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Abstract 
In this paper we describe a new approach to repairing violations of integrity 
constraints in relational databases with null values. By adopting basic con­
cepts from model-based diagnosis, we show how simultaneous reasons for vi­
olations of (different) constraints can be determined. These reasons, repre­
sented as sets of facts, directly indicate possible repair actions that guarantee 
to remove the observed violations. 

By interleaving the diagnosis of constraint violations and the execution of 
repair actions, we draw an enumeration schema for possible minimal repair 
transactions as sequences of repair actions. Each such transaction, when ap­
plied to the inconsistent database, guarantees to result in a database consis­
tent with all constraints. In order to enumerate possible repair transactions, 
repair actions are performed hypothetically using auxiliary relations. This 
enables the user to query intermediate as well as result states obtained by 
different repairs in advance. 

In order to provide a suitable front-end to the general enumeration schema, 
we describe various repair strategies which can be imposed by the user. These 
strategies follow individually specified repair goals and can easily be integrated 
into the enumeration schema for repair transactions. The proposed strategies 
range from aspects of minimal change over priorities of stored facts up to the 
user interaction with the repair process. 
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1 INTRODUCTION 

Numerous papers have been written on specifying and maintaining integrity 
constraints in databases since the first large database conference (Eswaran 
and Chamberlin 1975, Hammer and McLeod 1975) (for an overview see, e.g., 
(Grefen and Apers 1993, Widom 1994)). The aim has always been to develop 
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methods that efficiently check integrity constraints for violations. Several pro­
posals on integrity maintenance have been made for relational, deductive and 
object-oriented databases (Grefen and Apers 1993, Widom 1994, Celma et 
al. 1994, Jeusfeld and Jarke 1991). 

Nearly all of these approaches are passive, i.e. in case of constraint viola­
tions a rollback of the complete transaction is performed. For several applica­
tions, however, such a drastic action is insufficient. This holds in particular for 
nowadays emerging database applications like engineering or design databases 
(Morgenstern et al. 1986, Encarnacao and Lockemann 1990, Buchmann et 
al. 1991), where thus transactions containing a multitude of operations would 
be undone and a lot of work would get lost. Furthermore, in case of constraint 
violations the designer has to identify reasons for the violations and possi­
ble repairs of the violating transaction by her/himself. This, of course, is not 
a trivial task since respective applications typically contain numerous com­
plex semantic integrity constraints that describe interdependencies between 
various relations. 

To overcome these problems so-called active constraint enforcement meth­
ods performing repairing actions have been developed. The topic of repairing 
constraint violations has recently become a new discipline in the database 
area. Several proposals have been made to this topic in the context of ac­
tive databases, e.g., (Urban and Desiderio 1992, Ceri et al. 1994, Gertz 1994, 
Schewe and Thalheim 1994), and deductive databases, e.g., (Moerkotte and 
Lockemann 1991) (see (Fraternali and Paraboschi 1993) for an extensive 
overview). 

The drawback of these approaches is, however, that they in general realize 
an autonomous repair of constraint violations. Although the user can choose 
from automatically derived repairing triggers at compile-time, these triggers 
are kept fixed at run-time. Once a repair is triggered in an inconsistent data­
base, there is no way to interact with the repair process. Furthermore, often a 
repair of violations may introduce new violations which are then automatically 
repaired and so on. Hence it is difficult for the user to identify why what hap­
pened. Interesting questions are also what happens if the result state does not 
reflect the user's intention or the application requirements? How can she/he 
choose between possible alternative repairs? 

With respect not only to the application domains mentioned above, we think 
that the properties listed below are important for any method performing the 
repair of constraint violations: 

• determination of facts, i.e. stored tuples (positive facts) as well as missing 
tuples (negative facts) that contribute to the different constraint violations, 

• exposition of common reasons for different violations, 
• possibility for the user to choose a repair strategy following a repair goal, 
• enumeration of possible repair transactions from which the user chooses 

before executing a repair transaction on the inconsistent database, and 
• comparison of the effect of different possible repair transactions. 
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In this paper we describe a general framework which tries to fulfill these 
requirements and which is extensible concerning further demands on the 
repair of constraint violations. We propose a sound and complete enumer­
ation schema for possible minimal repair transactions for an inconsistent 
database. For this we employ basic concepts from model-based diagnosis 
(Reiter 1987, Hamscher at al. 1992). The reason for this is that there is a 
close relationship between repairing constraint violations in databases and 
the diagnosis and repair of malfunctioning components of (technical) systems 
(Gertz and Lipeck 1995). The used concepts provide a diagnostic means to de­
termine minimal sets of facts that contribute to all violations in an inconsistent 
database. From these sets minimal repair actions are derived that guarantee 
to remove the observed violations, but which may possibly introduce new vi­
olations. By iterating the diagnosis and repair of constraint violations finally 
minimal repair transactions for the inconsistent database are computed. Iter­
ations are performed using auxiliary relations, thus allowing the user to query 
different computations and result states of repair transactions. 

