
5
A Multi-Agent Architecture for Coop­
erative Quality of Service Manage­
ment
Abdelhakim Hajid1 and Stefan Fische,2

1 Computer Research Institute of Montreal
Telecommunications and Distributed Systems Division
1801, McGill College avenue, #800
Montreal, Canada, H3A 2N4
2Universite de Montreal, Dept. d'IRO,
C.P. 6128, Succ. Centre-Ville, Montreal, H3C 317, Canada

Abstract
The QoS management approaches developed so far are usually not suitable any
more for applications which involve too large a number of communicating entities;
for instance, negotiation of QoS parameters between the sender and every single
receiver becomes impossible (in case of thousands of receivers). To solve this prob­
lem, we developed a QoS management approach, we called Cooperative QoS man­
agement, which allows a decentralized cooperative management of QoS; it does
not limit the number of users of the application. In this paper we present a multi­
agent architecture that implements the cooperative QoS management approach.
Agents are installed on system components, such as routers and end-systems; when
a user asks for a service with specific QoS requirements a kind of cooperation is
initiated between agents to ("best") serve the user.

Keywords
QoS, QoS management, agent, multimedia

1 INTRODUCTION

Much work on Quality of Service (QoS) has been done in the context of high-speed
networks in order to provide for some guarantee of quality for the provided commu­
nication service. More recently, QoS has been considered in a more global context,
including also the end systems, such as the user's workstations and database servers.
Various global QoS architectures have been developed (for a recent overview see
[1]), which include also functions for performance monitoring, resource allocation
and QoS management. For instance, in previous work [6], we have developed a
framework for QoS management of distributed multimedia applications which
stresses two points: (a) the user should define (through a suitable user interface for

Management of Multimedia Networks and Services R. Boutaba & A. Hafid (Eds.)
© 19981FIP. Published by Chapman & Hall

42 Part Two Quality of Service Management

QoS negotiation) the criteria which are used by the system to select the "best" system
configuration for the application at hand, and (b) the selection of an appropriate system
configuration is the first step of the QoS management process, followed by resource res­
ervation and commitment, which is performed during the initialization of the multimedia
application and each time a QoS renegotiation is required. Renegotiation may be initiated
by the user if his/her preferences change, or by the application when some system com­
ponent does not satisfy the initially agreed QoS characteristics. We showed the feasibility
of this approach by implementing it in a prototype system for a remote news-on-demand
service [5]. The negotiation process involves three parties: (I) the database server, which
contains the meta-information of the documents including all existing variants, (2) the
network and (3) the user workstation, which knows the user's preferences and may also
impose certain QoS restrictions.

In multimedia applications including multicasting to many users, such as teleconfer­
encing or educational applications, this global QoS management approach which in­
volves a few system components, e.g. as for remote database access of single users, is not
workable any more, because the number of users involved is too large (e.g. thousands)
for a global management approach. For instance, negotiation of QoS parameters between
the sender and every single receiver becomes impossible, since (I) the system would
quickly become overloaded and (2) it would have to take into account (and possibly pro­
vide) many different qualities requested by users. Instead, a more decentralized approach
seems suitable, where QoS management functions such as QoS negotiation, adaptation
or renegotiation are distributed over the network. We developed such an approach called
Cooperative QoS Management [3] (CQoSM), where so-called agents are installed on the
routers and end systems participating in an application. These agents cooperate with each
other in order to provide the QoS levels requested by the application. All important QoS
-functions such a negotiation, adaptation and re-negotiation are supported. As a special
feature, the agent communication allows for user cooperation in quality selection: If us­
ers cooperate and decide to request a service in the same quality, less resources have to
be reserved, which in turn leads to lower communication costs and higher resource avail­
ability for other applications. A detailed description of this approach may be found in [3].

In this paper, we present a multi-agent architecture for CQoSM which will later serve
as a framework for implementations. In Section 2, we first describe in detail the multi­
agent architecture in terms of media source, media sink and router agents. Section 3 fur­
ther details on one of these agents, namely the media sink agent. In Section 4, we present
the protocols which are executed between the agents in order to provide a cooperative
solution for all arising QoS problems. Finally, Sections 5-concludes the paper and gives
an outlook on future work such as a prototype implementation.

