
Toward the Automatic Construction of Task Models 
from Object-Oriented Diagrams 

Shijian Lut , Parist & Keith Vander Linden* 
t CSIROIMIS, Locked Bag 17, North Ryde, NSW 1670, Australia, 

{shijian.lu, cecile.paris}@cmis.csiro.au 
* Department o/Computer Science, Calvin College, Grand Rapids, M149546, USA, 

kvlinden@calvin.edu 

Abstract: Task models bridge the gap between HCI and Software Engineering. They are 
useful both for interface design and for generating user interface code and user 
documentation. These benefits, however, are difficult to achieve because 
building task models from scratch is difficult. In this paper, we describe an 
approach for automatically constructing task models from object-oriented 
diagrams in a CASE tool. The approach exploits the common semantic 
ground between task models and system-behaviour models, namely use cases, 
use case diagrams and sequence diagrams. We identify the useful information 
contained in these diagrams and how it can be augmented to support task 
model construction. A prototype system is then described, together with a 
working example. 

Key words: Formal models of user interfaces, Task models, information reuse, 
methodology, tools, Object-Oriented analysis and design 

1. INTRODUCTION 

Task models are becoming popular in software development. They are employed in 
the early stages of the software development life-cycle, e.g., in requirements analysis 
(Sebillotte, 1995) and in design (Hix and Hartson, 1993). They are also used for 
implementation (Smith and O'Neill, 1996) and evaluation (Card et at., \983). They 
can drive prototyping of user interfaces (Johnson et ai., 1995) or act as 
communication tools between all participants in the software design process, i.e., 

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35349-4_22

© IFIP International Federation for Information Processing 1999
S. Chatty et al. (eds.), Engineering for Human-Computer Interaction

http://dx.doi.org/10.1007/978-0-387-35349-4_22


between software engineers, HCI specialists, end users and even technical writers 
(O'Neill, 1996, Balbo and Lindley, 1997). Properly formalised, task models can be 
used to generate user interface code (Szekely et at., 1993, Wilson and Johnson, 
1996, Puerta, 1997) and to produce user documentation (Paris and Vander Linden, 
1996b). 

Given that task models are so useful in software development, the question of how 
they can be produced becomes important, as building them by hand from scratch can 
be difficult and time consuming (Paris and Vander Linden, I 996a). It is thus 
desirable to acquire automatically as much of them as possible from existing 
information sources. 

One possible source of information for task models is Object Oriented (00) 
models as used in Computer Aided Software Engineering (CASE) tools. While 
CASE tools have traditionally been used to assist in software design, 
implementation and validation, the system behaviour models they contain can also 
be reused to build the task models required for other purposes, such as the 
generation of user interface code and user documentation. We have built a task 
model acquisition module (TMAM) to automate this process. A typical usage 
scenario for this type of software development environment is as follows: 

1. Designers build 00 diagrams during system analysis and design. They could 
also build them as part of reverse engineering or system re-engineering; 

2. Designers use the TMAM to automatically construct task models from the 00 
diagrams; 

3. Interface designers and writers then load the task models into a task model 
editor, modify them as appropriate, and use them to generate prototypes of the 
user interface and drafts of the user documentation. 

In addition to speeding up the software development process, the automatic 
acquisition of task models has other benefits. First, if the user documentation and 
on-line help are generated automatically from the acquired task models, they are 
guaranteed to be consistent with the underlying application they document, even if 
the functionality of the application changes during the development process. The 
task of producing the documentation in a timely fashion and yet ensuring its 
consistency with the application's functionality is otherwise a difficult task. Second, 
the user interface designed from the task models will be easier to integrate with the 
rest of the application modules because the task models were constructed with 
reference to the actual elements of the application design. 

This paper presents a practical approach for augmenting information contained in 
00 diagrams in order to construct coherent task models. Although this approach is 
generally useful for interface design, it is directly motivated by reusing design 
information for the generation of user or task-oriented documentation. Throughout 
the paper, we illustrate our points with a sample application, STE (Simple Text 
Editor). STE is a simple freeware text editor that we reverse-engineered. 

The paper is structured as follows. Section 2 gives a brief account of Diane+, the 
formal representation of task models we have chosen in our work. It is followed, in 
section 3, by an analysis of the different diagrams offered by the Unified Modeling 

170 



language (UML) as supported by Rational Rose™ version 4.0, the tool we employ.' 
Use cases, use case diagrams and sequence diagrams are identified as primary 
information sources for constructing task models. Sections 4 and 5 give a detailed 
comparison of task models with use cases and with scenario diagrams respectively. 
The prototype system is described in section 6 together with a working example. 