In contrast to other approaches we additionally consider marked null values. 
The rationale for this is that often missing facts are reasons for constraint 
violations and that only some attribute values of these facts are known. Null 
values provide a suitable means to represent such missing information, e.g., 
in order to satisfy referential integrity constraints. 

The enumeration of all minimal repair transactions, of course, is not well­
suited for practical usage, but provides a suitable framework for application 
independent or application dependent extensions. That is why we propose 
various repair strategies which can be individually imposed by the user for 
the computation of possible repairs. Aside from the effect that such strategies 
reduce the number of possible repairs they are a suitable means to integrate 
semantic aspects into the repair process. The proposed repair strategies range 
from minimal change semantics like a minimal undo or consistent completion 
of a violating transaction up to the user interaction with the repair process. 

The paper is structured as follows: In Section 2 we shortly introduce the ba­
sic relational concepts and we sketch the main idea of model-based diagnosis 
and its connection to the repair of constraint violations. Section 3 describes 
how to collect information about constraint violations and how violations are 
diagnosed for simultaneous reasons using techniques from model-based diag­
nosis. In Section 4 we present our algorithm to enumerate alternative possible 
minimal repair transactions for an inconsistent database. Section 5 presents 
some repair strategies which can be imposed on the enumeration schema. A 
complete discussion and formalization of the presented approach can be found 
in (Gertz 1996). 
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2 INTEGRITY CONSTRAINTS AND MODEL-BASED 
DIAGNOSIS 

2.1 Constraint Specification and Checking 

For our approach we assume an extended relational model with marked null 
values (Reiter 1984, Imielinski and Lipski 1984). An extended relational data­
base schema is essentially the same as for ordinary relational databases with­
out null values; that is, it contains a set P = {Pl, .. . Pn} of base relations, a 
collection V of domains and a set C of integrity constraints. The difference 
is that each domain Di E V may contain, aside from ordinary constants, a 
finite set {eil' ... ,ei,} of marked null values (or special constants). Marked 
null values differ from ordinary constants. They denote constants that are 
incompletely identified in the database; they can denote ordinary constant 
or completely new ones. Two occurrences of the same marked null value in 
relations, however, denote the same unknown value. In the sequel we denote a 
database state (or database for short) determined by the tuples in the relation 
instances at a given point of time by B. 

Integrity constraints C are formulated in the relational language that can 
be associated with a given database schema. In this paper we concentrate on 
integrity constraints in implicative normal form. 

Definition 1 (Integrity Constraint) An integrity constraint in implica­
tive normal form (INF) is a closed range-restricted formula of the pattern 

Each Pi, qj is either a base predicate corresponding to a base relation, or 
a comparison operator like =, <, > etc. The notations x, y, xPi , Y qj denote 
domain respecting vectors of variables and/or constants as arguments of the 
predicates. This class of constraints is very general since it includes foreign 
key constraints, functional dependencies etc. Several classes of more complex 
constraints (also called semantic integrity constraints) can be transformed 
into constraints in INF by means of transformation rules similar to those 
presented in (Lloyd and Topor 1984). 

The prevailing logical approach to databases with null values is the model­
theoretic approach. For a database B without null values, the model-theoretic 
approach always succeeds in choosing the least Herbrand model. This is not 
the case in the presence of null values; there several models of the database 
may exist, each model describing a database with complete information com­
patible with B. Roughly speaking, these models are characterized by possible 
mappings ~ : £ ~ JiB (as part of an interpretation) that assign (ordinary) 
constants from the Herbrand base JiB to the null values £. It should be clear 
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that in this case a formula can be true in some models of B and false in some 
others. 

For the satisfaction of a constraint C in a database B we adopt an optimistic 
view as suggested in (Vardi 1986), since requiring a constraint C to be true 
in all models of a database B with null values would be too restrictive. 

Definition 2 (Constraint Satisfaction) An integrity constraint C is said 
to be satisfied in a database B if there exists a model of B (corresponding to 
an assignment { to the null values) such that B{ is a also model of C. If the 
constraint C is satisfied in B, this is denoted by B ~ C. If there does no exist 
such a model of B, i.e. C is unsatisfiable in B, C is said to be violated in B. 

In a given database B, a constraint C is checked by evaluating its associated 
violation query 

C : = {x I PI (xp1 ) /\ ... /\ Pn (xpJ /\ 
'VYqj: -'qI (Xqjl Yqj) /\ ... /\ 'VYqm : -'qm (Xqm, Yqm n· 

If the query evaluates to the empty set, C is said to be satisfied in B, 
otherwise it is violated and each tuple determined by C is called a violation 
of C. For a query evaluation algorithm in the presence of null values see, 
e.g., (Reiter 1986). For further issues and problems connected with querying 
incomplete information see (Abiteboul et al. 1991). 

