
Frameworks and patterns for synchronous
groupware: AMF -C approach

F. Tarpin-Bemard, B.T. David, P. Primet
GRACIMP - ICIT, Ecole Centrale de Lyon, France
{Franck.Tarpin-Bemard, Bertrand.David, Pascale.Primet}@ec-lyon.Jr

Abstract: Frameworks and design patterns are emerging technologies in software
engineering. They increase software quality in terms of reusability, modularity
and extensibility. Synchronous groupware can benefit of these new
technologies. This article describes AMF-C, a multi agent model which
structures each agent with a various number of facets, and two associated
frameworks. Indeed, a cooperative application can use either a fragmented
framework (facets are dispatched into the network) or a replicated one (each
agent is totally replicated). Design patterns are identified for the definition and
the interconnection of facets. In this last case, an expressive graphical
formalism is used to wire control components. The design and implementation
tasks are largely reduced and mainly rely on a good choice and combination of
patterns. Finally, we introduce the associated tools and methodology that holds
great promise in addressing the design issues.

Key words: Framework, design pattern, synchronous groupware, CSCW, AMF-C

1. INTRODUCTION

"Object-oriented application frameworks are a promising technology for reifying
proven software designs and implementations in order to reduce the cost and
improve the quality of software" (Fayad, 1997). Indeed, they enhance modularity by
encapsulating volatile implementation details behind stable interfaces which reduce
the effort required to understand and maintain existing software. Related to the
framework technology, the design patterns have recently emerged in software
engineering (Gamma, 1995). These patterns are supposed to describe recurring

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35349-4_22

© IFIP International Federation for Information Processing 1999
S. Chatty et al. (eds.), Engineering for Human-Computer Interaction

http://dx.doi.org/10.1007/978-0-387-35349-4_22

solutions that have stood the test of time. A single framework usually contains many
patterns, so these patterns are smaller than frameworks. Therefore, they are also
more abstract. They are the micro-architectural elements of frameworks (Johnson,
1997). But for many authors, since some frameworks have been implemented
several times, they represent a kind of pattern, too. For instance,
ModelNiew/Controller is a user-interface framework that is described as a pattern in
Bushmann & al. (1996), whereas Johnson considers that it can be decomposed into
three major design patterns and several less important ones, referring to Gamma's
work. Actually, both notions are complementary and their importance in software
engineering is increasing regularly.

Computer supported cooperative work is also a recent field of investigation.
Many models, tools and interaction patterns have been developed for experimental
groupware. Few of them are becoming specialised frameworks. For instance, the
National Center for Supercomputing Applications built Habanero (NCSA, 1996), a
framework for sharing Java objects with colleagues distributed around the Internet.
TCL-TK DP (see Smith, 1996) can also be considered as a cooperative framework. It
is used by Roseman's team to implement the new version of Groupkit (Roseman,
1993).

As the number of CSCW experiments and observational studies is increasing,
new sociological and psychological consequences of this new way of working are
identified. One of the most important conclusions about these systems is that, most
of the time, they are well adapted for one kind of cooperative work but can not be
applied in all situations (meetings, collaborative design, teletraining, etc.). For all
these reasons, we consider that groupware, and especially synchronous groupware,
should provide a very wide range of patterns of interaction. But more importantly,
they should provide services which allow the user (or the leader of a group) to
switch at run-time from one pattern to another.

Considering these different issues, our purpose is to help design and
development of flexible groupware, building cooperative frameworks and associated
design patterns. This paper describes AMF-C, an architectural model which defines
two cooperative frameworks, and some of the main patterns which have been
identified. It concludes with the related design methodology and tools.

2. FRAMEWORKS FOR GROUPWARE

Referencing to well known works such as (Rodden, 1991) or (Ellis, 91), we have
identified different forms of control (Tarpin-Bernard, 1998), among these, the most
relevant are:

Interaction control: management of the relations between user actions and
internal data changes.
Notification control: management of the notifications of actions from or to the
group.
Access control on data and processings : management of rights and duties of
users in relation to their roles in the group.