2 A MULTI-AGENT ARCHITECTURE FOR COOPERATIVE QOS MAN­
AGEMENT

Figure I presents an architeeture of the cooperative QoS management (CQoSM)
approach based on the concept of agents. Each component of the system in question is
extended with an agent; examples of these components are routers, host machines, and
servers. The agents implement the protocols provided by the CQoSM approach for a
given application. The architecture shown in Figure I is essentially independent from
the type of applications and the technologies and software in use; it is applicable for any
multimedia system that requires QoS management, such as QoS negotiation and adapta­
tio:::. Thi'> does not mean that the agents have the same implementation code. Rather, an

A multi-agent architecture for QoS management 43

agent offers an interface which provides a certain number of standard operations,
but the implementation of these operations depends on the component, e.g. its tech­
nology and the software it supports.

,
Ll

...1

Figure 1 .A multi-agent architecture for CQoSM

media source
machine

,
...J

,

...1

The system that supports QoS management for multimedia (MM) applications
can be easily extended with new components without code modification of the
existing agents; one has only to implement the agents to be installed in the new
components. It is obviously imperative that an agent communicates with the com­
ponent where it is hosted; access primitives allow agents to use abstraction as long
as the components agree on the basic language of access. However, a component is
free to implement an access primitive in whatever way it sees fit.

We identified three types of agents: media sink agents, router agents, and media
source agents. A user participating in a multimedia session, his/her machine can
play the role of a media source and/or media sink. Each agent plays a specific role
supporting CQoSM.

2.1 Router agent
A router agent is located in any router of the system; to support CQoSM, it main­
tains a state variable which we call R_Tree_List (Figure 2). Each time a multicast
tree is built (for a given application), the router agent located in any router of the
tree, creates a new entry in Tree_List; this entry contains (1) the identifier of the
tree, Tree_Id; (2) the identifier of the upstream router agent, U_Agent_Id; (3) the
identifier of any downstream router agent, D_Agent_Id, with the QoS, Q, the agent
does provide; (4) the list of qualities, A_List_QoS, available from the source of

44 Part Two Quality of Service Management

data (the root of the tree in question); and (5) the list of qualities, C_List_QoS, currently
available from the agent. A router agent obtains the information about the identifiers of
downstream and upstream agents by communicating with the routing protocol in use;
this allows a high portability of CQoSM. More specifically, the router agent asks for
routing entries from the routing protocols; a routing entry consists of the identifier of
one incoming router and a set of the identifiers of outgoing routers.

R_ Tree_List

Tree_Ide t Downstrean_agents Upstream_agen A_List_QoS C_List_QoS
[(D_Agent_Id,Q), ..] (U_Agent_Id) [Ql, Q2, ..] [Ql, Q2, ...]

I I I I I

I I I I I
I I I I I

Figure 2. State variable of a router agent

The identifier of a router agent corresponds to the identifier (address) of the router;
thus, router agents are uniquely identified. We assume that the routing protocol notifies
router agents when a multicast tree changes, e.g. a user who leaves or joins the session;
this information is necessary for router agents to initiate appropriate negotiation. To
make CQoSM work with different routing protocols, a standard interface should be
defined; this interface should allow any router agent to get the necessary information to
execute appropriate actions.

2.2 Media sink agent
A media sink agent is located in any host machine that implements CQoSM; it main­
tains a state variable which we call Si_Tree_List; it consists of a list of tuples
(Tree_Ident, Upstream_agent (U_Agent_ld)). A media sink agent provides means to the
user, via a user interface, to specify (I) the desired QoS he/she prefers to receive from a
given sender; that is, the user may select different qualities from different senders for the
same session; and (2) the maximum cost he/she willing to pay to be a participant in a
session.

The user agent provides also via the user interface a means to start and stop the
available MM services; these services are displayed in a graphical window for the user.
Each time, the user wants to start a service, the agent invokes a primitive which is pro­
vided by a predefined interface to start the service. However, before starting the service
the user should specify his/her QoS/cost requirements for each stream he/she receives
from the participants in the session. A more detailed description of the media sink agent
is presented in Section 4.

2.3 Media source agent
A media source agent is located in any host machine that implements CQoSM; it main­
tains a state variable which we call So_ Tree_List (Figure 3).