2.2 Model-Based Diagnosis 

During the last decade model-based diagnosis has become a prominent re­
search area in Artificial Intelligence for describing techniques that can be used 
to identify malfunctioning components of a system (Hamscher at al. 1992). 
One fundamental approach to diagnostic reasoning is called model-based di­
agnosis or consistency-based diagnosis (Reiter 1987). Starting point of this 
approach is a description (a model) of a real-world system. Such a model 
represents the structure of the system; that is, its components and their inter­
relations. If now the actual behavior of the system conflicts with the expected 
behavior of the system a diagnostic task has to be performed. This task com­
prises identifying those components of the system which, when assumed to 
function abnormally, will account for the difference between expected and 
observed behavior. 

In model-based diagnosis a system is defined as a pair (SD, CaMP), where 
S D is a system description as a set of first order sentences defining how the 
system components are interrelated and how they normally behave. CaMP 
is a finite set of constants denoting the system's components. In the system 
description a distinguished predicate ab on the components is defined whose 
intended meaning is "abnormal". The literal ab(c) holds when a component 
c E CaMP is behaving abnormally. Typically system descriptions will specify 
system behavior on the condition that all components are not abnormal. An 
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observation OBS on the system and its components is a finite set of first 
order sentences. Using the ab-predicate REITER (Reiter 1987) characterizes a 
diagnosis as follows: 

Definition 3 (Diagnosis) A diagnosis ~ for (SD, COMP,OBS) is a subset 
~ E CaMP such that 

SD U OBS U {ab(c) IcE~} U {--,ab(c) IcE CaMP -~} 

is consistent. A diagnosis is minimal if no proper subset of it is also a diagnosis. 

In other words, for a diagnosis ~ the assumption that these components 
are abnormal, i.e. ab(c), c E ~ holds, together with the assumption that all 
other components are behaving normal, is consistent with the system descrip­
tion SD and the observations OBS. REITER'S subsequent characterization of 
diagnosis and its computation exploits the notion of conflict sets. 

Definition 4 (Conflict Set) A conflict set for (SD, CaMP, OBS) is a set 
{CI,'" ,Cn} ~ CaMP such that SDUOBSU{--,ab(cI),'" ,--,ab(cn)} is in­
consistent. A conflict set is minimal if no proper subset of it is also a conflict 
set. 

A conflict set thus is a set of components that cannot altogether assumed 
to be not abnormal without leading to an inconsistency with the system de­
scription and the observations. The next definition characterizes a hitting set 
for a collection S of sets: 

Definition 5 (Hitting Set) A hitting set for S is a set H ~ UMES M, such 
that H n M f:. { } for each M E S. A hitting set is minimal if no proper subset 
of it is also a hitting set. 

In other words, a hitting set for a collection S of critical sets contains at 
least one component from each M E S. Based on these definitions a diagnosis 
can be characterized in a way that builds the basis for an efficient computation 
of diagnoses. 

Theorem 6 «(Reiter 1987), p. 67) A set ~ ~ CaMP is a diagnosis for (SD, 
CaMP, OBS) iff ~ is a minimal hitting set for the collection of all conflict 
sets for (SD, COMP,OBS). 

The computation of minimal diagnoses presented in (Reiter 1987) follows 
directly from this theorem. All minimal hitting sets corresponding to minimal 
diagnoses are computed by constructing a hitting set tree (HS-tree). Due to 
space limitations we refer the reader to the respective article (Reiter 1987) for 
a detailed description and examples of the algorithm. 

It turns out that there is a close relationship between the task of diagnosing 
and repairing malfunctioning components of systems and repairing constraint 
violations in databases. The following relationships can be drawn: 
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• specified integrity constraints can be seen as a system description specify­
ing correct system instances 

• facts in the database describe the components of an actual system instance 

• constraint violations indicate a "misbehavior" of the database contents 

• the ultimate goal of repairing constraint violations is to satisfy all integrity 
constraints by performing repair actions on the inconsistent database 

An essential difference to model-based diagnosis, however, is that for re­
pairing constraint violations we do not only reason about the facts stored 
in an inconsistent database, but also about the facts that are not stored in 
the database. That is, we do not only consider existing components (positive 
facts), but also missing components (negative facts) that are necessary to be 
inserted into the database in order to satisfy, e.g., a referential integrity con­
straint. Thus for repairing constraint violations the set of system components 
is not as "simple" as in model-based diagnosis. The diagnostic task on an in­
consistent database then can be described as identifying those sets of positive 
and negative facts that account for the observed constraint violations. 

3 DIAGNOSING CONSTRAINT VIOLATIONS 

The objective of this section is to describe an approach which allows 

• to determine reasons for the constraint violations in an inconsistent data­
base B by computing those possible minimal sets of positive and negative 
facts that account for all violations in B, 

• to characterize schemas for possible repair actions as sets of modifications 
that can be associated with such sets of facts. 