226

Concurrency control: coordination activity of concurrent access to shared
resources in multi-user systems.
As groupware engineering can not be done from scratch, it is necessary to

identify different levels of development. These four controls can be dispatched into
three functional layers (see figure 1), corresponding to the three main actors
involved in groupware: users, groups and computers.

User: Collaborative application level

Group: Groupware infrastructure

System: Distributed system level

Figure 1. The three functional layers of a groupware environment

The first layer corresponds to the collaborative applications level. It contains
all the cooperative software used by the users. This level is definitely user-centred,
which means that it manages interaction control and proposes interfaces for
notification and access controls. It uses multi users services provided by a second
layer called the groupware infrastructure. This layer contains all the common
elements of group activities and acts as an operating system dedicated to groups. It
supports collaborative work managing sessions, users and groups; provides generic
cooperative tools (e.g.: telepointer) and is responsible for concurrency control. It
also implements notification protocols and provides access control mechanisms. In
many groupware, these tasks are assumed by toolkits. It is a generic layer between
applications and distributed system which constitutes the third level of our model.
This last layer is essentially in charge of message multicast and consistency control.
Usually, it is a computer-centred layer that provides transparent mechanisms for
communication and synchronisation of distributed components which misfit with
CSCW aims but which are very useful.

In the next sections, we will only develop the collaborative application level and
especially our AMF-C model (Tarpin-Bernard, 1997b).

2.1 AMF : a framework for single-user software

Architectural models for groupware have to combine the knowledge of models
developed for single-user applications and the constraints introduced by cooperative
work. For many years, HCI community has been very interested in designing models
for interactive software. One of the most important class of such models is the
multi agent one. These models organise an interactive system as a set of agents that
collaborate to support the dialogue between men and computers. Most of these
agents are based on three components (facets) mapped on the HCI paradigm
(presentation to the user, functional kernel, and interaction control). But, these
models present two main disadvantages:
1. They define very large facets which mix different thematic functions.
2. They do not provide powerful mechanism to express interaction control.

227

To bring some solutions to these shortages, we chose to develop a multiagent
model called AMF (Ouadou, 1994).

Indeed, to solve the first problem, AMF organises each agent in an appropriated
number of facets. These facets can be similar to the classical components of PAC
model (Coutaz, 1990) or MVC (Krasner, 1988). They can also either come from a
finer split of control components, or from the identification of new characteristics of
agents (e.g.: management of the user model), or from the duplication of classical
facets (several presentation facets corresponding to different views). For instance,
we can identify the following facets: presentation (110 relations with the user),
abstraction (logical data - functional kernel), evaluation (capture of the user's
actions), help (contextual and on-line helps linked to a user model) or user model
(information for adaptive interface). In the multiuser version of AMF we will
present other facets related to the cooperative work requirements.

Finally, to solve the second problem, AMF expresses interaction control with
two kinds of components:
1. Each facet presents several communication ports (allowing input, output or

both). These ports avoid to having a permanent binding between an abstraction
(a port) and its implementation (a function). Moreover, it is possible to
implement the body of the functions in various languages.

2. The Control "facet" is an abstract facet mainly defined by control
administrators. A control administrator has three roles:

To connect, managing logical relations between the communication ports
(sources and targets) that are connected to it;
To translate, transforming the messages which come from the source ports in
understandable messages for target ports;
To express behaviour, and so control strategies, using different rules of
activation between a source port (A) and a target port (B). We have identified
several administrators, such as: simple (if A then B), sequence (if AI, next
A2, next ... An then B), conjunctive (if Al and A2 and ... An then B) ...

An example of interaction control in a single-user application.
Using the AMF concepts, it is possible to model an interaction control in a

single-user application. In the simplest case, when only one agent is implicated, two
simple administrators (AI & A2) generally manage the relations between an action
starting from the Presentation facet and the associated command defined in the
Abstraction facet (see figure 2).

228

Face/s
Interactive Agent

\ ---Pu.,elllo/;oll Facet -¥ I Control 1--:. Abs/rll<:/;oll Facet

'\J'
,\,

'),j I Start Action • 1\ 1
I Echo_Action • _ Do_Action I

l' A, : I

l ClJlllllllfII;W/ioll J= , COlllml At/millis/rw/Jrs

l The . ymbol 'J\. represents a port that can be activated by the u er (ex: via a mouse click).