Table 1. Some of Diane+ task attributes and their graphical representation 

Task Attribute Graphical form Explanation 

lnteracti ve 0 Ta k in which user interacts with 
y tem 

Manual 0 Ta k performed solely by user 

Automatic D Ta k performed solely by system 

Elementary 0 Task without a decompo ition (no 
shading) 

Compo ite D Ta k with a decomposition (shaded 
box) 

Decomposition I Ta k refinement 

Feed back Feedback provided to the u er by the 
application (e.g., me sage printed) 

Mandatory 0 Ta k must be performed (box in solid 
lines) 

Optional Task is optional (box in dotted lines) 

Parallelism DD Tasks can be performed in parallel 

Task sequence Order of ta k to be performed 

Sequence , Condition under which the link is to be 
precondition. Ifa> O followed 

Comment (text area) Task Comment 
Task TI Condition that mu t be true for the task 
precondition to be applicable 

Terminal node q Normal end of the task 

I Note that the diagrams offered by this software are fairly typical of the diagrams used in 
Object-Oriented CASE tools. 

171 



2. DIANE+ NOTATION 

We chose Diane+ (Tarby and Barthet, 1996) as our task model formalism. It is a 
typical task model formalism in that it allows for the representation of hierarchically 
structured tasks and provides a variety of procedural annotations for these tasks. We 
chose Diane+ over other task models because of its coverage of the information 
required to produce documentation. (The interested reader is referred to (Paris et ai.. 
1997) for a more detailed account of the motivation for this choice.) Diane+ 
employs a graphical notation to represent task decomposition as well as temporal 
and logical relationships amongst the tasks. In a Diane+ diagram, tasks are 
represented by boxes which contain the name of the task and, when appropriate, the 
constraints on the number of times the task can be executed. The shape of the box 
represents the actor of the task, i.e., whether it is the end user, the system, or 
combination of both. Table I lists the attributes provided by Diane+ that we use in 
our work. 2 

3. WHICH UML DIAGRAM? 

Task models as defined in HCI provide a user-oriented view of a system. Object­
oriented modelling languages, on the other hand, tend to offer two system-oriented 
views, one describing the application's structure and the other the application's 
behaviour. UML (UML, 1997), the 00 modelling language we have used in this 
project, is no exception. It models the application's structure with class diagrams 
and the application's behaviour with use cases, use case diagrams, state transition 
and interaction diagrams. 3 Task models and 00 models of the application's 
behaviour can be seen as semantically equivalent; with the former representing an 
overt, user-oriented view of application's behaviour, and the latter representing an 
internal, system-oriented view of that behaviour. In essence, thus, they are both 
concerned with dynamic behaviour of the application. Therefore, in our attempt to 
automatically generate task models, we focus our investigation on the models of the 
application's behaviour provided by a CASE tool, i.e., use cases and use case 
diagrams, interaction diagrams, and state transition diagrams. This section briefly 
describes each in turn. The next two sections then discuss how they can be 
exploited to construct task models automatically. 

2 We added the notion of feedback to the original Diane+ formalism, as this concept is an 
important one for documentation. 

3 As in any rapidly evolving field, people often use different terms to refer to the same thing, 
or use the same term to refer to different concepts. For example, Booch's (1993) object 
diagrams and interaction diagrams are equivalent to collaboration diagrams and sequence 
diagrams respectively in UML (1997). However, in UML, object diagrams comprise static 
and dynamic forms, while interaction diagrams or scenario diagrams include both 
collaboration diagrams and sequence diagrams. In this paper, we use UML's terminology. 

172 



3.1 Use cases and use case diagrams 

Use cases are created during object-oriented requirements analysis. Each identifies 
a thread of potential use for the system to be constructed (Pressman, 1997). Use case 
diagrams show the relationship between users and the use cases within an 
application. Together, use cases and use case diagrams identify the agents that will 
use the application and the high-level goals that these agents have with respect to the 
application. They are thus useful to describe the tasks a user will perform with the 
application. 