The main role of a media source agent is to ask (when appropriate) the source to
transmit information with a certain quality. Initially, a media source transmits data with
all available qualities, including the best quality. Each time a participant joins or leaves
the session, router agents execute the protocols that implement CQoSM; in case all user
QoS requirements are less important than the available qualities, the media source agent
might ask the media source to deliver only the requested qualities. This can be beneficial

A multi-agent architecture for QoS management 45

in the case of an application where participants do not join or leave the session fre­
quently; otherwise, the agent operation is not necessary, rather it may introduce
some undesirable oscillations.

So_Tree_List

Tree_lden Downstrean_agents A_List_QoS C_List_QoS
[(D_Agent_Id,Q), ...] [Ql, Q2, ...] [Ql, Q2, ...]

I I I I

I I I I
I I I I

Figure 3. State variable of a media source agent

3 MEDIA SINK AGENT

The media sink agent is one the main component of the architecture of CQOSM.
Figure 4 shows the main component of the agent. Each client machine of a system
supporting CQoSM should contain a media sink agent (MSA). The MSA allows
the user to specify his/her requirements in terms of QoS; more generally it allows
local QoS management. It also controls the available services, and supports func­
tions that manage application (conference) sessions, such as floor control and mem­
bership control.

Let us focus on the functional behavior of an MSA related to QoS management
and service control. The description of the session control functions is out of scope
of the paper and can be found elsewhere [2].

protocol processi
data unit

(related to CQoS)

Figure 4. Media sink agent architecture

3.1 User interface
The user interface consists mainly of two parts: QoS interface and service control
interface.

The QoS interface allows the user to negotiate and renegotiate his/her require­
ments in terms of QoS/cost; the user specifies his/her requirements via a graphical
user interface [5]. This activity is performed for each service (e.g. video QoS
requirements are specified when vic is in use, while audio QoS requirements are
specified when vat is in use). A detailed description of QoS interface in the context
of remote access to MM database can be found in [5]; the main parts of this inter-

46 Part Two Quality of Service Management

face can be reused to implement the QoS interface of an MSA.
The service control interface allows users to start or stop a service which is available

on their host machines. Examples of these services are vic, vat, sd, and ivs [8]. The
interface provides means to control available services; besides start and stop operations,
the interface also provides invite, quick, leave, and join operations; other operations,
such as floor control, can be also provided.

3.2 QoS manager
The QoS manager provjdes mainly three functions: local QoS negotiation, QoS map­
ping, and QoS monitoring.

Local QoS negotiation: The QoS manager checks whether the client machine char­
acteristics, such as the screen size and the screen color, support the user QoS require­
ments. If the client machine does not support the QoS requested by the user, a rejection
(likely with an offer) is sent to the user via the user interface. Then, the user has the
choice to abandon the session, accept the offer, or initiate a renegotiation.

QoS mapping: The QoS manager maps the user QoS requirements into relevant QoS
parameters for the requested service provider. For example, the network provider does
not know how to handle or manage the frame rate and the video resolution parameter;
rather, it knows how to handle and manage the throughput parameter (packets/s). Thus,
the mapping of frame rate and the video resolution into throughput is necessary to allow
the network provider to support the services requested by the user. The mapping func­
tions depend on the service in question; for each available service mapping functions
should be provided. These functions can be implemented as (1) analytical functions
which is difficult to realize (an example of AAL-ATM mapping QoS parameters can be
found in [11], and examples for user-transport mapping are given in [4]); or (2) mapping
tables which can be built by processing statistical information gathered during service
experimentations.

QoS monitoring: The QoS manager provides means to perform continuous measure­
ment of the QoS which is actually provided, for each running service (e.g, for vic and
vat). This allows to detect and notify any QoS violation: When the measured value of a
QoS parameter docs not meet the agreed one, a notification is issued, indicating the vio­
lation, and preferably the cause. An implementation of the monitoring function in the
context of remote access to MM databases can be found in [12].

3.3 Service manager
The service manager controls the available services; primarily, it allows to start and stop
the services. More generally, the service manager communicates with the services to
perform control functions and to get the information necessary for mapping and moni­
toring purposes; for example, the QoS manager may collect feedback reports of RTCP
[9] (in the case of vic and vat services) to react to QoS degradations. However, this com­
munication should be performed without (or only slight) code modification of the avail­
able services; furthermore, the extension of the set of available services with a new
service should be easy-to-do. This means that a well-defined QoS manager-service
interface should be provided; the primitives the interface provide should be similar for
all available (and future) services. Obviously, the implementations of these primitives
will depend on the service in question.