Figure 2. An interaction on a single-user agent modelled with AMF

In a multi-user context, an application must be able to notify each action of one
user to the other members of his group, and each agent must be able to reproduce the
actions of remote users. To solve this problem, we created AMF-C a cooperative
extension of AMF (Tarpin-Bernard, 1997a). This model can adopt a fragmented
form when shared agents are split and their facets distributed , and a replicated form
when each agent has a representative on each workstation.

2.2 A fragmented framework for groupware

Analysing distributed systems studies, we have found the original concept of
fragmented object (Gourhant, 1994). The methods and data of a fragmented object
are distributed on the network and "transparent" mechanisms let it look like a
classical object in a single computer. Applying fragmentation to AMF model offers
an interesting approach for modelling CSCW applications. Indeed, their facets
define a natural boundary for fragmentation . Thus, we can study the distribution of
the facets into the network. According to the desired architecture, we can distribute
presentation, control or abstraction facets.

The figure 3 presents a centralised architecture with three shared agents
manipulated by two users. Each agent is defined by four facets: the abstraction and
control facets, and two presentation facets corresponding to specific views of each
user. In this context, each presentation facet can be adapted to the role of each user
(P Ai 7= PBi)' It is the control facet which is in charge of the propagation of
input/output events from or to the different facets, and especially between multiple
presentation facets.

229

Computer nO I . Server

(....... .1 ... / ./ \ ··· 1 ··/ \· 1)

Computer n02 . User A Computer nOJ . USl!r B

/ ,•.. \,

Fragmented AMF-C Agent
shared by 2 u ers A & B

A, : Ab.<fracflO/I facet of agent nOj
Cj : CIJ/lfrol facet of agent nOj
P A,: A Prestflfllfitlll facet of agent nOj
Ps, : B Prestflwf/IJfI facet of agent nOj

Figure 3. An AMF-C fragmentation - centralised version

If we try to model an elementary interaction (e.g.: a button triggers an action on
an agent), we can consider a situation in which a first user is responsible of the
agent, whereas a second user can just interact with its presentation. In this case, we
can imagine that the agent is mainly located on the first user's workstation (Figure
4). To assume concurrency control and maintain the consistency of the shared agent,
it is necessary to define new types of administrators. In the example given on the
figure 4, we have built a lock administrator which filters the access to the agent.

Fragmented AMF-C Agent

User I Present. Control

..
Start_Action

Abstraction

unlO<.:k

'j' '.:,:'
Swrl../lcli(1II port js activated
and if the lock is opened. The
activation closes the 10000k.

Figure 4. An example of elementary interaction on a fragmented AMF-C agent

230

The dynamicity property of AMF-C agents allows to formalise the adaptation of
each agent to the current user's role. Indeed, the number and the form of facets is not
static, any change of role can lead to substitute a facet, and especially a presentation
one.

The fragmented AMF-C framework is well adapted to represent hybrid
architecture in which some facets are centralised whereas others are replicated.
Moreover, the use of a distributed object-oriented language can really ease the
implementation of such a model. Indeed, in our first implementation of AMF, with
C++, each facet is an object. The activation of a communication port leads to the
invocation of a method of these objects. In a distributed context, this corresponds to
a remote method invocation as defined in CORBA (Siegel, 1996) or Java-RMI.

However, we can notice that, to introduce more flexibility in notification control
and so propose WYSIWIS relaxations, we need to multiply the number of control
and abstraction facets. Indeed, if we want to process remote actions differently than
local ones, we need some new control facets. On the other hand, several abstraction
facets are necessary if we want to authorise users to work on their own data and let
do some versioning. If we insist in this way of facet personalisation, . agents
fragmentation becomes an unadapted paradigm. As a consequence, looking for a
maximum flexibility implies to replicate each agent and so to choose the replicated
AMF-C framework.