3.2 Interaction diagrams 

Interaction diagrams describe how objects collaborate to carry out the activities of a 
use case. They specify the sequence of messages that are passed between the 
application objects, some of which are user perceivable objects (e.g., interface 
widgets) and others are non-perceivable objects (e.g., internal application objects). 
Interaction diagrams are useful for constructing task models in that they indicate 
what actions the user performs, and what the system does in response to those 
actions. 
Interaction diagrams come in two forms based on the same underlying information, 
but each emphasising on a particular aspect of it. Sequence diagrams show 
interactions arranged in time sequence, i.e., the messages that objects exchange are 
arranged in time sequence. Collaboration diagrams show interactions organised 
around the objects, and relationships amongst objects. Since these two forms of 
interaction diagrams can be automatically generated from each other, either can be 
used. We have arbitrarily used sequence diagrams in this study. 

3.3 State (transition) diagrams 

In UML, state diagrams can be used to show the sequence of states that either a 
single object, or perhaps the entire system, goes through during its life in response to 
received stimuli, together with its responses and actions. State diagrams for single 
objects are of limited use because an end user task is normally achieved through 
interactions between multiple objects. State diagrams for the entire system, on the 
other hand, would be a good source of information for task models. When fully 
developed, a state diagram for a system would contain exhaustive information about 
the application's behaviour in response to the user's actions. However, this 
comprehensive state diagram tends to be too complicated to build, and is, therefore, 
seldom used in practice. For these reasons, we have excluded state diagrams from 
further investigation, until such time as they are used more fully in practice. 

173 



4. USE CASES AND USE CASE DIAGRAMS VS 
TASK MODELS 

As mentioned earlier, use cases capture the user requirements for an application by 
describing how and to what ends an application will be used (Jacobson et al., 1995). 
Semantically, they also define abstract or composite tasks. Consider the example 
shown in Figure 1. It provides a simplified use case for the composite task of saving 
a file in STE, the application we employed for our test-bed. This use case gives a 
clear description of how the user interacts with the system to accomplish the task of 
saving a file. Task models expect these composite tasks to have explicitly defined 
attributes and to be hierarchically decomposable. This section discusses UML's 
support for these two things. 

4.1 Composite task attributes 

Although use cases and composite tasks are equivalent semantically, they are not 
equal. For instance, composite tasks in a task model, such as a Diane+ model, have 
task attributes explicitly defined (refer to Table 1). This is not the case for use cases. 
While some task attributes may be explicitly defined, others are defined implicitly 
and some may be of no concern at all: 

• Explicitly defined attributes - In UML, the name and textual description are 
explicitly represented for a use case; 

• Implicitly defined attributes - Although not explicitly defined, one can 
determine whether the task is manual, automatic, or interactive (see table I) 
based on the actor specified for the task; 

• Unrepresented attributes - Some information required to construct task 
models is difficult if not impossible to extract automatically from a UML 
use case. Examples include task preconditions and feedback. For example, 
the last statement in the Figure 1 is an expression of task feedback. 
Because UML has no explicit representation for task feedback, such 
information is usually included in the use case description. Extracting this 
information from free text would require sophisticated language 
processing.4 The same is true of preconditions in UML. 

4 While it would not be possible to process free text, we are investigating the use of a 
controlled language for these descriptions, from which it is then possible to obtain 
information, because of the regularity it imposes on the text. 

174 



1) The user chooses the save option from file menu. 
2) The system checks the document status. 
3) If it is an existing file, the system saves the file. 
4) If it is a new file, the Save File dialog appears. 
5) The user chooses a folder. 
6) The user enters a file name. 
7) The user clicks the Save button. 
8) The system saves the file. 
9) When saving, the saving progress bar can be observed by the user. 

Figure 1. A simplified use case: Save file. 

4.2 Hierarchical decomposition 

In task modelling languages, composite tasks can be hierarchically decomposed. 
This is also true in UML. In Rose's implementation of UML, a use case is 
elaborated by attaching either a subordinate use case diagram (if it is relatively 
complex) or a sequence diagram (if it is relatively simple). In UML version 1.0, 
apart from communicate relationships between an actor and a use case, there are two 
types of elaboration relationships between use cases: extend and use. The extend 
relationship is used to express conditional behaviour while the use relationship is 
used to describe common behaviour between two or more use cases. For example, a 
possible use case diagram for Figure 1 would be something like Figure 2. There are 

3 use cases in this diagram, Start saving, Execute saving, and Specify file 

information. Start saving will typically cover the behaviour described by (1) 

and (2) in Figure 1 while Execute saving from (8) to (9) and Specify file 

information from (4) to (7). The relationships between Start saving and 

Execute saving, Specify file information are extend relationships. That is, an 

instance of Start saving may include the behaviour specified by use case Execute 

saving or Specify file information depending on whether the file being saved is 

an existing or a new file. Specify file information is related to Execute saving 

by a use relationship. In other words, the behaviour described in Execute saving 

is mandatory to Specify file information. 

