identification, and sometimes automatic correction of faults in the design,
that can be traced through the available rules. There is no way to capitalise on, and
reuse past experience, explore alternatives before committing to a particular design
option, document problems and design deficiencies, so that they can be referred to by
future activities.

Corporate support
Another important shortcoming of eXlstlOg tools, is their lack for supporting
corporate practices. This does not only relate to customising a guidelines reference
manual, but also to developing domain-specific styleguides and offering
organisation-wide support for appropriating the recommendations of these
styleguides. In other words, it is not possible for an organisation to encode a
corporate style guide into the representation supported by an existing tool and
subsequently provide this representation as an internal company standard to be
observed by different business units and development sections. As a result, it is
practically impossible to support persistency in the use and application of human
factors knowledge.

Reporting
Reporting design defects and alternative solutions is another important issue that
needs to be supported by tools for working with guidelines, if they are to provide an
effective and efficient medium for integrating human factors knowledge into
software design and management. To this end, designers need to be able to
effectively document and report the results of their assessments so that they can be
communicated to developers, management and other stakeholders.

302

2.3 Rationale for Sherlock

The above shortcomings provide the motivating rationale for the development of
Sherlock, as described in the current paper. Moreover, our prime concern in
developing Sherlock has been to provide designers and developers with
comprehensive support for iterative prototyping and user interface design. To this
effect, we have tried to build upon specific properties of the tools reviewed in
section 2.1 and integrate them within one extensible framework for managing
guidelines and other interpretable usability heuristics and design principles.

3. THE SHERLOCK GUIDELINE MANAGEMENT
SYSTEM

3.1 Overview

Sherlock was implemented as a client/server application. Taking advantage of
ActiveX technology (Appleman, 1997), the server and client modules, as well as the
extension components, can reside on the same or different computers that are
connected through the Internet. The server module runs under Microsoft Windows
95 and the client module is an add-in to the Visual Basic 5.0 Integrated
Development Environment (IDE) (Microsoft, 1997).

3.1.1 The Server

The server's role is the inspection of user interfaces according to specific rules and
the resulting report of possible rule violations. The rules and the corresponding
inspection routines are not embedded in the server module, but they reside in
external modules that can be created by any programming language that has the
ability of creating ActiveX DLLs. Additionally, the server is also responsible for
keeping the clients up-to-date, whenever the rule base is updated, keeping track of
guideline violations encountered, as well as for consolidating knowledge about
users' solutions to usability problems. Potential users of the server are usability
experts and 'programmers' of new rules.

The Sherlock server comprises five basic components (Figure 1):

The User Interface Composer. This component parses a textual user interface
description received by a client and converts it to a user interface hierarchical data
structure, that will be later used by the inspection routines. The controls and
properties recognised by this component can be easily updated and augmented.

The Client / Server Communication Module. This module is built using Window
Sockets and is responsible for the communication between the client(s) and the
server.

303

Local Rules

-., '

,....----------_ ... -
Remole

....
Sherlock Server

LOCCIIlnspeclion
Routines

Us",lnl",loeo
Structure

Usd:>lllty
Inspector

............. >­
w
Z 1.-___________ bi: ---.. Remole

w Inspection
>- Routines
Z

Figure i .Sherlock server architecture

The Clients' Profiles Database. A repository of client-related information, such as
identification details, but also rules preferences and evaluation history.

The Rules Handler Module. The Rules Handler Module is responsible for handling
and integrating rules and inspection routines from a variety of sources. Additionally ,
this module offers tools for maintaining and extending the rule base and the relevant
set of inspection routines .

The Usability Inspector Module. During the evaluation phase of a particular user
interface, the Usability Inspector Module activates inspection routines based on: (a)
which rules are active, and (b) user preferences. This module collects instances of
rule violations detected. Upon the end of an evaluation, a comprehensive report of
usability problems is compiled and sent to the client.

3.1.2 The Client

The client's main role is to compile a textual description of a user interface created
in the Visual Basic 5.0 Integrated Development Environment (VB 5.0 IDE), send it
to the server for inspection and then report the inspection results to the user.

304

Sherlock clients can be used by designers, developers and usability evaluators. The
main characteristic of the client's design is simplicity, since Sherlock is intended to
be as easy to use as a common spell checker.