2.3 A replicated framework for groupware

Replication is based on both notions of reference agent and local agent. When
a reference agent is shared by n participants, n local representatives are distributed
on the local workstations. The local agents of a same reference agent are called
brother agents. These local agents support the manipulations of the users. The form
and the content of each local agent depend on its owner's characteristics expressed in
terms of roles and viewpoints. To define work contexts, which means memorise
agents states, the reference agent notion is particularly interesting. Actually,
reference agents can be real or virtual (figure 5).

I Reference Agent I
/

Local
Agent Local

Agent

Local
Agent

I

Local
Agent

.--__ --, I

Distributed Agent
1 _____________________ I

Figure 5. Two visions of reference agents: centralised or distributed

In the first case, reference agents can be localised on a server, with all the
advantages (simplicity, regularity, etc.) and disadvantages (rigidity, bottleneck, etc.)

231

of such a situation. In the second case, each reference agent is virtual, which means
that it is defined by the whole set of local agents. This approach presents other
advantages (more interactivity, best fault tolerance) and disadvantages (complexity,
etc.). As an intermediate solution, the reference agent can be one of the local agent
and its localisation can be static or dynamic. In the static case, it is always in the
same place, whereas in the dynamic case, it can be situated on the workstation of the
group leader or on the workstation of its creator. In all these cases, each action
(creation, modification and deletion) performed on the local agent should be notified
to the other brother agents.

2.3.1 An example of replicated AMF-C framework

In our laboratory, we have experimented this framework using the ECooP
groupware infrastructure (Primet, 1996a). In order to introduce a maximum
flexibility in the four control presented in the beginning of section 2, we consider
that four steps are relevant in a "group interaction": selection (OS : Object
Selection), validation (A V : Action Validation), execution (AE : Action Ending) and
unselection (OF: Object Freeing). Several sequences of actions can happen between
the selection - unselection phase (figure 6a).

(b)

I
Application

I Instance I

• Object Selection (OS) Demand lID (1J I Acceptatioll
or Refusal

"() • Action Validation (A V)
I

ECooP
I controllers

• Action Ending (AE))I' Notijicatioll",
• Object Freeing (OF)

I I
Application

I I
Application

I (a) Instance 2 Instance 3

Figure 6. The four steps of the control dialogue (a) and the NCP protocol (b)

A specific control and notification protocol and a set of associated generic
functions have been defined in order to ease the dialogue between a cooperative
application and the groupware infrastructure (Primet, 1996b) and to provide flexible
concurrency control mechanisms. It relies on four types of messages - D: Demand,
A: Acceptation, R: Refusal and N: Notification - (figure 6a).

2.3.2 Concurrency control flexibility

At each phase of a "group interaction", a demand is systematically sent to the
ECooP local controller so that it is always informed of the application state.
Depending on the chosen concurrency policy and the initial control parameters, the
controller answers immediately without any control or submits the request to the
ECooP decision component before answering to the application. For instance, in a
pessimistic policy with an earliest control (since object selection), the control is

232

performed with the reception of an "Object Selection Demand". The decision
component accepts or refuses and the local controller transmits this "collective"
decision to the application . Then, the other messages are systematically accepted and
notified as the lock assumes that there will be no problems with these operations. On
the other hand, in an optimistic policy with a latest control (at the end of processing),
the "Object Selection" and "Action Validation" demands are always accepted. The
real control is only done at the end of the action execution. If a conflict occurs, its
solving is related to a collective decision and the application must undo the action. A
notification of this undo action is also sent to the remote applications.

In this context, whatever the decision component is (the community of local
controllers or a central controller), the application interface does not have to change.
Only behaviour of controller agents depends on the policy.

The replicated version of the AMF-C model fits very well with ECooP. Indeed,
to implement flexible concurrency control, we first need to define specific
administrators able to dialogue with local controller using functions of the ECooP
API and second to build a new facet, called Distant, which receives the notifications
of remote actions. Figure 7 presents the schematic representation the four
administrators which realise the four phases of the dialogue (a) and two additional
administrators (b) which can be used to implement direct manipulations (Object
Selection and Action Validation can be simultaneous).