175 



Start Saving 

If new file 

Exec ute Sa'vi ng Specify file information 

Figure 2. A use case diagram that elaborates Save file use case. 

Based on the discussion above, we conclude that the nesting between use cases and 
use case diagrams is equivalent to task hierarchical decomposition. In particular, we 
see the following: 

• All use cases inside a use case diagram can be seen as sub-tasks of the 
composite task corresponding to the use case diagram; 

• Extend relationships (with associated preconditions) between use cases can 
be seen as conditional task sequence relationships, from the extended task 
to the extending task; 

• Use relationships between use cases can be seen as task sequence 
relationships, from the using task to the used task; 

• Unrelated use cases can be seen as tasks parallel to each other. 

Given these similarities, we can automatically convert use cases and use case 
diagrams into hierarchically decomposed task models. The task attributes that 
cannot be determined automatically have to be added manually as appropriate. 

s. INTERACTION DIAGRAMS VERSUS TASK 
MODELS 

A use case is semantically equivalent to a composite task, and sequence diagrams 
are used to elaborate use cases. What is the relationship between sequence diagrams 
and task models? To answer this question, we need to explore how much 
information contained in sequence diagrams could be reused to generate task 
models. To help focus our comparison between these two formalisms, we have 
specified the behaviour of STE, our simple text editor, using both a sequence 
diagram, Figure 3, and a Diane+ task model, Figure 4. 

176 



The sequence diagram in Figure 3 was obtained by reverse engineering the STE 
application, by experimenting with it, and by referring to the system code. The 
diagram in Figure 3 describes a scenario in which the application contains a newly 
created document, and the user saves the document before quitting. As we can see, 
the selection of the "Quit" option leads to a series of messages being passed to a 
number of objects, including: 

• When the user selects the "Quit" option, the menu object sends the "quitO" 
message to the application's main object, "instance STE". 

• The "instance STE" object sends a "c1oseO" message to "myDoc", the 
main document object. 

• The object "myDoc" checks whether it has been saved. (event 4) 
• If "myDoc" has not been saved, it sends a message to open the "toSave" 

dialog box. This "if' condition is specified textually in the comment 
column on the left. 

• The user presses the "OK" button. (event II) 
• The system determines that this is a new document, so it calls the "Save 

File Dialog". 
• The user selects a folder, enters a file name, and clicks the "OK" button. 
• The system saves the document and exits the application. 

We also built the corresponding Diane+ task model for the exit task, based on our 
experience using the application. This task model is presented in Figure 4. As shown 
there, "Quit STE" is an interactive composite task that is decomposed in a sequence 
of elementary tasks. The interactive task "select quit option" is followed by an 
automatic task "show to Save dialog", and so on. By comparing Figures 3 and 4, it 
becomes clear that sequence diagrams contain much more system-internal 
information than do their corresponding task models, and that sequence diagrams do 
not allow for the specification of all task attributes present in task models. 

177 



invoke quitO method 

check if the current doc 
is modified 

if modified. show ToSaveDialog 

if file does nol exist 

1: ion 

5: sele 

17: 

3: close () 

: handleEvent 

save button 

6: save () 

7: saveAs () 

P 8:, 

9: selecl Ie der 

10: enter file name 

11: seleclOK utlonO 

12: sa e (File) 

13: removeC ocumenl () 

14: goT (Object) 

15: disposeO 

16: ror ove () 

ystem.exilO 

p 

Figure 3. Sequence Diagram: Quit STE (Simple Text Editor). 

5.1 Overt and Internal Behaviour 

Sequence diagrams focus on system-internal, inter-object message activity. In 

Figure 3, for example, we can see that, when the user selects the quit button, the 
menu item instance sends a "quitO" message to the "instance STE" object. That 
object in turn sends a "closeO" message to the document instance. These system 
details are largely invisible to the end user. This focus on internal activities is not 
surpnSIng. Sequence diagrams are intended to facilitate system design, and 
therefore focus on how objects, whether visible or invisible, collaborate with each 
other to deliver the required functionality. Task models, on the other hand, are 
intended to describe how users interact with a system in performing certain tasks. 
They must, therefore, focus more on overt behaviour. 