A multi-agent architecture for QoS management 47

3.4 Processing protocol data unit (PPDU)
The processing protocol data unit allows to transform (1) messages received from
the QoS manager and the user interface into messages that implements CQoSM
(see Section 4), and (2) messages received from neighbouring agents (for a given
multicast tree) into messages which can be processed (understandable) by the inter­
nal components. Example of these transformations follow: when the user selects a
service via the user interface, the latter sends a notification to PPDU; then, PPDU
builds Ask_QoS_Info() (see Section 4) and sends it to its upstream neighbouring
agent; upon receipt of Give_QoS_Info() signal, PPDU sends the information (about
available QoS) to the user interface to be displayed to the user.

4 PROTOCOLS FOR INTER-AGENT COMMUNICATIONS

In this section we present a description of the operations of an agent that imple­
ments CQOSM; the operations described below are applicable for a single multi­
cast tree; this means that the agent should perform these operations for each
multicast tree that uses the component that hosts the agent.

Signals description
We define the following signals:

- Ask_QoS_Info (Tree_Id, Sender_Id, Receiver_Id): It is sent by the agent, identi­
fied by Sender_Id, to its upstream neighbouring agent identified, by
Receiver_Id; Tree_Id indicates the identifier of the multicast tree in question.

- Give_QoS_Info (Tree_Id, Sender_Id, Receiver_Id, List_QoS): Its is sent by the
agent, identified by Sender_Id, to its downstream neighbouring agent, identified
by Receiver_Id; List_QoS is a list of QoS classes that are available from the
agent identified by Sender_Id.

- Add_QoS (Tree_Id, Sender_Id, Receiver_Id, QoS): It is sent by the QoS agent,
identified by Sender_Id, to its upstream neighbouring agent, identified by
Receiver_Id; QoS indicates the QoS that the agent, identified by Sender_Id,
wants to receive from the agent, identified by Receiver_Id.

- Remove_QoS (Tree_Id, Sender_Id, Receiver_Id, QoS): It is sent by the agent,
identified by Sender_Id, to its upstream neighbouring agent, identified by
Receiver_Id; QoS indicates the QoS that the agent, identified by Sender_Id,
does not want to receive anymore from the agent, identified by Receiver_Id.

- Persuade (Tree_Id, Sender_Id, Receiver_Id, List_QoS): It is sent by the agent,
identified by Sender_Id, to its downstream neighbouring agent, identified by
Receiver_Id; List_QoS indicates the list of QoS classes that the agent, identified
by Sender_Id, wants to deliver to the agent, identified by Receiver_Id.

- Viol (Tree_Id, Sender_Id, Receiver_Id, List_QoS): It is sent by the agent, identi­
fied by Sender_Id, to its upstream neighbouring agent, identified by
Receiver_Id; List_QoS indicates the initially negotiated list of QoS classes that
have been violated.

- Solve (Tree_Id, Sender_Id, Receiver_Id): It is sent by the agent, identified by
Sender_Id, to its upstream neighbouring agent, identified by Receiver_Id;

- Available_QoS (Tree_Id, Sender_Id, Received_ld, List_QoS): It is sent by the

48 Part Two Quality of Service Management

QoS agent, identified by Sender_ld, to its downstream neighbouring agent, identi­
fied by Receiver_Id; List_QoS indicates a list of QoS classes which are available
from the agent, identified by Sender_ld.

Description of the operation of an agent
The operation of any type of agent is described in the following; obviously, the

agents do not perform similar operations. To distinguish the operations of different
agents, we have to remember that a user agent has no downstream neighbouring agents
and a media source agent has no upstream agent.

To support adaptation of QoS, we assume that some internal monitoring mechanisms
are available, which can detect violations of QoS provided by a given component. It is
worth noting that facilities for monitoring will likely become available with cenain
types of equipment [10].