ObjeCl
Selecllon

(a) Single action administrators

Arion
Validation

Action

ndlng
Object
Freeing

(b) Double action

Object Selecllon
&

Action Validation

Local controller of ECooP environment

Figure 7. The cooperative. administrators of AMF-C

3. DESIGN PATTERNS

ACllon Ending
&

Object Freetnl/

)

Considering both AMF-C frameworks, we can imagine various design patterns
related to the choice of thematic facets or to the choice of control mechanisms. In
this section, we develop the patterns associated to the replicated framework.

The identification of specialised CSCW facets can lead to various solutions. For
instance the PAC* model (Calgary, 1997) maps the three common functional spaces
of groupware (production, communication and coordination) on the structure of
PAC agents. As a consequence, the authors propose several patterns dealing with
various combinations of dispatching. For instance, each component (Presentation,
Abstraction and Control) can be sliced into three parts corresponding to the three

233

spaces. Another pattern dedicates PAC agents to treat the production,
communication and coordination functions independently. A first adaptation can
leads us to define communication and coordination facets whereas production facets
can be assimilated to abstraction facets. A large presentation facet or three smaller
ones then will also be defined. In practice, we met some difficulties to split agents
this way because considering fine grain agents we found that they are often
dedicated to one main space so that the model lost its interest.

So, in addition to the Distant facet which receives all the remote notifications,
we introduce a second one, called Access, which is in charge of the adaptation of
presentations according to the users' roles. It activates and deactivates the interactive
control objects of the user interface according to his rights. At least we define a
Private facet which deals with the choice of group retroaction and notification
control (see next section). The AMF-C model is definitely dynamic and allows, at
each instant, to modify, create or delete some agents, facets or administrators. The
Private facet lets users change structurally the agent via an adapted interface.

Using the six administrators that we have presented in §2.3 and referring to the
standard interaction pattern presented figure I, we can define a first pattern of
cooperative interaction (Figure 8). When the message sent by Start_Action crosses
the AI administrator, all the remote agents receive from ECooP a message which
activates the Replay_Action port of the Distant facet, so that the action is replayed
on each replica of the agent.

Interactive AMF-C Agent

Facel Control Abstraction Facel

'\t ..,
Stan_Action • A, .l.

I Echo Action ... Do_Action I
A, TI

f ' Distant Facet

Replay _Action lat

l The symbol represcnls a pon Ihal can be remolely acuv3ted by another member of Ihe group when] Ihls uscr aClivales the pon Stan...ftcti{1II of the Presontation facel of his local agent .

Figure 8. A first interaction pattern on a shared agent modelled with AMF-C

It is also possible to define a second pattern of interaction in which selection and
unselection phases are clearly distinct from the action phases (see figure 9). This
pattern allows users to see the objects which are locked (locally or remotely).

234

Inlernclive AMF-C Agenl

Facet

I
Conlrol

I
Ab.rrac/;on Focel

'\J'
Action .L

I Echo A,lIon - 00 Action I
'\J' Select_Object • t l

I Echo_Selection -
Distant Fotct

nu' vb}rtl" ,('UNItt/Iii rrlf .
'\J'

(ut' M/if" n J

Free_Object
Replay_Action

• ,,/
I Echo Free Select I'"
771, Jmllltl' '\ r,.".o\'cd I /

Free I"

Figure 9. A second interaction pattern on a shared agent modelled with AMF-C

Considering all the specific facets presented before, we can propose a generic
interactive and cooperative AMF-C agent (figure 10). This pattern only shows one
direct interaction (once it is finished, the object is freed) . Of course, for each action,
a real agent contains one of the previous patterns.

This last figure also details the structure of the Private facet. As we introduced it
in the previous section, relaxation of WYSIWIS can be done with AMF-C according
to several strategies.

The first one consists in modifying the administrators linked to the Distant facet
in order to change its connection with the Presentation facet or even with the
Abstraction facet. In the second one, we can modify the implementation of the input
port Echo_Action of the Presentation facet for it to have a different behaviour
depending on the source of the activation message. Finally, in some cases, we can
completely disconnect some communication ports (e.g.: do not propagate some
scrolling actions of other participants). For instance, to disconnect a user from the
others, one solution is to not notify his actions of the other members. To make such
a change, it is necessary to modify the administrators which are linked to
Presentation facets. These three strategies are represented by the three generic ports
of the Private facet which are presented on the figure : Change_Propagation,
Change_Echo and Change_Updating. As a consequence, the Private facet has a
structural knowledge of the agent.