178 



We should note that task models do capture some system actions. For example, 
message 4 in the sequence diagram roughly corresponds to the sub-task 

"[system]show to Save dialog box" in the task model. Similarly, message 8 

corresponds to the action "[system] show Save-as dialog box", and, finally, 

message 12 to the action "[system] save file". A closer look at messages 4 and 8 
reveals that they both display interface elements to the user. Message 12 saves the 
file, which is also discernable by the user. 

Based on the above analysis and other examples, we conclude that sequence 
diagrams are a superset of task models in that task models mainly describe the overt 
behaviour of the users and the system, while sequence diagrams additionally 
represent the system's internal behaviour. 

How 10 perform <QUIt STE' • 

II file not 

Sr,owl"Sav" Olalou 

1·1 

Figure 4. Diane+ model for quitting STE. 

179 



5.2 Non-Composite Task Attributes 

A second difference between sequence diagrams and task models is that messages in 
sequence diagrams do not explicitly specify all the task attributes present in task 
models. We made a similar observation concerning use cases in section 4.1: 

• Explicitly defined attributes - Many task attributes are explicitly specified 
in the sequence diagram. For example, the temporal relationships amongst 
tasks; 

• Inferred attributes - Some task attributes can be inferred from sequence 
diagrams. For example, whether a task is interactive or automatic can be 
inferred from whether the sender of the message is the user or not; 

• Unrepresented attributes - Some task attributes are not captured in 
sequence diagrams. For example, sequence diagrams do not specify 
multiple paths of execution, task repetition, or whether the action is 
optional or required. Textual notes may be placed in the left column to 
indicate these attributes, but these texts, at least in general, are too 
unstructured to be converted easily into task attributes. 

5.3 Summary 

In summary, then, we have the following relationships between sequence diagrams 
and task models: 

• sequence diagrams are roughly equivalent to composite tasks in a task 
model; 

• messages between objects in a sequence diagram are roughly equivalent to 
elementary tasks; 

• all messages inside a sequence diagram are roughly equivalent to sub-tasks 
of the composite task corresponding to the sequence diagram. 

Given these similarities, we can design an algorithm to construct automatically a 
task model from a sequence diagram. Generally, the sequence diagram messages 
can be converted to task model tasks of the appropriate types. However, it is clear 
that the sequence diagram contains a considerable amount of system-internal 
information that is not needed in the task model. To address this problem, we use a 
number of heuristics that filter out irrelevant messages: 

• keep all user-initiated messages; 
• if the first message is not a user-initiated message, then keep the message 

immediately before the first user-initiated message; 
• keep the message immediately following the last user-initiated message, if 

there is one; 
• if the message immediately following the last user message is not the last 

the message in the sequence diagrams, then keep the last message as well. 

180 



6. THE SYSTEM AND A WORKING EXAMPLE 

We have developed a task model acquisition module (TMAM) which automatically 

o 
/createfo 
----<=) 

user save file 

o a print file 

Close fite 

Figure 5. Use case diagram: use stePro. 

constructs Diane+ task models from UML use cases, use case diagrams, and 
sequence diagrams. The algorithms employed by this tool are based on the analysis 
given in the previous sections and are implemented within the Rational Rose CASE 
tool using Rose script. 

The TMAM starts from the top-level use case diagram in an UML system 
behaviour model. After transforming all use cases and their relationships into partial 

save new file 

save existing file 

Figure 6. Use case diagram: save file. 

task models, it will iterate through each use case and transform its subordinate use 
case diagram(s) or sequence diagram(s). 

For STE, the TMAM first creates a use case diagram called "use stePro". It is 
shown in Figure 5. This diagram models the fact that a user could perform 5 basic 

tasks with STE: "create file", "save file", "open file", "print file", and "close 

181 



user select 

check if the current doc 
IS new 

if file does not exist 

Display save file dialog 

Jave () I 

I 1aVeAs() I 

1 Ew() 1 

I J 5: select folder 
------+--------

6: enter file·name 1 

7: Save button :1 

Figure 7. Sequence diagram: save new file. 