,
Sherlock alent

II)

"3

aJ
> c:

User Inter/ace ",_a;
Andyser l)

ic

Ins pecllon I .. B
Results t" 8

.------ -------- ReporlModule RepOIt

Figure 2. Sherlock Client architecture

Sherlock
Server

... ,

... - :g '
I­
W
Z

W
I-

'RemoieHeip i
')

The Sherlock client comprises six basic components (Figure 2):

The Client / Server Communication Module. This module is responsible for the
communication and exchange of information between the client and the server.

The Client's Profile database. A database used to store information about the rules
known to the client, user preferences and information about frequently encountered
usability problems and corrections provided by the user.

The Rules Handler. This part of the system is responsible for the visualisation and
handling of the rules hierarchy. Rules are presented in tree or list form. Through
these visualisations the user has the ability to activate or deactivate rules and classes
of rules, as well as to get a short description of each rule or rule class.

The User Interface Analyser. This is a non-interactive module of the client. Its
function is to create a textual description of a user interface that was created in the
VB 5.0 IDE in a predefined format and send it to the server for evaluation. In order

305

to minimise the descriptions created, a mechanism for assigning default values is
used.

Stages

PREPARATIO PHASE

EVALUATION PHASE

PROPAGATION PHASE

Activities

Idemific3tion of relevam design input
materials
Development of the rules
Intcgrmion of the rules Into the erver

Use of the guideline server to a e tcntativc
de ign and idemify de ign defects
Pre entation of the problems detected
Problem analysis

Problem c1as ification
Problem correction
Provi ion of information about the correction
of each problem

Figure 3. Stages during iterative prototyping with Sherlock

The Inspection Results Report Module. This module is responsible for presenting
the evaluation results. The user can have an overview of the rule violations that were
detected by the system, and browse and sort them according to a set of different
attributes, such as rule name, severity, class, etc. Furthermore, an in-depth analysis
of each rule violation is provided along with background information (such as
related theory and examples) and a history of previous solutions to the same
problem. Finally, a classification mechanism is provided for separating problems
that were fixed, or were not applicable to the specific interface, from those that are
still pending.

The Rules Help Module. A customised web browser that presents rule-related
information to the user. Each rule can be associated with a web page, or even a
whole web site, that contains relevant information, such as, theoretical background,
in-depth description, violation and correction examples. The main problem with this
type of information is that, since it comes from different sources, it does not have a
specific structure or format. The format can be "homogenised" through the use of
common web page design guidelines, but there is no way for creating an explicit
structure, since the related data is changing dynamically and may be distributed over
the Internet. This is why, this module creates 'on the fly' a "table of contents page" ,
based upon the Class information in the rules' profiles, which presents the
underlying (implicit) structure of the information.

306

3.2 Phased process model

Sherlock follows an iterative prototyping paradigm (Gramme nos et aI., 1999) and
supports a phased process model for assessing tentative designs and propagating the
results back to user interface development. The phased approach comprises three
main stages which are depicted in the diagram of Figure 3 and which can be initiated
from the basic toolbar of the system (see Figure 4). It is important to mention that
these stages may be performed more than once, thus leading to design-evaluation
cycles and a user-centred perspective to the overall design approach. This tight
evaluation feedback loop, which is further discussed in the following sections,
ensures that design defects are identified early enough, when their cost of repair is
minimal.

Shellocl. Uoabohll' £]

INot connected to server ...

No active connection

Figure 4. The Sherlock usability inspector

Preparation phase
This is a critical step in the use of Sherlock and an important determinant of the
quality of the results. During this phase, two alternatives may be pursued, depending
on the availability and sufficiency of the usability knowledge accumulated within
the guidelines server. For purposes of simplicity, we assume that the guidelines
server contains a sufficient set of guidelines, reflecting the organisation 's
accumulated wisdom and that the only preparatory activity that is needed is that of
selecting the parts within this knowledge component that are relevant to the current
design step. The illustration of Figure 5 depicts the dialogue through which the
designer may activate or deactivate a relevant subset of the rules. Such rules are
classified into clusters of related content and may be represented either through a
tree or a list view.

Evaluation Phase
The evaluation phase entails use of the guidelines server to assess tentative designs,
identify design defects and support the developers in correcting them. It is important
to mention that the same guidelines server may be used by different developers in a
project, thus guaranteeing consistency of the designs produced. In order to make use
of the evaluation module, a developer should produce a tentative design and should
activate the corresponding inspection module of Sherlock (see Figure 4).