Instead of reacting separately on each constraint violation in an inconsistent 
database B, we first require that the result of each violation query C, C E C, 
is stored in an auxiliary violation relation, denoted by viole. The schema of a 
violation relation is determined by the relation schemas of the base predicates 
occurring in C. E.g., in the context of active databases, storing violations 
can be done by means of triggers which evaluate the violation queries. For 
each such violation in viole we now want to determine facts, i.e. positive and 
negative ground literals that contribute to the violation. 

Definition 7 (Critical Facts) Let L+ and L~ denote tEe lists of base pred­
icates that occur positively, respectively, negatively in C. Given a violation 
v = (aI, ... ,ak) from a violation relation viole. The corresponding set hv of 
positive and negative critical facts is defined as 
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hv U {p(ap) lap = 7rattr(p) (v)} U U {...,q(aq,£i) I aq = 7rattr(q) (v)} 
pEL+ qEL~ 

where £i denotes a vector of marked null values. A fact in hv is said to be 
a critical fact. 

Negative facts (or rather missing tuples) are derived from viole by the 
rightmost union of the equation above. Depending on the number of quanti­
fied variables in a base predicate qj in C marked null values are introduced to 
build the respective critical fact. It is necessary to introduce a new (domain 
respecting) null value for each quantified variable and each violation instance. 
The reason for this is, that we have to distinguish critical negative facts par­
ticipating on different violations. Choosing the same null value for different 
critical facts would imply the same (unknown) attribute value what, of course, 
is too restrictive, since the equality of different existentially quantified vari­
ables should remain undetermined. In the sequel we denote the collection of 
all sets of critical facts for the constraints C in a database B by He. 

It is worth mentioning that in particular negative facts are of interest. They 
describe (though possibly incompletely) missing facts in the database which 
are needed, e.g., in order to satisfy a referential integrity constraint. 

It is obvious, that each critical fact in hv is a possible reason for the vio­
lation v. Critical facts directly suggest respective repairing modifications. If 
p(a) E hv, then deleting the tuple a from p, denoted by delp(a), removes the 
violation v. Analogously, if ...,q(c) E hv, inserting the tuple c in q, denoted by 
insq(c), removes the violation, too. The objective now is to determine possi­
ble minimal sets of modifications that remove all the determined violations. A 
naive approach, of course, would be to take a critical fact from each hv E He, 
and to perform the associated repair modification, hence removing the viola­
tion associated with hv. But this procedure is not very well structured and 
does not necessarily result in a minimal set of modifications. 

In contrast to other approaches to active constraint enforcement we are in 
particular interested in possible simultaneous reasons, i.e. single facts that 
contribute to more than only one violation. For such facts the associated 
repairing modifications then remove more than only one violation. We call a 
minimal set of positive and negative facts whose corresponding modifications 
remove all violations in an inconsistent database B a state diagnosis. The set 
of modifications corresponding to a state diagnosis is called a repair action. 

Given a collection He of sets of critical facts in an inconsistent database B, 
minimal state diagnoses and corresponding repair actions can be determined 
by adopting concepts from model-based diagnosis, namely the computation 
of hitting sets (Reiter 1987). We will give only the main idea here and refer 
the interested reader to (Gertz 1996) where a complete formalization in the 
model-theoretic approach with a particular emphasis on null values is given. 
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It can be shown that each set hv E He of critical facts determines a conflict 
set (cf. Definition 4). This is an obvious issue since at least one fact in hv 
needs to be modified (i.e. to be inserted or to be deleted) in order to remove 
the violation v. Basis for the computation of hitting sets and minimal state 
diagnoses, respectively, are now exactly all sets of critical facts contained in 
He. That is, we can adopt the hitting set algorithm used in model-based diag­
nosis. Due to possible null values in negative facts, computed hitting sets need 
to be checked whether two negative literals that contain null values are null 
unifiable. The main idea is to check whether some null values can be reason­
ably replaced by ordinary constants such that the resulting instance provides 
more complete information than the negative literals under consideration. 

Due to space limitations, we will give only an example here which reflects 
how state diagnoses and repair actions are chosen for violations of different 
constraints in a database B, and how negative literals containing null values 
are unified. 

Example 8 Suppose the constraints 

C1 == 'tx, Y, z : PI (x, y) A P2(Y, z) ===? 3v: q(v, x) and 
C2 == 'tu,v,w: P2(U,V) Ap2(V,W) ===? 3z: q(w,z) 

and the following relation instances in a database B: 

PI A B P2 B C q B A 

b d d a f g 
c d b f d g 
a b g d b a 

The computation of the violation queries C1 and C2 evaluates to the following 
violations: 

violcl ABC violc2 B ClB C 

b d a g d a 
c d a 

Applying the computation rule for critical facts to these three violations re-
sults in 

hVl == {Pl(b,d),P2(d,a),-,q(el,b)}, 
hV2 == {Pl(c,d),P2(d,a),-,q(e2,c)}, 
hV3 == {P2(d,a),P2(g,d), -,q(a,e3) }. 