Variables description
We define the following variables:

- V _List_QoS, V _List_QoS' are variables which indicate lists of QoS classes;
- V _List_Agent is a variable which indicates a list of tuples (x,y) where x indicates an

agent identifier andy a list of QoS classes;
- Self is variable which indicates the identifier of the agent in question;
- T indicates a time variable;
- V _Agent, V _agent! are variables which indicate agent identifiers;
- Q, Q 1 indicate QoS variables;
- V _Response is a variable which indicates a list of tuples (x,y), where x indicates a tree

identifier andy an agent identifier. V _Response is a local variable at the agent level;
initially V _Response=[] (this means that initially V _Response is empty);

- V _List_QoS I is a variable which indicates a list of QoS classes; it is a local variable at
the agent level; initially V_List_QoSI=[];

- V _Agents is a variable which indicates a list of tuple (x,y) where x indicates an agent
identifier andy a QoS class;

Operation
- When a QoS violation is detected (let us assume that V _List_QoS indicates the agreed
list of QoS classes which have been violated):

If the component that hosts the agent is not the cause of the violation, then
-the agent sends a Vioi.(Tree_Id, Self, V_Agent, V_List_QoS) where V_Agent
is its upstream neighbouring agent (equal to the agent identifier in
Upstream_Agent that corresponds to the entry Tree_Id in Tree_List in case of a
router agent or in Si_ Tree_List in case of media sink agent);
- V_List_QoSl=V_List_QoS; /* V_List_QoSl is a local variable which will be
used by the agent when Solve() signal is received; see below*/

Otherwise, the agent performs the following operations:
- if the agent is a media sink agent/* this means that V _List_QoS consists of a
single element which is available to the user*/, then

- it sends Remove_QoS (Tree_Id, Self, V _Agent, V _List_QoS), where
V _Agent is its upstream neighbouring agent; in this case V _List_QoS con­
sists of a single element;

A multi-agent architecture for QoS management 49

- it initiates a renegotiation with the user (via the user interface) to
decrease the QoS currently provided;

Otherwise, the agent performs:
- C_List_QoS=C_List_QoS-V ~List_QoS;
- for each tuple (V _Agent,) e Downstream_Agents that corresponds
to the entry Tree_Id (in Tree_List in case of a router agent or in
So_Tree_List in case of a media source agent), the agent sends
Available_QoS (Tree_ld, self, V_Agent, C_List_QoS);

endif
endif

- When a recovery is detected:

An agent that initially issued a Available_QoS() signal because of a local QoS
violation, may monitor the current load of the component to check its capability to
support a super set, V _List_QoS, of the currently provided QoS classes,
C_List_QoS (ideally, V _List_QoS contains all QoS classes initially agreed). Upon
the detection of such a capability, for each tuple (V_Agent,) E

Downstream_Agents that corresponds to the entry Tree_Id in Tree_List in case of a
router agent or in So_ Tree_List in case of a media source agent, the agent sends
Available_QoS(Tree_Id, Self, V_Agent, V _List_QoS) signal.

- When Ask_QoS_Info (Tree_Id, Sender_Id, Receiver_Id) signal is received:
The agent (identified by Receiver_Id) sets V _List_QoS to A_List_QOS that

corresponds to the entry Tree_Id in Tree_List in case of a router agent or in
So_Tree_List in case of a media source agent. Then, the agent sends
Give_QoS_Info (Tree_Id, Self=Receiver_Id, Sender_Id, V _List_QoS).

- When Add_QoS (Tree_Id, Sender_ld, Receiver_Id, QoS) signal is received:

The agent (identified by Receiver_ld) checks whether QoS E C_List_QoS
(A_List_QoS in case of a media source agent) that corresponds to the entry Tree_Id
in Tree_List or in So_Tree_List.