An evaluation step entails the assessment of an internal textual description of the
object hierarchy against the current version of the guidelines server. The evaluation
module per se acts as a passive critic , which collects usability errors and presents

307

them to the developer. A typical example of the dialogue used to report a usability
problem is depicted in Figure 6. The Inspection Results Report window comprises
three parts. In the upper part, a single problem is presented using all the available
information. In the middle of the window, a set of push buttons allows the user to:
(a) move to the next/previous problem; (b) access background information about the
problem (such as related theory and examples); (c) view a history of previous
solutions to the same problem (Figure 7); and (d) classify the current problem as
'Fixed' or 'Not Applicable'.

_ ex -CllX
, ... v J !lli!y:ae";!J T ... v .. ", I LiIlV

Ru. Ched< << ./ Shedod:. HeurstJC:I

S_H..-""", Yes ,- ./ 1 lOjOOIA
, ·-1 LOjOOIA Yes

I .·- llLobeft No
. - ... 1,1' T(!)d;",lIc4OII'aUeUen Ye.

-)(I llabelt
./ 111' ... on

J 1 12M01Ol\OcoIon"
. ·_·1.12Mtlsngc.oIon "· y.,

No
. -129\itorn Y ••

i ,.-1.2 I Loc-. 01 Ol(.one! C", Ye.
. ·-·1.22B!Jltonllle Y ••
· ·-2.Ccb Yes ,

- ./ 128"'0n0
J 12Iloc-.oI0K..-dc-!
./ 1228""",,_

- ./ 2 U:Q

No x ...
: I --22A"OIdllht.4,.........u. Yes

. - 3 Wotdng Y ..
i . - 31 lobeft No

. --·-31 I A_Iong __ Y ..
I

J 22A"OIdwhl.l,.....eomilnobon
,- ./ 3 Wcocjng

-)(3 I labelt
" 3 11 A"OId 1ong.erut'Cef

Irule: 2.1 AvOd """ _
Deaa: Do not ...". cu. ,ed.one! bIJo toge<heI
SeveritJ' Ralln!T _ .=J

Irule: 21Avcd,edlbLo_
D."",; Do not "-pu.,ed 1ogoIhot
SOVOfjIJ Mojo! PI_ .:::J

'''''*'"'''''- r 8,IhoU ... I: r;; S ... A.Aornobc

'n.-,'_
p'AUonIIIbO r B,IhoU ...

OK I c.ncet I

Figure 5. Alternative views for rule handling

308

.. She.lock . Us.,b •• tv PlOblems RepOft EJ
Bepoft y_ Qptiorn

U.abitv P.obIem Descripoon

Usability P.obl.",
'OK' .nouId be Iocoted to the left 01 "C4nceI'
P.oblom Area
CommardIutton. hmPhoneDreetOf)f & Inri'honeDrectOf)f crrd:ancel

Rating
J (Problem)
CI ...
Sherlock HeulStrcsil 28"tons
Solution
Swap the two buttons' PG1mns
Inapection Type

fC
Long Description
The IrmPhoneDrectory.cmc[)K IS an 'OK' button and it shc>Jd be located
to the Ielt 01 CommardI"'on IrmPhoneDreclOf)f crrd:ancel whch is .. 'Cancer button
Status

I Active: 4 . F"",d: 2 . No! Appt 1 f2i4
(- PI"" I FiK-HistOf)f I Theooy F U No!A/lIll I Ne>ct -) I

No. Problem
Labels .hoUd be left o6gned
'OK'shc>Jd aIwavt be either to th. •.

4 Do ncI $how velow on
2 Always provw:le feecl>ack to the u.

Figure 6. Inspection Results Report

Close

The lower part of the Inspection Results Report window is a list (titled Usability
Problems List) that contains one of the following, depending on the user ' s choice:
(a) all the problems found ; (b) the 'Active' problems; (c) the 'Fixed' problems; (d)
the 'Not Applicable' problems. Each list entry represents a single problem detected,
and contains a short description of the problem, its status, diagnosis type and
severity and the user interface component(s) related to the violation. The list can be
sorted by anyone of these attributes. The user can retrieve more details about a
specific usability problem simply by clicking on it.

Propagation Phase
When a rule violation is detected, a usability problem is reported that is
automatically classified as 'Active'. Browsing through the inspection report, the user
can explicitly declare a problem 'Fixed' and optionally provide information on the
actual steps taken to tackle the problem (Figure 8); alternatively, the user may
decide that the violation reported was 'Not Applicable' to the specific interface.