Inter alia, the following minimal state diagnoses ~i with their associated re­
pair actions TAo can be determined for He = {hvPhV2,hvS}: 

~1 = {P2(d, an 
~2 = {PI (b, d),Pl (c, d),P2(g, dn 
~3 = {-,q(a,b),-,q(a,cn 

TAl = {delp2 (d,an 
TA2 = {delpl (b, d), delpl (c, d), delp2 (g, d)} 
TAs = {insq(a,b),insq(a,cn 
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For example, the diagnosis ~l indicates that the single fact P2(d,a) is a 
simultaneous reason for all three violations; that is, deleting the tuple (d, a) 
from the relation P2 guarantees to remove all three violations. Please note that 
all state diagnoses and repair actions are minimal, i.e. there exists no proper 
subset of a determined repair action that removes the observed violations, too. 
Additionally negative literals containing null values as arguments are reason­
ably combined into single literals with more complete information (diagnosis 
~3) in order to fulfill the minimality property of a repair action. Due to the 
underlying notion of constraint satisfaction (cf. Definition 2), for example, 
inserting the tuple (a, b) into the relation q would, aside from removing the 
violation associated with hV3' also remove the violation associated with hvJ • 

The unification of respective negative literals can suitably be integrated into 
the hitting set algorithm as shown in (Gertz 1996). 

It is important to note that for an inconsistent database always at least 
one minimal diagnosis exists which, in the worst case, corresponds to an undo 
of the violating transaction. It is also obvious that the execution of a re­
pair action T t::.i on an inconsistent database does not necessarily result in a 
consistent state. This, of course, is not a drawback since repair actions may 
require subsequent repairs. Respective considerations have been made in all 
approaches to repairing constraint violations. In the next section we show that 
it is nevertheless possible to determine consistency preserving transactions by 
simulating a "one-step computation" . 

4 REPAIRING CONSTRAINT VIOLATIONS 

We now describe a general enumeration schema for minimal repair transac­
tions in an inconsistent database. This schema then serves as the basis for the 
repair strategies that will be discussed in Section 5. In contrast to a repair 
action, a repair transaction always guarantees to result in a consistent data­
base; that is, for applying a repair transaction T to an inconsistent database 
B, denoted by T(B), we have that for the result database B' the condition 
B' ~ C holds. For this, the proposed method tries to enumerate possible repair 
transactions for an inconsistent database B as illustrated in Figure l. 

BO,l,O denotes the initial inconsistent database obtained by the violating 
user transaction. Performing a diagnosis on the violations in BO,l,O results, 
for example, in two different minimal state diagnoses. Executing the associ­
ated repair actions on BO,l,O would result in two different databases B1,1,1 and 
B 1,2,1. Each database BI,i,pre has as subscripts the levell, the number i of the 
database at that level l and the number pre of the database at the previous 
level which led to BI,i,pre by executing the repair action associated with a 
diagnosis (i.e. ~l,l,l and ~1,2,d. Assume that in B1,1,1 at level 1 again con­
straints are violated. Again minimal state diagnoses have to be determined. 
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level 0 
BO,1,0 f- initial inconsistent state (B) 

level 1 B1,1,1 B1,2,1 

level 2 

Figure 1 Enumerating Possible Repair Transactions 

Iterating this procedure for each database and each diagnosis builds a tree 
of possible repair actions and databases reachable from BO,1,0. Leaves of the 
tree denote databases which are consistent with all constraints. For example, 
the state B2,2,1 obtained by the sequence of repair actions associated with 
~1,1,1 and ~2,2,1 is a consistent database. The union of the repair actions 
associated with ~1,1,1 and ~2,2,1 together builds a repair transaction T for 
BO,1,0 whose execution on BO,1,0 results in B2,2,1. 

Instead of executing repair actions on an inconsistent database, respectively, 
on base relations directly, we store their effect in auxiliary relations, also called 
differential relations. For each base relation p we introduce two relations Ip 
and Dp as follows. 

Definition 9 (Differential Relations) 
For each base relation p(A1' ... ,An) E P two differential relations 

Ip(A1' ... ,An, level, num, pre-db) and Dp(A1' ... ,An' level, num, pre-db) 

are added to the database schema, where the attributes level, num and pre-db 
range over the domain integer. 

These relations are used to represent different hypothetical databases as 
well as different repair actions on these states. For this the additional three 
attributes reflect the node labelling in the enumeration tree. Given a hypo­
thetical database Bl,i,pre, using these relations it is now easy to determine 
which facts would have been inserted and deleted from the base relations in 
order to obtain this state from the initial inconsistent database BO,1,0. 