If the response is yes, then the agent performs the following:
-it sends Persuade (Tree_Id, self, Sender_ld, V _List_QoS); the computa­
tion ofV _List_QoS depends on the persuasion policies in use;
-it selects (depending on the persuasion policies in use; see below) a subset,
V _Agents, of Downstream_Agents that corresponds to the entry Tree_ld in
Tree_List or So_Tree_List; for each (V_Agent,) E V _Agents, the agent

builds and sends Persuade (Tree_Id, self, V_Agent, V _List_QoS); The
computation of V _List_QoS depends on the persuasion policies in use;

Otherwise,
if the agent is a router agent, then it sends Add_QoS (Tree_ld, self,

V _Agent, QoS), where V _Agent indicates its upstream neighbouring agent,

and it updates its V _Response (V _Response=V _Response u [(Tree_Id,
Sender_Id]);

50 Part Two Quality of Service Management

endif

- When a Remove_QoS (Tree_Id, Sender_Id, Receiver_Id, QoS) signal is received:
The agent (identified by Receiver_ld) updates the attributes of the entry Tree_Id in

Tree_List or in So_Tree_List:
- Downstream_Agents=Downstream_agents - [(Sender_Id, QoS)]

-if not (3 V_Agent) such that [(V_;\gent, QoS)] s;;; Downstream_Agents then

- C_List_QoS=C_List_QoS-[QoS];

-the agent sends Remove_QoS(Tree_Id, self, V_Agentl, QoS) where V_Agentl
is its upstream neighbouring agent;

endif
-the agent selects (depending on the persuasion policies in use) a subset, V _Agents,

of Downstream_Agents that corresponds to the entry Tree_ld in Tree_List or
So_Tree_List; for each (V _Agent,) e V _Agents, the agent builds and sends

Persuade (Tree_ld, self, V_Agent, V _List_QoS); The computation of
V _List_QoS depends on the persuasion policies in use;

- When a Persuade (Tree_ld, Sender_ld, Receiver_ld, List_QoS) signal is received:
If the local variable V _Response is empty (which means that the agent is a sink

agent and List_QoS is a single QoS; List_QoS=[QoS]), then the agent presents

to the user, via the user interface, the QoS (QoS) which can be provided to him/

her; if the user does not accept this QoS, the agent sends Remove(Tree_ld, self,
Sender_Id, QoS).

Otherwise /*V _Response * [] */, the agent performs the following:
- C_List_QoS=List_QoS;
- finds V_Agent, such that [(Tree_Id, V_Agent)] s;;; V _Response, and sends

Persuade(Tree_Id, self, V _Agent, C_List_QoS);
endif

-When a Viol (Tree_ld, Sender_ld, Receiver_ld, List_QoS) signal is received:
The agent performs the following operations:
- V _List_Agent=[(Sender_ld, List_QoS)];
-it initiates and starts a timer, 1imer; the value of the timer is computed based on sta-

tistics gathered during past behaviors of the system;
- T=Current_Time; /* the agent reads the current time, Current_Time from a local

clock*/
-while (Current_time<T+Timer) do

if a Viol (Tree_id, V_Agent, Received_ld, V _List_QoS) signal is received, then
Add(V _List_Agent, (V _Agent, V _List_QoS)); /* Add(l,x): adds x to the end
of the list I */

endif
endwhile
- if for each tuple (V _Agent,) e Downstream_Agents that corresponds to the

entry Tree_ld in Tree_List or in So_Tree_List, (V_Agent,)
e V _List_Agent, then

if the agent is router agent then

A multi-agent architecture for QoS management 51

-the agent sends a Viol (Tree_Id, self, V_Agentl, V _List_QoS')
signal, where V _Agentl corresponds to its upstream neighbour­
ing agent, and V _List_QoS'::: u V _List_QoS for (,

V _List_QoS) e V _List_Agent;
else (the agent is a media source agent) /* this means that the media

source machine has problems to deliver data
with appropriate QoS, e.g. because of resource
shortage *I

- it computes the list, V _List_QoS, of QoS classes, it is able to
currently provide, using some resource reservation protocols;
- A_List_QoS=V _List_QoS;
- C_List_QoS:::V _List_QoS;
-for each tuple (V_Agent,) e Downstream_Agents that cor-
responds to the entry Tree_ld, the agent sends Available_QoS
(Tree_Id, self, V_Agent, V _List_QoS);

endif
else

for (V_Agent,) e V _List_Agent, the agent sends Solve(Tree_ld,
self, V _Agent);

endif

- When a Solve (Tree_Id, Sender_ld, Receiver_ld) signal is received:
The agent asks the routing protocol to find a new path between Sender_ld, and