file". All of these tasks are internally complex, but for the sake of simplicity, only 

the "save file" use case is further elaborated here. Its elaboration, the "save file" 
use case, is shown in Figure 6. This use case diagram models the fact that the user 

may save either a new file ("save new file") or an existing file ("save existing 

file"). At this point, the designer decides that this is a sufficient level of detail for 

the use case analysis. He or she then defines the "save new file" sequence 
diagram, shown in Figure 7. This diagram specifies exactly how the objects in the 

application will collaborate to deliver the functionality required by the "save new 

file" use case. Briefly, the sequence diagram shows that, when the user chooses 

save option from file menu, a series of internal system actions will eventually bring 

up a "save file" dialog box. At this point, the user must select the desired folder, 

enter a file name, and click on the "save" button. This results in the application 
actually performing the action of saving the file. A similar sequence diagram would 

be created for the "save existing file" use case. 
Given the UML behavioural model just created, the TMAM automatically 

constructs the corresponding task model, as shown in Figure 8. 5 This model is 
displayed using a task model editor (T AMOT), which we built in JAVA. In Figure 

5 The layout has been modified. The TMAM does not yet produce a totally acceptable layout 
for the task model derived automatically. This is due to the fact that coordinates have to be 
added to the task model on the fly. We are currently working on obtaining a reasonable 
layout automatically. 

182 



8, composite task "use stePro" is decomposed into 5 parallel composite sub-tasks, 

one of which, "save file", is further decomposed into "save new file" and "save 

existing file". The "save new file" task is decomposed into a sequence of 

elementary tasks which correspond to the "save new file" sequence diagram. 

Note that messages 2 and 3, modeled in the "save new file" sequence diagram, 
have been filtered out using the heuristics presented in the previous section. 
Although the task model shown in Figure 8 is accurate and useful, it is seldom the 

case that automatically constructed task models can be used without modification. 
This is the motivation for building the dedicated editor, the TAMOT. It allows one 
to modify various aspects of the task model. Typically, changes will include: 

• The names of elementary tasks - The displayed name of an elementary task 
depends on whether its corresponding message is the user or not. If it is the 
user, the name of the message is taken as the task name (e.g., "select save­
option" and "enter file name"). Otherwise, the name of the message 
together with the name of the receiving object's class name is used (e.g., 
"show File Dialog" and "save Document"). While the names are acceptable 
in this example, it is possible that inaccurate names may be constructed. 
TAMOT allows the user to modify them manually. 

• The number of elementary tasks - The number of elementary tasks that get 
created in the task model is determined by the filter heuristics described in 
Section 5. The filtering rules worked nicely for this example, but their 
effectiveness in a large example is yet to be tested. It is likely that in some 
cases the user will have to add or remove elementary tasks. 

• Task preconditions and feedback - As discussed earlier, it is difficult to 
automatically derive task preconditions and feedback from the textual 
comments in the UML model. The user, therefore, will need to add them 
manually by referring to the ancestral use case description. 

183 



Figure 8. Resulting task model (displayed by TAMOT). 

7. SUMMARY AND CONCLUSIONS 

Task models are increasingly used for a variety of purposes, but constructing them 
remains a difficult task. In this paper, we presented a practical way of automatically 
acquiring task models from system behaviour models defined by object-oriented 
diagrams. In particular, we focussed on UML use cases, use case diagrams, and 
sequence diagrams. By successfully exploiting the common semantic ground 
covered by system behaviour models and task models, we showed how information 
contained in these diagrams could be augmented and filtered to construct task 
models. We then presented a working prototype, demonstrating that substantial 
portions of a task model can be obtained automatically. 

Of course, it is not clear that building UML behavioural models is any easier than 
building Diane+ task models. However, it is clear that 00 CASE tools are gaining 
widespread acceptance. This means that we will be able to take advantage of pre-

184 



existing knowledge sources by reusing the information they contain in order to cut 
the effort required to build task models. 

In addition, our approach brings the software engineering and interface design 
communities a step closer together. This is important as the two communities need 
to work together to produce software systems that are correct and useful. 
Furthermore, the approach may also allow for the documentation production to be 
better integrated into the software development life cycle, as task models serve as a 
basis to produce documentation. 

In our work, we have successfully used our derived task models to generate on-line 
user documentation (Paris et al., 1998). In future work, we intend to apply our 
technique in a "real world" setting. This will generate the empirical data that we 
need to improve our system to the point where it is truly practical and deployable. 
We also intend to investigate the use of the task models for generating user interface 
code. Finally, we are exploring the possibility of building a unified model that 
integrates task models and 00 diagrams (Lu et al., 1998). This unified model would 
further tighten the relationship between human computer interaction and software 
engineering. 