Definition 10 (Hypothetical Extension) For a base relation pEP the 
hypothetical extension p in a database Bl,i,pre is computed by: 
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p:= p; 1* original extension as in the database BO,l,O * / 
for 11 := 1 to 1 do 

/* for a database i at level 11 the pre-state pre is uniquely determined * / 
p:= pU {a I (a,ll,i,pre) E Ip}; 
p:=p- {a I (a,ll,i,pre) E Dp}; 
i := pre; 1* get the number of the previous state at levellr - 1 * / 

end for; 

In other words, for a given possible database B1,i,pre we determine those 
tuples which need to be inserted in, respectively, need to be deleted from each 
base relation pEP in BO,l,O by the repair actions leading to that state. A 
hypothetical or possible database Bt,i,pre thus is the collection of hypothetical 
extensions of the base relations for that particular database. 

It is obvious, that the original integrity constraints C cannot be used to 
check violations in hypothetical databases. Instead of a constraint C E C, we 
use the corresponding hypothetical state constraint. 

Definition 11 (Hypothetical State Constraint) A hypothetical state con­
straint for an integrity constraint C has the pattern: 

chyp == \Ix: (PI (xp1 ) /\ ... /\fin(XpJ) => 
3y: (ql (XqIl yql) V ... V li'm(Xqm,Yqm)) 

i.e. all predicates in C denoting base relations are replaced by the correspond­
ing predicates denoting hypothetical extensions of the base relation. 

In the sequel we denote the set of all hypothetical state constraints corre­
sponding to C by chyp. For these constraints the computation of violations 
and associated sets of critical facts occurs in the same way as for the original 
constraints as described in the Sections 2 and 3. 

Below the central algorithm describing a sound and complete enumeration 
schema for all possible minimal repair transactions on an inconsistent data­
base is presented. The algorithm has to be applied to a database B obtained 
by a user transaction. It performs a breadth-first search for minimal repair 
transactions through hypothetical databases. 

Algorithm 12 

variables 
1 := 0; /* initial (inconsistent) database BO,l,O is at level 0 * / 
hyp_dbs_atJ := 1; /* BO,l,O is the only hypoth. database at level 0 * / 
violation..found := false; /* violation in hypothetical database found * / 
new _dbs := 0; 1* number of hypothetical databases at level 1 + 1 * / 
diagnoses := 0; 1* number of state diagnoses on a hypoth. database * / 
T : = { }; 1* collection of determined repair transactions * / 
He := { }; 1* collection of sets of critical facts * / 
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1* Main Loop * / 
repeat 

violationl"ound := false; 
for i := 1 to hyp_dbs..atJ do 
/* consider hypoth. database Bl,i,pre (pre is determined by I and i) * / 
for each pEP do 

determine hypothetical extension p for Bl,i,pre according to Def. 10; 
end for; 

1* check hypoth. database constraints based on the p 's in Bl,i,pre * / 
for each Chyp E Chyp do 

viole = {}; 
insert result of the evaluation of violation query Chyp into viole; 

end for; 

if all violation relations are empty then 
if I = 0 then user transaction led to consistent database; exit; 
else 
/* repair transaction leading to Bl,i,pre has been determined * / 
add-I'epair _transaction( I, i, pre); 

else violationl"ound := true; 
He := { }; 1* determine sets of critical facts for database BI,i,pre * / 
for each non-empty violation relation viole do 

He := He U { sets of critical facts determined for violations in viole} 
end for; 

1* compute number of minimal state diagnoses on BI,i,pre using He * / 
diagnoses := hitting....sets(He,l,i,new_dbs); 

1* increase number of hypoth. states to be considered at next level * / 
new_dbs := new_dbs + diagnoses; 

end for; 
I := 1+1; hyp_dbs_atJ:= new_dbs; new_dbs:= 0; 

until violationl"ound := false; 

The structure of the main loop is very simple: Each hypothetical database 
at a given level is checked for violations of the hypothetical state constraints. 
For this, the extensions of the hypothetical relations are evaluated in this 
database. In the case where no hypothetical state constraint is violated, i.e. 
when BI,i,pre ~ Chyp holds, a repair transaction has been determined. One 
can picture this situation as when a leaf in the tree of possible hypothetical 
databases has been reached (see Figure 1). 

The following procedure add-I'epair _transaction checks if a sequence of 
repair actions leading to the consistent database under consideration builds a 
minimal repair transaction. 
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procedure add..repair _transaction(l, i,pre)j 
1* sequence of repair actions leading to Bl,i,pre 

determines repair transaction T * / 
/* (1) determine tuples deleted up to Bl,i,pre * / 
Tdel := U {delp(a) I a E (p - jJ)}j 

pEP 

1* (2) determine tuples inserted up to Bl,i,pre * / 
Tins := U {insq(c) IcE (q - q)}j 

qEP 

T := {Tins U Tdedj 

if there exists a repair transaction T' E T such that T' c T then 
T is not a minimal repair transactionj 

else if there exists a repair transaction T' E T such that T' :::> T then 
drop T' from T 

T := T U Tj 1* store computed minimal repair transaction * / 
end. 