Receiver_ld that might support the QoS classes contained in V _List_QoS 1. If the
response is yes, a transition of traffic transmission from the old path to the new path
is performed; otherwise, the agent performs the following operations:

if the agent is a router agent, then
- C_List_QoS:::C_List_QoS-V _List_QoS 1;
- for each tuple (V_Agent,) e Downstream_Agent that corresponds to

the entry Tree_Id, the agent sends Available_QoS (Tree_ld, self, V _Agent,
C_List_QoS);

otherwise /*the agent is a media sink agent *I
-it initiates a renegotiation with the user (via the user interface) to decrease
the QoS currently provided;

endif

- When a Available_QoS (Tree_Id, Sender_ld, Received_ld, List_QoS) signal is
received:

If the agent is a router agent, then
-if (QoS e C_List_QoS) then C_List_QoS=C_List_QoS-[QoS]; /*this
means that Available_QoS() is received because of some QoS violation */
- if(QoS e C_List_QoS) then C_List_QoS=C_List_QoS u [QoS]; I*
this means that Available_QoS() is received because of some recovery*/
-for each tuple (V_Agent,) e Downstream_Agents that corresponds to

52 Part Two Quality of Service Management

the entry Tree_Id, the agent sends Available_QoS (Tree_Id, self, V _Agent,
C_List_QoS);

otherwise /*the agent is a media sink agent */
it initiates a renegotiation with the user (via the user interface) to increase or

decrease the QoS currently provided;
endif

Let us note that the agents are responsible for updating their state variables when
executing the protocols described above.

Persuasion policies
The persuasion idea is better explained by an example. Let us assume that at a

certain time a router agent, a, (part of Tree_ld) is delivering QoS1 to a1 , a2 , et a3 ,

QoS2 to a4 and a5 , where a 1, ••• , a5 are the agent's downstream agents. In the
following we present simple persuasion cases:

(I) if a5 sends Move_QoS(Tree_ld, a5 , a,QoS2), then the agent sends persuade
(Tree_Id, a , a4 , QoS 1). This will allow (I) the agent to handle only QoS 1 : the
component (where the agent is installed) resources already reserved to support QoS2

will be de-allocated and may be used to support new sessions; (2) the system to de­
allocate the network resources used to deliver (from its upstream agent) QoS2 to a.
Furthermore, the same scenario may be executed by its upstream agent, ua; this
depends on the state of ua .

(2) if a6 and a1 send Add_QoS(Tree_Id, a6 , a, QoS1) and Add_QoS(Tree_ld, a7 ,

a, QoS1) respectively, then the agent sends Persuade(Tree_Id, a, a4 , QoS1) and
Persuade(Tree_ld, a, a5 , QoS 1). This operation has similar effect as (l).

It is obvious that the policy used in this example depends mainly on the number of
downstream agents asking for specific QoS classes; when the number of agents asking
for QoS 1 is higher than the number of agents asking for QoS2 , then the agent persuades
the agents to receive only QoS 1 • The policy presented here is a simple one; however,
more sophisticated ones may be used. These can be based on some complex
optimizations procedures to increase the system benefits without discouraging clients.
This means the persuasion of users will be based on some cost incentives. Another
policy, may compute an average of QoS delivered and persuade all downstream agents
to receive this average. We are still working on the specification and evaluation of
different policies to be used in our CQoSM.

5 CONCLUSION AND OUTLOOK

In this paper, we described a multi-agent architecture for our.new Cooperative Quality
of Service Management. The basic idea is that agents installed on every node of the dis­
tributed system cooperate with each other in order to provide the QoS requested by the
different participants of the application.

We are currently in the process of implementing a sample application based on this
architectural framework, namely a tele-teaching application where a lecture given by a
teacher can.be "virtually" attended by a large number of students using their own work­
station. The application is not developed from scratch; rather, it is based on existing
code from our previous news-on-demand prototype and on the MBone Tools vic, vat,
wb [8] and vcr ([7], to record a session). Contrary to "normal" MBone applications, we
only handle one media stream per group address and with one tool instance. This

A multi-agent architecture for QoS management 53

approach allows us to switch between qualities simply by stopping the currently running
instance of the tool and starting a new one with a new multicast address, resulting in the
reception of the media stream in a different quality. For the agents, we are looking into
possibilities offered by the Web languages Java and Perl which offer powerful con­
structs to handle distributed and cooperative environments. We are especially interested
in agent mobility in order to provide for a more flexible agent distribution throughout
the network.