ACKNOWLEDGMENTS 

This work is partially supported by the Office of Naval Research (ONR) - Grant 
NOOOI4096-1-0465 - in the program for User Centred Direct Interaction Systems. 
We gratefully acknowledge the participation of Sandrine Balbo and Nadine Ozkan, 
and are thankful to Valery Anciaux and Christophe Plier for their contribution to the 
implementation of the task model editor. 

REFERENCES 

(Balbo and Lindley, 1997) Balbo, S. and Lindley, C. Adaptation of a task analysis 
methodology to the design of a decision support system. In Proceedings of 
Interact'97, Sydney, Australia, 1997. 

(Booch, 1993) Booch, G. Object-oriented Analysis and design with applications. 
Benjamin Cummings, Redwood City, 2nd edition, 1993. 

(Card et al., 1983) Card, S.K., Moran, T.P. and Newell, A. The psychology of 
human computer interaction. Lawrence Erlbaum Associations, 1993. 

(Hix and Hartson, 1993) Hix, D. and Hartson, R. Developing user interfaces, 
ensuring usability through product and process. Wiley, 1993. 

(Jacobson et al., 1995) Jacobson, I, Christerson, M, Jonsson, P. and Overgard, G. 
Object oriented software engineering: a use case driven approach. Menlo Park, 
California, Addison-Wesley, 1995. 

(Johnson et aI., 1995) Johnson, P. Johnson, H. and Wilson, S. Rapid prototyping of 
user interfaces driven by task models. In Scenario based design: envisioning 

185 



work and technology in system development (ed. J.M Carroll), John Wiley, New 
York,1995. 

(Lu et al., 1998) Lu, S., Paris C and Vander Linden K. Integrating task modelling 
into the object oriented design process: a pragmatic approach. Position paper at 
CHI'98 workshop on Incorporating Work, Processes and Task Analysis into 
Industrial Object-Oriented Systems Design. April, 1998. 

(O'Neill, 1996) O'Neill, E.J. Task model support for cooperative analysis. In 
Proceedings of CH 1'96, 1996. 

(Paris and Vander Linden, 1996a) Paris, C. and Vander Linden K. An overview of 
on-line documentation and CASE tool: Isolde, Report on task I and 3. Technical 
report ITRI-95-16, !TRI, University of Brighton, UK, 1996. 

(Paris and Vander Linden, 1996b) Paris, C. and Vander Linden K "DRAFTER: An 
interactive support tool for writing multilingual instructions", IEEE Computer, 
29(7):49-56, 1996. 

(Paris et at., 1997) Paris, C, Balbo, S. and Ozkan, N. Novel uses of task models: 
two case studies. Presented at the NATO/ONR workshop on cognitive tasks, 
CSIRO Technical Report, 1997. 

(Paris et at., 1998) Paris, C, Vander Linden, K. and Lu, S.: Automatic Document 
Creation from Software Specifications. In the Proceedings of the 3rd Australian 
Document Computing Symposium (ADCS'98), J. Kay and M. Milosavljevic 
(eds), Sydney, August 1998. 

(Pressman, 1997) Pressman, R.S. (1997) Software Engineering: A Practitioner's 
Approach. International Edition, McGraw-Hill. 

(Puerta, 1997). Puerta, A.R A model-based interface development environment. 
IEEE Software, July/August, 1997. 

(Sebillotte, 1995) Sebillotte, S. Methodology guide to task analysis with the goal of 
extracting relevant characteristics for interfaces. Technical report for Esprit 
project P6593, INRIA, Rocquencourt, France, 1995. 

(Smith and O'Neill, 1996) Smith, M.J and O'Neill, J.E. Beyond task analysis: 
Exploiting task models in application implementation. In Proceedings of 
CH1'96. (1996) 

(Szekely et at., 1993) Szekely, P. Luo, P. and Neches, R. Beyond Interface builders: 
Model-based interface tools. In Proceedings of InterCHl'93, ACM, 1993. 

(Tarby and Barthet, 1996) Tarby, J-C and Barthet, M-F (1996) the Diane+ method. 
In Proceedings of the second international workshop on computer-aided design 
of user interfaces. Namur, Belgium, June, 1996. 

(UML, 1997) UML Notation Guide: unified modelling language version 1.0, 
Rational Software corporation, 1997. 

(Wilson and Johnson, 1996) Wilson, S. and Johnson, P. Bridging the generation gap: 
from work tasks to user interface design. In Proceedings of CADUI'96, 1996. 