In the case where there exists a non-empty violation relation in the database 
BI,i,pre under consideration, the diagnostic task is performed on the collection 
of sets of critical facts determined in Bl,i,preo The collection He and further 
information about the current hypothetical database are then passed to the 
function below 0 

function hitting..sets(Hc, 1, i, n) : mj 
invoke the hitting set algorithm with He and 
determine the set g of minimal state diagnoses on Bl,i,nj 
m := OJ /* number of diagnoses * / 

for each state diagnosis ~ E g do 
if there exists a positive literal p(a) E ~ such that a E p - p or 

there exists a negative literal ...,q(c) E ~ such that cEq - q 
then 1* repair action Tl:!.. undoes previous repair(s) leading to Bl,i,n * / 

do nothingj 
else /* store repair action associated with ~ in differential relations * / 

for each positive literal p(a) E ~ do 
insert (a,I+I,n+m+l,i) into Dp end forj 

for each negative literal ...,q( c) E ~ do 
insert (c,I+I,n+m+l,i) into Iq end forj 

m := m + Ij /* increase the number of admissible state diagnoses * / 
end forj 

return mj 1* number of diagnoses determined on database Bl,i,n * / 
end. 
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The current number of diagnoses on hypothetical databases at level I is 
passed to the function hitting...sets in order to suitably enumerate further 
diagnoses and associated repair actions which are stored in the differential 
relations. The number of admissible diagnoses (i.e. those not performing an 
undo of previous repairs) on B1,i,n is returned to the main loop in order to in­
crease the total number of hypothetical databases which need to be considered 
at the next level I + 1. 

In order to guarantee termination of the algorithm, in the function hit­
ting...sets those diagnoses are excluded whose associated repairs would undo 
a previous· repair leading to the state under consideration (hence only the 
number of "admissible" diagnoses is returned). 

(end algorithm 12) 

A voiding the undo of a repair is essential for the termination of the algo­
rithm as well as for its soundness and completeness. Since we do not allow 
function symbols in our constraint specification language, the only possibility 
of non-termination of the algorithm is when a repair action is undone and 
thus possibly non-terminating cycles can be introduced. 

Repair cycles are also critical points in active constraint enforcement meth­
ods and they have been investigated in several work, e.g., (Aiken et al. 1992, 
Baralis et al. 1993). By storing previous repairs, however, with our approach 
we can check whether a repair action (on the path to a hypothetical data­
base) would be undone by a repair derived from a state diagnosis. Roughly 
speaking, in this case then the path need not to be considered further since 
the net-effect of a resulting repair transaction containing an undo is guaran­
teed to be computed on another path. This result is due to the completeness 
of the hitting set algorithm for minimal state diagnoses and is shown to be 
sufficient for the soundness and completeness for enumerating minimal repair 
transactions (Gertz 1996). 

The presented approach for enumerating possible repair transactions has 
several advantages. First, it provides a well structured method to compute 
all and only minimal repair transactions. Second, no changes on base rela­
tions are necessary; all operations are performed on the auxiliary relations 
reflecting changes on hypothetical databases. Third, it is possible to inspect 
derived repair transactions and to check whether or not a specific repair trans­
action reflects the user's intentions or the applications requirements. Thus the 
whole process of checking constraint violations, determining reasons and pos­
sible repair actions for violations as well as their subsequent effects, i.e. new 
constraint violations, becomes more visible. 

A drawback of the approach, of course, is its computational complexity, 
which, depending on the number of state diagnoses determined for each pos­
sible database, can be exponential. This complexity, however, can be reduced 
by imposing restrictions on admissible state diagnoses and repair transactions. 
For this, repair strategies are used which are discussed in the next section. 
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5 REPAIR STRATEGIES 

In the previous section we have presented a general enumeration schema which 
forms the lowest level of a repairing system that determines possible repair 
transactions for an inconsistent database. For nearly all applications, how­
ever, additional semantic knowledge about the application domain as well as 
requirements for the repair are present. For a repairing system to be applica­
ble in practice such information must be utilized in order to reduce the search 
space for possible repair transactions. 

The objective of this section now is to outline how the enumeration schema 
can be extended by repair strategies that allow to achieve well specified repair 
goals in an efficient way. These strategies should be as general as possible, i.e. 
independent of any specific application domain. 

5.1 Aspects on Minimal Change 

Up to now, the enumeration of possible repair transactions exclusively utilizes 
the concept of minimality in a set-oriented manner. The repair strategies 
which are discussed in the following also all have the common goal to keep 
"as much information as possible" in the database while determining possible 
repair transactions. The goal can analogously be formulated as to "perform 
changes as minimal as possible". In this context, the meaning of "as much 
information as possible" is subject to the interpretation of a repair transaction 
as well as to the interpretation of information. Typically, there are two natural 
questions which a user might want to know in case of a constraint violation 
by her/his transaction: 

• What are possible maximal subsets of operations of her/his transaction 
which are consistent with the integrity constraints? 