6 ACKNOWLEDEMENT

This work was partially supported by a grant from the Canadian Institute for Telecom­
munication Research (CITR), under the Networks of Centres of Excellence Program of
the Canadian Government.

7 REFERENCES

[I] C. Aurrecoechea, A. Campbell, and L. Hauw. A Survey of QOS Architectures.
Multimedia Systems Journal, Special Issue on QoS Architectures, 1997. To ap­
pear.

[2) G. Derrnler, T. Gutekunst, B. Plattner, E. Ostrowski, F. Ruge, and M. Weber.
Constructing a Distributed Multimedia Joint Viewing and Tele-Operation Service
for Heterogeneous Workstation Environments. In Proceedings of the IEEE Work­
shop on Future Trends of Distributed Computing, Lisbon, Portugal. IEEE Com­
puter Society Press, 1993.

[3] S. Fischer, A. Hafid, G. v. Bachmann, and H. de Meer. Cooperative Qos Man­
agement in Multimedia Applications. InN. Georganas, editor, IEEE International
Conference on Multimedia Computing and Systems (ICMCS'97), Ottawa, Cana­
da. IEEE Computer Society Press, June 1997. To appear.

[4] S. Fischer and R. Keller. Quality of Service Mapping in Distributed Multimedia
Systems. In Proceedings of the IEEE International Conference on Multimedia
Networking (MmNet95), Aizu-Wakamatsu, Japan, pages 132-141, September
1995.

[5] A. Hafid and G. v. Bachmann. Quality of Service Negotiation in News-an-De­
mand Systems: An Implementation. In A. Azcorra, T. D. Miguel, E. Pastor, and
E. Vazquez, editors, Proceedings of the Third International Workshop on Proto­
cols for Multimedia Systems, Madrid, Spain, pages 221-240, Oct. 1996.

[6] A. Hafid and G. v. Bachmann. Quality of Service Adaptation in Distributed Mul­
timedia Applications. ACM Multimedia Systems Journal, 1997. To appear.

[7] W. Holfelder. MBONE VCR- Video Conference Recording on the MBONE. In
P. Zellweger, editor, ACM Multimedia '95 (Proceedings), pages 237-238, New
York, Nov. 1995.

[8] V. Kumar. MBone -Interactive Multimedia on the Internet. New Riders Publish­
ing, Indianapolis, Indiana, 1996.

[9] H_ Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transort proto­
co/for real-time applications. RFC-1889, Internet Engineering Task Force, Au­
dio-Video Transport Working Group, 1996.

54 Part Two Quality of Service Management

[10] A. Seneviratne and H. S. Cho. Quality of Service Mapping in Distributed Multi­
media Systems. In Proceedings of the IEEE International Conference on Multime­
dia Networking (MmNet95), Aizu-Wakamatsu, Japan, pages 126-131,
September 1995.

[11] D. Seret and J. Jung. Translation ofQoS Parameters into ATM Performance Re­
quirements in B-ISDN. In IEEE Infocom'93, San Francisco, 1993.

[12] R. Somalingam. NeMork Performance Monitoring for Multimedia NeMorks.
Master's thesis, McGill University, Montreal, Canada, 1996.

8 BIOGRAPHY

Dr. Abdelhakim Hafid is a Researcher Staff Member at the Computer Research Institute
of Montreal (CRIM) working in the area of distributed multimedia applications; he is
also an Adjunct Professor at University of Montreal, Department of computer Science
and Operatione1 Research. He received his Masters and Ph.D. degrees in computer sci­
ence from University of Montreal on quality of service managemenrfor distributed mul­
timedia applications in 1993 and 1996, respectively. From 1993 to 1994 he was visiting
scientist at GMD-FOKUS, Systems Engineering and Methods group, Berlin, Germany
working in the area of high speed protocols testing. His current research interests are in
broadband multimedia services and communications.

Dr. Stefan Fischer is currently a postdoctoral researcher at the University of Mon­
treal. He got his diploma in Computer Science applied to Business Administration and
his doctoral degree in Computer Science from the University of Mannheim, Germany,
in 1992 and 1996, respectively. His research interests include distributed multimedia
systems, quality of service and formal methods for high-speed networks and applica­
tions. He is also the author of two books on network programming and on intranets.