309

---------,-10

------+<e
------t>o

-t"-1----t 10

ZZ Dod ""tong

10

• P'ou.:.-d tt. r.('O.rmn. llOJl

Oidl'OlN:Ac . 11 ,. .. 1.'*»111

Figure 7. Reviewing deposited information

This classification data is stored in the user's profile, as part of the inspection
history. All the classification actions are reversible. The above approach to problem
classification was selected in order to assist the developer in organising the task at
hand, by providing a quick overview of the problems found, the ones which have
been taken care of, and those ignored .

... . Shellack · How Did You Fix 117 EJ

How dod)IOU ro< CUlrent u.obiIy problem?

r Did nothing

r It watn' & Ploblem

r Did $omething eke: (pieMe de.cribeJ

I

OK Cancel

Figure 8. Depositing information about fixing a problem

310

4. SHERLOCK EVALUATION

Sherlock was evaluated using the thinking aloud method in combination with a
widely used questionnaire measuring user satisfaction. The rationale of this decision
is as follows: first of all, there are no available heuristics or guidelines, in the
available literature, for evaluating a design support system from the perspective of
the designer. Additionally, Sherlock is a unique tool, i.e., there are no other existing
systems depicting equivalent functionality that can be used for comparative
assessments. These two facts have ruled out the use of a non-empirical evaluation
method. The existence of a high fidelity prototype made feasible the use of a user­
based method. The available options were two: (a) measure user performance, or (b)
assess the users' subjective opinion. Given the intention of the current effort (to
demonstrate the technical feasibility for such a tool, as opposed to developing a
commercial product), the subjective measurement was selected, as this would be
more informative ofthe opinion of designers.

Thinking aloud would be used to observe the user interacting with the system,
asking vocalisation of thoughts, opinions and feelings while working with the
interface, in order to understand the user's mental model, the way he thinks and
performs tasks and find out any mismatches between the mental model and the
system model. The questionnaire would be used in order to assess the users' opinion
in a more formal way about the perceived usability of the system.

Two questionnaires were used (IBM Computer Usability Satisfaction
Questionnaires (Lewis, 1995»; the first, namely After-Scenario Questionnaire
(ASQ), is filled in by each participant at the end of each scenario (so it may be used
several times during an evaluation session), while the other one, namely Computer
System Usability Questionnaire (CSUQ) is filled in at the end of the evaluation (one
questionnaire per participant). The result of the subjective evaluation with the IBM
Computer Usability Satisfaction Questionnaires is a set of metrics which can be
summarised as follows:
• ASQ metric provides an indication of a participant's satisfaction with the system

for a given scenario;
• OVERALL metric provides an indication of the overall satisfaction score;
• SYSUSE metric provides an indication of the system's usefulness;
• INFOQUAL metric is the score for information quality;
• INTERQUAL metric is the score for interface quality.

Sherlock was evaluated by eight expert users with substantial experience in user
interface design. All users had a University degree in Computer Science or related
subject and some of them postgraduate education; all of them had at least a few
years experience (typically, four to six years) in the field of human-computer
interaction. The user group consisted of five males and three females, whose age
ranged from twenty-five to forty years.

Each subject had to execute two scenarios. The first scenario required minimal
interaction with the system, and included the evaluation of a very simple interface,
as well as the correction (by the user) of the usability problems detected. The second
scenario required the interaction of the subject with most parts of the system. The

311

subject had to configure the rules used for the evaluation, to retrieve background
information about the usability problems detected, to classify those problems in the
categories supported by Sherlock and finally to record the way he/she had corrected
them.

During the execution of each scenario, users were prompted to vocalise their
thoughts, pinpoint any problems encountered and express suggestions for improving
the tool. After the execution of each scenario, each subject filled in the ASQ
questionnaire, while at the end of the evaluation session each subject filled in the
CSUQ questionnaire.

The results of the subjective assessment of the users' opinion are summarised in
Table 1 and Table 2. The lower the score, the better the quality being assessed; this
is a property of the instrument used for the evaluation which follows a 7-point scale
(1; strongly agree - 7; strongly disagree). The slight increase in the scores observed
between the two scenarios in Table 1, reflects their difference in required user
interaction load.