186 



BIOGRAPHY 

Dr Shijian Lu is currently a senior research scientist in CSIRO Mathematical 
and Information Sciences, Australia. Before joining CSIRO in 1995, he was a 
research fellow in the Center for Cognitive Science, Denmark. He holds a BS degree 
from Shandong Institute of Mining and Technology, China and PhD degree from 
Leeds University, UK. His research interests include many aspects of HCI such as 
information and knowledge representation, multimedia multimodal interface design, 
and incorporating HCI into object oriented software development process. 

Dr Cecile Paris is the research leader of the Intelligent Interactive Technology 
Project (lIT) at CSIRO, the Australian National Research Center. This research 
group is part of the Mathematical and Information Sciences Division, and is 
concerned with a variety of issues dealing with human-computer interaction (HCI). 
Dr Paris' research is primarily in language research engineering, but also involves 
multimedia presentation, user modeling, user interface design and evaluation, 
authoring tools, integration of HCI into software engineering, and software 
internationalization and localization. Dr Paris received a BA in computer science 
from the University of California in Berkeley, and an MS and a PhD in computer 
science from Columbia University (New York). 

Dr Keith Vander Linden is a faculty member in the department of Computer 
Science at Calvin College, Grand Rapids, MI, USA. He received an MS in 
Computer Science from the University of Iowa and a PhD in Computer Science and 
Cognitive Science from the University of Colorado. His research interests include 
Artificial Intelligence, Cognitive Science, Software Engineering and User Interface 
Design. 

187 



Discussion 

Gilbert Cockton: Do you really think use cases represent the user context? 

Shijian Lu: Yes, I do. Use cases do capture SOME aspects of user context. This is 
one of the main reasons why use cases are popular in the 00 community. Having 
said that, however, I, by no means claim that use cases capture ALL aspects of user 
context. 

Fabio Paterno: So why do you use cases rather than task specifications? 

Shijian Lu: Because they are mainstream within 00 software engineering 

Fabio Paterno: But they do not address good design, they do not start with a good 
set of task descriptions 

Shijian Lu: Yes/no, but I think there are two different issues here. The first issue is 
that given that use cases are widely used in 00 community, is there anyway in 
which use cases as defined in the design specification can be put into uses other than 
motivating system design? And that is the concern of this paper. The second issue is 
that use cases as a mechanism for capturing requirements have aforementioned 
short-comings, how can we do better in the future? The latter was addressed at the 
CHI'98 workshop on incorporating work, process and task analysis into commercial 
and industrial Object-Oriented systems development, where suitable extensions to 
UML were proposed. 

Fabio Paterno: So would you try to base use cases on task modelling? 

Shijian Lu: Ideally, in my view, it would be better to use task analysis and modelling 
to replace use cases altogether. But, the pragmatic may lead to different courses. 

Remi Bastide: Wouldn't that put ergonomists out of a job? They currently begin the 
software lifecycle with task modelling. Their results are then used by engineers. 
Your implicit lifecycle is different 

Shijian Lu: No, typically, what gets constructed would be a draft task model. 
Therefore, ergonomists are still needed for fleshing out the model. You are right in 
that, the lifecycle here is different. We are concerned with re-using information 
contained in an existing design specification. 

188 



Joelle Cockton: One things to remember in system design is that the initial task 
model will not match the final task model for the user once the system has been 
developed. 

Len Bass: The question of whether use cases or task models should be done first is a 
marketing question, not a technical question. The fact is that use case modelling is 
the only modelling technique that is used by software developers, and levering off 
this fact may increase the usage of task models 

Morton Borup Harning: Given that task models that your system generate are not 
sufficient when seen from a user's point of view, could you edit the generated task 
models and then feed these changes back into the original use cases, improving or at 
least pointing out its short comings 

Shijian Lu: That's a good idea, that we need to explore. 

189 


	Toward the Automatic Construction of Task Models from Object-Oriented Diagrams

	1. INTRODUCTION
	2. DIANE+ NOTATION
	3. WHICH UML DIAGRAM?
	3.1 Use cases and use case diagrams
	3.2 Interaction diagrams
	3.3 State (transition) diagrams

	4. USE CASES AND USE CASE DIAGRAMS VS TASK MODELS

	4.1 Composite task attributes
	4.2 Hierarchical decomposition

	5 . INTERACTION DIAGRAMS VERSUS TASK MODELS

	5.1 Overt and Internal Behaviour
	5.2 Non-Composite Task Attributes
	5.3 Summary

	6. THE SYSTEM AND A WORKING EXAMPLE
	7. SUMMARY AND CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	BIOGRAPHY
	Discussion




