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Abstract 

An essential function of ATM is Connection admission control (CAC). To 
achieve higher network utilisation, bursty calls are statistically multiplexed on a 
common link. We present a new CAC scheme based on fuzzy logic (FL) and 
artificial neural networks (ANNs) to exploit this key feature of A TM networks. 
Defining a hybrid intelligent system enables us to take advantage of both the 
learning capabilities of ANNs and the interpretability properties of FL. The ANN 
is used in the learning phase to automatically tune the fuzzy system (i.e. to define 
the fuzzy rules and the membership functions) whilst during the control phase, 
the fuzzy system forecasts the QoS values. The CAC procedure is able to 
determine on line the cell loss probability (CLP) that a connection will exhibit 
when accepted into the A TM network. Because of its possible hardware 
implementation as well as its adaptive and learning capabilities, this scheme 
constitutes a good candidate for a robust real-time CAC. 
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1 INTRODUCTION 

Telecommunications networks are growing rapidly and becoming more and more 
complex. In (Reeve, 1996), Reeve makes the point: "the problem is how to 
effectively manage and control such networks since users expect an ever 
increasing quality of service, and these services are becoming critical for the 
successful day to day operation of businesses". 

To cope with this growing complexity and to prevent an overwhelming cost 
associated with it, telecommunications network management (TNM) systems 
have to undergo some radical changes. First, a high level of automation is 
required to process the huge amount of data available to the TNM system. Since a 
part of these data is often incomplete, uncertain and sometimes conflicting, 
human interaction remains essential when classical techniques are used (Muller, 
1993). To prevent the network from being increasingly dependent on highly 
qualified network operators (Reeve, 1996), artificial intelligence (AI) based 
techniques may be considered. These techniques present a priori two advantages: 
they are able to deal with incomplete and even incoherent data, and they limit the 
need of human interaction. 

As an example, the next section will concentrate on one particular 
telecommunications application and the possible use of AI techniques. 

2 CAC IN A TM NETWORKS 

A TM is the transmission technology chosen for the future broadband integrated 
services digital network (B-ISDN). A TM-based networks are capable of 
supporting a wide range of telecommunications services with stringent quality of 
service (QoS) specifications. These benefits, however, come at a price; contrary 
to a common opinion, ATM is a complex technology whose management 
constitutes a set of difficult problems. This subject encompasses both traffic 
control and congestion control, which could be basically described as preventive 
and reactive control. We are interested in traffic control, and more especially in 
the call admission control (CAC) process. This function is vital in an ATM 
network since it decides whether or not a new connection should be accepted into 
the network. A connection is accepted when sufficient resources are available to 
carry the connection at the quality of service (QoS) required by the user through 
the whole network, without altering the QoS of existing connections. 

One key feature of A TM is the statistical multiplexing of bursty connections 
which allows the network to achieve higher utilization (Roberts, 1991). Although 
many CAC schemes have been proposed in the literature (Fontaine, 1996b), none 
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was deemed accurate and fast enough to be an adequate candidate to deal with 
variable bit rate (VBR) traffic. Most of the time, they provide solutions based on 
assumptions. These assumptions rely either on the assumed traffic model (which 
is supposed to be Gaussian, Interrupted Poisson Process, etc.) or on the 
approximation of an exact mathematical formula. Obviously, each assumption 
imposes restrictions on the scheme. These techniques are not flexible enough to 
support A TM traffic. They are designed for a known and determined situation, 
but they are not really suitable for an ATM network which is supposed to carry 
both current and unknown future services. It seems extremely complex to devise 
a controller using the classical methods, to solve this multi-objective optimization 
problem. To cope with this difficulty, a new kind of approach based on 
"intelligent" techniques could be considered. In this paper, we claim that the use 
of AI based techniques provides efficient, effective, flexible and robust control. 
Since it is difficult for a network to acquire complete statistics of the input traffic, 
it has to make a decision based on incomplete information. Hence, the decision 
process is full of uncertainty (Cheng, 1996). Because fuzzy logic has been 
applied to time-varying and ill-defined problems, we decided to consider this 
technique. 