Table 1. After-Scenario Questionnaire (ASQ) Results

Scenario 1 2,00 3,00 3,33 1,33 2,33
Scenario 2 2,00 3,33 3,67 2,00 3,00

Table 2. Computer System Usability Questionnaire (CSUQ) Results

3,00
3,00

SYSUSE 2,00 2,75 2,63 1,38 1,63 2,13
INFOQUAL 2,86 4,00 4,43 1,86 3,14 3,57
INTERQUAL 2,00 3,00 2,00 2,33 2,00 4,00
OVERALL 2,3 3,21 3,16 1,74 2,26 3,00

3,67
4,00

2,63
4,00
3,00
3,05

2,67
3,33

2,25
3,23
2,67
2,58

As shown, the overall score, as well as the specific metrics, illustrate a very
positive user attitude towards the system. The thinking aloud protocol verified the
quantitative assessment and provided valuable insight as to how the prototype could
be improved. Some of the recommendations that were collected reflected the
requirement for better documentation, on-line help facilities and design examples, so
as to help users become accustomed to the system. In addition, users raised the
request to provide undo facilities at various steps of the computer-aided assessment.

In general, this preliminary evaluation of Sherlock, by designers and usability
experts working in the field, has confirmed the initial hypotheses of an existing real
need for such a tool, and in particular, the actual usefulness of Sherlock in
supporting the user-centred design process and its potential in contributing to higher
quality of human-computer interaction.

5. SUMMARY & FUTURE WORK

This paper has highlighted the importance of providing adequate and timely user­
centred support during the process of designing the user interface of interactive
applications. In particular, it described a new methodological approach and a tool

312

(Sherlock) intended to provide a means for improving current HeI design practices
and potentially enhancing the quality of the resulting interactive software products
and services. The results of the evaluation of Sherlock, have confirmed the initial
hypotheses of an existing real need for such a tool, and in particular, the actual
usefulness of Sherlock in supporting the user-centred design process as well as its
potential in contributing to higher quality of human-computer interaction.

Future work is seeking to extend the current capabilities of the tool to include
support for group collaboration and design rationale. This is in line with available
evidence suggesting a pressing need for further work in this research direction. In
particular, developments under way concern not only enhancements of the present
functional characteristics of Sherlock, but also the identification and development
of additional means (methods, techniques and tools) to automate different types and
levels of support for designers and usability experts.

313

6. REFERENCES

Appleman D., (1997). Developing ActiveX Components with Visual Basic 5.0 - A Guide to
the Perplexed, Emeryville: Ziff-Davis Press.

Bevan, N., Macleod, N., (1994). Usability measurement in Context, Behaviour and Information
Technology, vol. 13(1&2), pp. 132-145.

Blesser, T., Foley, J., (1982). Towards specifying and evaluating the Human Factors of User­
centered Interfaces, Proceedings of ACM Conference on Human Factors in Computing
systems (CHI'82), ACM Press, pp. 309-314.

Cohen, A., Crow, D., DiIli, I., Gorny, P., Hoffman, H.-J., Iannella, R., Ogawa, K. Reiterer, H.,
Ueno, K., Vanderdonckt, J., (1995). Tools for Working With Guidelines, SIGCHI Bulletin
27(2), pp. 30-32.

Gorny, P., (1995). EXPOSE: An HCI-Counselling tool for User Interface Design,
INTERACT'95, pp. 297-304.

Grammenos, D., Akoumianakis and D., Stephanidis, c., (1999). Integrated Support for
Working with Guidelines: The Sherlock Guideline Management System, accepted for
publication in the International Journal of Interacting with Computers, Special Issue: Tools
for Working with Guidelines, vol. 11 (2), May.

Henninger, S., Heynes, K., Reith, M., (1995). A Framework for Developing Experience­
Based Usability Guidelines, Conference Proceedings ofDIS'95, University of Michigan,
ACM Press, pp. 43-53.

Iannella, R., (1995). HyperSAM: A management tool for large user interface guideline sets,
SIGCHI, vol. 27(2), pp. 42-43.

ISO/DIS 13407, (1997). Human-centred design processes for interactive systems,
International Organisation for Standardisation, Geneva, Switzerland.

Lewis, R. J., (1995). IBM Computer Usability Satisfaction Questionnaires: Psychometric
Evaluation and Instructions for Use, International Journal of Human-Computer Interaction,
vol. 7(1), pp. 57-78.

Lim, K. Y., Long, J., (1994). The MUSE Method for Usability Engineering, Cambridge
University Press.

Microsoft, (1997). Microsoft Visual Basic 5.0 Programmer's Guide, Microsoft Press.
Ogawa, K., Useno, K. (1995). GuideBook: Design Guidelines database for assisting the

interface design task, SIGCHI, vol. 27(2), pp. 38-39.
Reisner, P., (1981). Formal grammar and human factors design of an interactive graphics

system, IEEE Transactions on Software Engineering, SE-7(2), pp. 229-240.
Stephanidis, C. Akoumianakis, D, (1997). Preference-based Human Factors Knowledge

Repository for Designing User Interfaces, International Journal of Human Computer
Interaction, vol. 9(3), pp. 283-318.