235

Intcrxuve AMF·C Agent

Prtst'nttltu)n F3C't!'t Control .4.hsrra,·,ion F...,t

1\.1 '"
1'>0 1 -r_"

I EA:hu_Al.:llon I Dtl_!\\:lum

" I AUIh!.)rI\C_Al.: uon

+ + D",on, Foeel
Face.

1'-1 r'-l Replay-Acunn I- V

Al.:'lion •
Facet

\.I "), I ,
----+ mlmtnl5trLHQr.f

\.I ")' 1 Ch.n .c_Echo (Chllngt ii, m/mrnwrUlor)
'\J' ")'1 Ch(JtJXt' A/ lind A r

LUlmrnutrator.I

Figure 10. General structure of an interactive AMF-C agent

AMF-C Agent

PrutnUlti'JII Facet I Control 1 Co·wltraction Facet

\J' -ACllon_1 1
I Echo_Acuon_ I Dt,_Acunn_1 I

\.I Acuun_2 1
I Echo_Acunn 2 '-- Do_AcllC)o_2 I
I Echo_Co· Acuun CC)oAclion I

Abstraction Facet

.....

Distant Facet

Replay_Action 2 1.1 './
L -.................. 1/ y

Rcpby Action I

Figure 11. A design pattern of co-interaction on an AMF-C agent

Combining the definition of new facets and the use of new control mechanisms,
designers can imagine new kinds of interaction. As a short example, we propose in
figure 11, a pattern which models a co-interaction. We call co-interaction, a complex
interaction between two or more users where each of them execute a part of the
action (e.g. : two users should turn 2 different keys to open a secure door). To
implement a co-interaction, we define a new facet which monitors the elementary
interactions and triggers the co-interaction when all requirements are achieved
(completion, timing, etc.).

236

4. METHODOLOGY AND TOOLS

In this paper, we have focused our attention on the presentation of AMF-C
frameworks for groupware, and some of their associated design patterns. However,
we did not forget, that such a work is really useful only if a methodology is also
proposed and if design tools are provided.

Currently, thanks to our first design and development experiments we have
started to define some rules that should be used by a comprehensive methodology.
The first one deals with the choice of the AMF-C framework. According to us, the
main criteria of selection is the degree of autonomy and personalisation that is
looked for. Indeed, if the wanted application respects simple rules of coordination
(e.g. only one kind of WYSIWIS is needed) and if the groups are homogeneous, the
fragmented framework which is the simplest one is a good choice. In other cases, the
replicated framework is the only one that lets you introduce a maximum of
flexibility in the group processes.

Once the designer have chosen his framework, his task is now divided into two
main phases:
1. Identify the agents and their services
2. Choose design patterns associated to each service

Indeed, as in other multiagent models it is often difficult to identify the agents of
the application. On this particular point, AMF-C does not introduce specifities, so
that all the common methods can be used. However, the situation changes
concerning the choice of structural patterns for agents. It is necessary to choose what
facets should be defined and how to dispatch the services into these facets. At least,
designers have to choose a pattern of interaction for each service. Each time that it is
meaningful to define new facet in terms of reusability and modularity we advise to
do it.

Of course, because of our flexibility principle, the choice of these patterns is not
static. Initially, the designer chooses what pattern is the most relevant according to
his point of view. But, whether the end-user wants to change some controls, the
dynamicity of AMF-C lets him choose his own pattern.

Finally, as we mentioned it in the beginning of this section, the design pattern
approach fits very well with the definition of associated tools. The builder tool
which is under construction will propose a catalogue of design patterns to ease
groupware design. The design and implementation tasks are largely reduced by the
direct building of AMF-C diagrams. In the future, this tool will also be used for the
definition of new patterns and for the dynamic evolution of cooperative applications.

5. CONCLUSION

Frameworks and design patterns are both notions that have recently emerged in
object-oriented software engineering. They have been proposed to ease design of
large and complex software thanks to their good properties in terms of reusability,
modularity, extensibility are more generally quality improvement. Groupware are
among the most complex software that should be designed. Because they involve
groups of users in work processes, they must combine all the advanced technologies

237

studied in single-user situations but also take in account dynamics of work sessions
and sociological rules.