3 FUZZY LOGIC AND CAC 

Fuzzy logic takes decisions based upon a set of rules written in an English-like 
language (Zadeh, 1973 ). Its main feature is the ability to model a complex system 
without requiring a functional input-output description. Using fuzzy logic allows 
us to overcome the mathematical complexity of the problem. As a matter of fact, 
it encodes the expert knowledge about A TM CAC without requiring a model for 
the actual CAC mechanism. Moreover, an important benefit is that fuzzy logic 
deals with situations in which no rule is defined (unlike expert systems). The 
essential steps in the design of a fuzzy system are to define the fuzzy variables 
(including the choice of the variables and of their membership functions), the 
fuzzy rules and the defuzzification method (see Figure 1). 
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Figure 1 A fuzzy inference system. 
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The fuzzification process requires membership functions to translate crisp 
inputs into degrees of membership. In most cases, the membership function has 
either a triangular or trapezoidal shape, but in order to get a continuous and 
differentiable' function, we consider a bell-shaped function in the form of 
equation (1). 

1 
f(x) = 2b 

l+(x:c) 
(1) 

a controls the width of the curve, b determines how flat the curve is at its top, and 
c represents the location of the centre. 

Previous studies (Elwalid, 1995) and (Mitrou, 1994) have shown that three 
parameters are important where statistical multiplexing is concerned. These 
parameters are the peak bit rate to link capacity ratio, the activity factor (mean
to-peak ratio) and the mean load (sum of the mean bit rates of accepted 
connections divided by the link capacity). These three quantities constitute the 
inputs. There is no specific rule to determine the number of membership 
functions per input. In this paper, like in (Fontaine, 1996a), the trial and error 
method led us to choose three membership functions per input. 

The fuzzy rule base contains fuzzy "if-then" rules. Different forms of fuzzy if
then rules have been presented in the literature so far (Mendel, 1995) and (Jang, 
1992). In this study, we use the form proposed by Takagi and Sugeno (Takagi, 
1983), which has fuzzy sets involved only in the premise part. The conclusion 
part of each rule is a linear combination of the input variables plus a constant 
term. For a two-input fuzzy system, a rule looks like: "If ipl is Fuzzy-setl and 
ip2 is Fuzzy-set2 then output=p*ipl +q*ip2+r". 

The defuzzification performs the reverse operation from the fuzzification and it 
delivers a crisp output. To follow the Takagi and Sugeno model, the output is 
taken to be the weighted average of each rule output. 

To optimize the fuzzy controller and to prevent the designer from tuning its 
system with the unsatisfactory trial and error method (Kosko, 1992), a modified 
algorithm coming from neural network tools, the error back propagation 
algorithm (Nauck, 1993); is used to define the fuzzy rules and to automatically 
generate the membership functions (i.e. to set the parameters (a,b,c)). Based on 
this model, we designed a "neuro-fuzzy" system able to determine a priori and on 
line the cell loss probability (CLP) a connection will exhibit when accepted into 
the A TM network. The fuzzy system is actually embedded in an artificial neural 

These features will be required later on to apply the back-propagation learning algorithm. 
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network framework which provides adaptive and learning capabilities. The next 
section shows some results of the experiments performed. 

4 SIMULATION 

A fuzzy system has been designed to forecast the cell loss probability 
experienced by VBR sources multiplexed in a 48 cell buffer switch with a 155.52 
Mb/s output link capacity. The system has been trained with the cell loss results 
obtained by the RACE (Research on Advanced Communications in Europe) 
consortium R2061 (Exploit) (Witters, 1994). Six different traffic sources 
(modelled as on-off sources) were considered (cf. Table 1). 

Table 1 Traffic types 

Traffic Peak bit rate (Mbls) Mean bit rate (Mbls) Mean burst size (cells) 

A.3.1 31.1 6.22 1467 

A.3.2 31.1 1.56 734 

B.3.1 7.78 3.89 917 

B.3.2 7.78 0.39 183 

C.3.1 1.94 0.97 229 

C.3.2 1.94 0.39 92 

A total of 14 traffic scenarios have been studied: 6 homogeneous traffic 
scenarios (cf. Table 1) and 8 heterogeneous traffic mixes. In the heterogeneous 
case, two traffic types are multiplexed together on the same link. Note that the 
measurements correspond to the overall cell loss ratio and not the cell loss ratio 
individual sources or traffic types experience. 