Terveen, L., G., Selfridge, P., G., Long, M., D., (1995). "Living Design Memory"­
Framework, Implementation, Lessons Learned, Human-Computer Interaction, vol. 10(1),
pp. 1-37.

Vanderdonckt, 1., (1995). Accessing guidelines information with SIERRA, Proceedings of
IFIP Conference on Human Computer Interaction (lnteract'95), London: Chapman & Hall,
pp.311-316.

314

7. BIOGRAPHY

Constantine Stephanidis, Ph.D, leads the Assistive Technology and Human­
Computer Interaction Laboratory at the Institute of Computer Science, Foundation
for Research and Technology - Hellas (ICS-FORTH), Heraklion, Crete, Greece. He
is a Visiting Professor at the University of Crete, Department of Computer Science,
teaching Human-Computer Interaction. He is the Founding Chairman of the
Working Group "User Interfaces for All" of the European Research Consortium on
Informatics and Mathematics (ERCIM), and the Founding Chairman of the
International Scientific Forum "Towards an Information Society for All".

Demosthenes Akoumianakis is on the research staff at the Assistive Technology and
Human-Computer Interaction Laboratory, ICS-FORTH, Greece, with extensive
experience in computer-aided user interface design.

Dimitrios Grammenos is on the research staff at the Assistive Technology and
Human-Computer Interaction Laboratory, ICS-FORTH, Greece, with expertise in
user interface design and usability evaluation.

315

Discussion

Laurence Nigay: Where does the VI description come from?

Dimitris Grammenos: It is automatically generated by Visual Basic.

Laurence Nigay: What is the control of the VI description? How do you describe the
dynamic aspects of the dialogue?

Dimitris Grammenos: SHERLOCK is not a remedy for everything but it can assess
many important aspects. Many of the usability problems can be automatically
detected by SHERLOCK.

Claus Unger: In your presentation, you give some examples for simple rules. To get
an idea of the sophistication and complexity of your system, could you please give
an example of a complex rule.

Dimitris Grammenos: The provision of rules is not a major goal of the system. The
system mainly serves as an umbrella for embedding user provided evaluation rules.
Rules can be expressed in terms of programs and thus can be of arbitrary
sophistication and complexity.

Ken Fishkin: Does the system support tools to correct errors rather than just report
them.

Dimitris Grammenos: Yes, an earlier version of the system had this feature. In the
current version, we had to drop this feature due to time constraints but we plan to re­
introduce it in the next version.

Jean Scholtz: Can designers utilise SHERLOCK for partial designs or must the
design be complete?

Dimitris Grammenos: Designers can work with it as objects are added to the design.
This is the preferred mode for using SHERLOCK.

Jean Scholtz: Can designers input usability problems manually?

Dimitris Grammenos: Problems are kept in the data base and can be managed (or
added) through database management tools.

Joe/Ie Coutaz: How is information about context embodied?

Dimitris Grammenos: By customising the rules.

Joe/Ie Coutaz: How do you cope with conflicting rules?

Dimitris Grammenos: There are two cases:

a) Two rules refer to the same guideline. This is identified when the rules are
316

specified.
b) Each rule has a detailed profile. In the profile is a field labelled "conflict". In this
field is a message for the user in the case of conflicting rules. The user can then
specify which rule should be used.

Helmut Stiegler: What are the technical prerequisites for your tool? How much
effort needs to be invested to adapt it to a new environment? How close are you to a
product?

Dimitris Grammenos: It is now based on the Visual Basic environment. Adaptation
to a different environment may cost a couple of months of work but the textual
description is stored in the server and any environment could use this server. In
order to turn SHERLOCK into a product, more rules need to be developed. Right
now we have integrated a small set of rules for demonstration purposes.

317

	Support for Iterative User Interface Prototyping: The Sherlock Guideline Management System

	1. INTRODUCTION
	2. COMPUTER-AIDED USER INTERFACE EVALUATION

	2.1 Related work
	2.2 Shortcomings of the current generation of tools
	2.3 Rationale for Sherlock

	3. THE SHERLOCK GUIDELINE MANAGEMENT
SYSTEM
	3.1 Overview
	3.2 Phased process model

	4. SHERLOCK EVALUATION
	5. SUMMARY & FUTURE WORK
	6. REFERENCES
	7. BIOGRAPHY
	Discussion