Our proposal tries to cover a wide range of problems from groupware design to
dynamic adaptation of cooperative applications. Our key model is the multifaceted
multiagent AMF model. Its cooperative extension AMF-C leads us to propose two
frameworks for groupware based on both paradigms: fragmentation and replication.
The graphical formalism of AMF-C eases the building of various design patterns
corresponding to several kind of problems.

Designers' tasks then consist of choosing these patterns in respect with these
frameworks. The methodology and its associated tools are the keys elements for the
success of this approach. Currently, we focus our efforts on the development of both
elements continuing to implement and evaluate our own synchronous groupware.
Today, we have already developed a kinematic diagram editor and a 3D scene
builder that validates the concepts presented in this paper.

Finally, the AMF-C graphical notation mainly describes the organisation of
multi agent applications in terms of structures and relationships. Referring to
Kruchten's work (1995), we consider that it can be used to express logical views on
a system. However, this notation only shows static views. It needs to be completed
by scenarios in order to fully use the dynamic property of AMF-C.

6. REFERENCES

Coutaz J., Nigay L. (1997), From Single-User Architectural Design to PAC*: A Generic
Software Architecture Model for CSCW, CHI'97, Atlanta, ACM Pub!., 242-249.

Coutaz J. (1990) Architecture Models for interactive software: Failures and Trends, in G.
Cockton (eds.): Engineering for Human-Computer Interaction, Elsevier Sc. Pub!., 137-
153.

Ellis C.A., Gibbs S.J. & Rein G.L., (1991), Groupware: some issues and experiences,
Communication of ACM, Vol 34. nOl, 39-58.

Fayad M.E., Schmidt D.C. (1997), Object-Oriented Application Frameworks,
Communications of the ACM, Oct., Vol 40. nOlO, 32-38.

Gamma E., Helm R, Johnson R, VIissides J. (1995), Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley, Reading, MA.

Gourhant Y., Makpangou M., Le Narzul JP., Shapiro M. (1994), Fragmented objects for
Distributed Abstractions, in Readings in Distributed Computing Systems, Eds Casavant &
Singhal, IEEE Computer Society Press, 170- I 86.

Johnson RE. (1997), Frameworks = Components + Patterns, Communications of the ACM,
Oct., Vol 40. nOlO, 39-42.

Krasner G.E., Pope S.T., (1988), A cookbook for using the model-view controller user
interface paradigm in Smalltalk-80, Journal of Object-Oriented Programming, 1(3), 26-
49.

Kruchten P. (1995), The 4+1 View Model of Architecture, IEEE Software, November, 12 (6),
42-50.

NCSA (1996), Habanero Home Page:
http://www.ncsa.uiuc.edulSDG/Software/Habanero/

Ouadou K. (1994), AMF : Un modele d'architecture multi-agents multi-facettes pour
Interfaces Homme-Machine et les outils associes, Ph D, Ecole Centrale de Lyon, France.

238

Primet P. (I 996a), ECooP a flexible CSCW Environment, Technical Report, Ecole Centrale
de Lyon, France

Primet P. (I 996b), Controle de concurrence dans les collecticiels: mise en oeuvre de la
flexibilite, Proceedings of CRAC'96, Paris, France

Rodden T. (1991), CSCW and Distributed Systems: the problem of Control, Proceedings of
the ECSCW '91, Amsterdam, Kluwer Academic Press.

Roseman M. (1993), Tclffk as a Basis for Groupware, Proceedings ofTcl93 Workshop,
University of Calgary, Alberta Canada,

Siegel J. (1996), CORBA - Fundamentals and Programming, John Wiley.
Smith B., Rowe L. A. (1996), An Introduction to TcI-DP, Cornell University,

http://www.cs.comell.edu/Info/Projects/zenoffcI-DPffutorial/tutorial.html
Tarpin-Bernard F. (1997a), "Travail Cooperatif Synchrone Assiste par Ordinateur : Approche

AMF-C", Ph D, Ecole Centrale de Lyon, France.
Tarpin-Bernard F., David B.T. (I 997b), AMF a new design pattern for complex interactive

software ?, Proceedings of 1nternational HCI'97, San Francisco, in Design of Computing
Systems, 21 B, Eds Elsevier, 351-354.