If only the three inputs proposed in the previous section are considered then the 
buffer in the switch is not taken into account. Depending on the ratio between the 
buffer size and the mean burst size, the buffer may absorb whole bursts thereby 
preventing the cell loss probability from being degraded. The three-input-model 
was satisfactory when the system was trained only with the bufferless convolution 
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algorithm (Fontaine, 1996a) but, it becomes obsolete when real traffic is used for 
training. A fourth input corresponding to the ratio between the buffer size and the 
mean burst size is considered to take into account the buffer's influence (Roberts, 
1991) and (Boyer, 1995). Both approaches (3- and 4-input system) have been 
developed and trained with the same set of items coming from measurements. 
Each system has been trained with the backpropagation algorithm for 100 epochs 
(i.e. the training set has been used 100 times). 
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Figure 2 Error during the training epochs. 
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At the end of the training phase, the parameter set leading to the minimal root 
mean square error (RMSE) is kept and the system is ready to operate in running 
phase. Figure 2 displays the RMSE for both systems versus the epoch number. It 
is clear that the 4-input-system has a more adequate set of inputs since the RMSE 
is much lower. Actually, all the figures in Table 2 are lower in the case of a 4-
input-system. The a priori knowledge given to the second system through the 4 
inputs is more suitable for the fuzzy CAC approach (Fontaine, 1997). 
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Table 2 Training errors 

Nb of inputs RMSE min RMSE max RMSE mean RMSE std dev. 

3 0.054331 0.18643 0.062811 0.016038 

4 0.012168 0.041867 0.019996 0.006384 

From now onwards, the 4-input-system is considered. The parameters (i.e. 
membership function parameters (a,b,c) and fuzzy rule parameters) have been 
tuned during the training phase. The set of parameters chosen is the one leading 
to the minimal RMSE which has been reached at the 1 OOth epoch. Some typical 
results of the running phase are displayed in Figures 3 (homogeneous case) and 4 
(heterogeneous case). In Figure 4, the number of A.3.1 sources is constant and 
equal to 2, whilst the number of C.3.1 sources varies. For comparison, the results 
obtained by analytical approach (convolution algorithm) are displayed on the 
same figures. The results obtained from the neuro-fuzzy system are close to the 
measurements obtained from the test-bed. 
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Figure 3 Homogeneous case. 
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Figure 4 Heterogeneous case. 

The neuro-fuzzy system is very sharp for the situations for which it has been 
trained. Hence, the difference between the predictions of the fuzzy system and 
the actual measurements from the test-bed is almost null . On average, over the 
whole training set, the error between prediction and measurement (which is 
actually the minimal training error) is just over I%. Moreover, it should be 
noticed that the system is able to interpolate and its behaviour between two 
distinct measurements (training points) is satisfactory. In the homogeneous case, 
the neuro-fuzzy system gives a very good response. Its predictions are better than 
the ones obtained by the convolution algorithm which is based on a bufferless 
model. Note that for the traffic mix displayed (cf. Figure 4), there are only 4 
training points and the system is still able to give a good answer over a large area. 
Some oscillations may be noticed in this latter case, meaning that the training set 
was too small . Even though, the results obtained demonstrate that fuzzy logic 
and neural networks constitute an interesting and suitable alternative to analytical 
approaches for CAC. The next stage is to increase the number of training items 
by using an on-line training. Using both batch and on-line learning prevents from 
having long batch learning periods and enables the system to acquire new and 
updated information about the actual traffic. An on-line learning algorithm is now 
under study. 



Fuzzy logic for controlling call admission in ATM networks 133 

5 CONCLUSION 

In this paper, we have argued that AI is going to be used in the coming years to 
manage and control telecommunications networks. These techniques are actually 
needed to cope with the growing complexity of communications networks. Of 
course, any AI technique is not suitable for every management task. Depending 
on the requirements, one specific technique or a sub-set of AI techniques should 
be considered. To highlight this point, we have presented a case study: a fuzzy 
logic based algorithm for connection admission control in A 1M networks. In 
order to automate the design process of the fuzzy controller, the self-learning 
capabilities of neural networks has been considered. The results show that the 
combination of these two techniques are promising. The on-line learning 
capability is another appealing feature which will be considered for further study. 
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