Tarpin-Bernard F., Primet P. (1998), Flexibility in synchronous groupware, paper submitted
to the Journal of Computer Supported Collaborative Work, Kluwer Academic Publishers

7. BIOGRAPHY

Franck Tarpin-Bernard is an associate professor graduated in 1997 (PhD). He is
also engineer of the Ecole Centrale de Lyon and has been working on CSCW and
software engineering for four years. Bertrand David is professor and co-director of
the GRACIMP laboratory. He works on HCI, CSCW, Concurrent Engineering and
cooperative learning. Pascale Primet is an associate professor in computer science.
She mainly studies groupware, distributed computing and high speed networks.

239

Discussion

Len Bass: How do you handle time constraints between distributed events?

Franck Tarpin-Bernard: Co-Action will manage the time constraints between two
distributed events that must be combined to obtain a complete command.

Prasun Dewan: What is the difference between an administrator and a facet?

Franck Tarpin-Bernard: A facet is a set of communication ports. Administrators are
sub-components. They can be considered as a special kind of facet. The control facet
includes all the administrators.

Prasun Dewan: You showed us how the collaborative behaviour can be changed by
changing the patterns. At what time is the pattern bound , at application creation
time or at runtime? If it is at runtime, then users could change dynamically from, say
synchronous to asynchronous coupling.

Franck Tarpin-Bernard: Currently the set of patterns must be defined at application
creation time by the designer but users can change dynamically from one pattern to
another at run-time.

Prasun Dewan: But users do not think in terms of facets.

Franck Tarpin-Bernard: Yes, but the Presentation facets are in charge of presenting
the interaction patterns to the user and triggering the structural adaptations of agents.
So the application could adapt its structure automatically to the user's needs.

Helmut Stiegler: Your focus is on synchronous co-operation. Groupware in general
has a broad scope, including workflow systems, which are asynchronous. Do you
know already how to include asynchronous collaboration?

Franck Tarpin-Bernard: We thought about it. Maybe we only need a new facet. For
each specific problem, a new kind of facet is created. We need new facets and
maybe new administrators to handle this problem.

Nick Graham: How many controller styles (i.e., concurrency, control policies) have
you implemented?

Franck Tarpin-Bernard: We developed various pessimistIc approaches. About
optimistic approaches, we only tried one: Undo conflicting actions.

Nick Graham: The dialogue protocol seems to restrict us to relatively simple object­
function dialogues. Is this correct?

240

Franck Tarpin-Bernard: Not at all. If the designer needs to manage complex objects
such as sets of objects he will consider them as a new class of agent. Moreover, like
in Object Oriented languages, we have defined the notion of inheritance for agents.
So you can build a large hierarchy of agents.

Prasun Dewan: Do you provide a general undo function?

Franck Tarpin-Bernard: We tried to create a new facet Undo similar to the
coordinator. We are not sure that we can reuse undoing functions in different CSCW
systems.

Joelle Coutaz: Can the model cope with a mixture of fragmented and replicated
agents?

Franck Tarpin-Bernard: Conceptually it is quite feasible but in practice the
implementation tools and the infrastructure you use may lead to only one of the
policies.

Joelle Coutaz: How does AMF-C cope with heterogeneity of styles?

Franck Tarpin-Bernard: Just like in PAC-Amodeus. The Dialogue Controller is
expressed as AMF-C agents whose facets call external functions.

241

	Frameworks and patterns for synchronous groupware: AMF-C approach

	1. INTRODUCTION
	2. FRAMEWORKS FOR GROUPWARE
	2.1 AMF : a framework for single-user software
	2.2 A fragmented framework for groupware
	2.3 A replicated framework for groupware

	3. DESIGN PATTERNS
	4. METHODOLOGY AND TOOLS
	5. CONCLUSION
	6. REFERENCES
	7. BIOGRAPHY
	Discussion