• What are possible minimal sets of operations she/he has to perform in 
addition to the violating transaction in order to obtain a consistent state, 
while keeping the original transaction? 

The notion of a repair transaction up to now neither exploits the knowledge 
of the state before the violating transaction, nor the contents of the violating 
transaction itself, i.e. its associated operations. In the sequel we assume that 
the transaction T performed by the user is represented by a set of insertions 
into base relations and deletions from base relations, respectively. A transac­
tion can also be considered as a set of positive and negative literals, denoting 
insertions and deletions, respectively. 

Definition 13 (Minimal Undo) Let T be a violating user transaction re­
sulting in an inconsistent database B. A repair transaction T' is said to be an 
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undo of T in B if for each operation insp(a) E T' there exists the operation 
delp(a) E T and if for each operation delq(c) E T' there exists the operation 
insq(c) E T; T' is a minimal undo iff no proper subset of T' is an undo, too. 

In other words, a minimal undo of violating transaction T identifies a min­
imal (not necessarily unique) subset of operations in T which need to be 
undone in order to obtain a consistent state. These sets also identify those 
minimal subsets of operations from T which caused the violations in B. Since 
for a minimal undo only operations of the violating transaction T can be 
undone and the rest of the database contents should be kept, we get the fol­
lowing restriction for the computation of possible repair transactions: Only 
the positive and negative facts associated with the modifications represented 
by T can contribute to critical facts as the basis for a state diagnosis. From the 
computational point of view, each fact contained in a set h of critical facts can 
be removed from that set if the fact does not appear in T. This property can 
easily be checked in the function hitting-Bets. It is obvious that this strat­
egy reduces the search space for possible repair transactions since only sets 
of critical facts with few elements need to be considered for the computation 
of minimal state diagnoses; that is, the branching factor at each hypothetical 
database is reduced. 

As the contrary to a minimal undo (which, in the worst case, is a complete 
rollback of the violating transaction), a consistent completion of violating 
transaction completely "keeps the effect" of the violating transaction. 

Definition 14 (Consistent Completion) Let a violating transaction T be 
given. A repair transaction T' is said to be a consistent completion of T if 
there exists no operation in T' that undoes an operation of T. 

In contrast to a minimal undo, for a consistent completion only the facts 
not inserted or deleted by the violating transaction can contribute to sets 
of critical facts. Consequently, all facts in sets of critical facts which were 
introduced by the violating transaction can be removed from these sets in 
advance. 

For a violating transaction, however, not always a consistent completion 
exists. Assume, for instance, the constraint Vx, y : p(x, y) ===> x > y and 
a transaction T = {insp(10, 20)}. The constraint is violated and the corre­
sponding set of critical facts is h = {p(lO, 20) }. With regard to a consistent 
completion of T this fact cannot be a critical fact. Removing p(lO, 20) from 
h results in an empty set h and thus no repair action as a completion of T 
exists and which can be performed in order to restore the consistency. 

The computation of both a minimal undo and a consistent completion can 
easily be integrated into the algorithm for computing minimal state diagnoses 
(Gertz 1996). Presuming that the user transaction is suitably represented by a 
set of positive and negative facts, in the function hitting-Bets respective facts 
can be removed from each set of critical facts before applying the computation 
of hitting sets, respectively, state diagnoses for He. 
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The repair goal to keep "as much information as possible" can also be 
interpreted in terms of a counting semantics for repair transaction. Let ITI 
denote the number of deletions and insertions contained in a repair transaction 
T. 

Definition 15 A repair transaction T is said to be counting minimal if there 
exists no repair transaction T' such that IT'I < ITI, i.e. T' performs less 
modifications than T in order to obtain a consistent state. 

Adopting the counting semantics as a criteria for enumerating possible re­
pair transactions again drastically reduces the number of possible transac­
tions. It resembles a uniform cost search where the path costs are determined 
by the number of operations leading to a hypothetical database. Once a repair 
transaction T has been determined at a level l, each hypothetical database 
at that level need not to be considered further if the overall number of mod­
ifications performed by repair actions leading to that state is greater than 

ITI· 
lt is important to note that the counting semantics can be used in combina-

tion with a minimal undo or a minimal completion of a violating transaction. 
Respective cardinality checks then need to be integrated in the procedure 
addJ"epair _transaction. The following figure illustrates the restrictiveness 
of repair transactions obtained by the possible combinations of repair strate­
gies ("a -+ b" means that b is more restrictive than a). 

minimal undo 

counting minimal 
undo 

1 

set-minimal 

counting minimal minimal consistent 1 completion 

counting minimal 
consistent completion 

Figure 2 Restrictiveness of Repair Strategies 

Set-minimality is the most permissive strategy that can be utilized for the 
enumeration of repair transactions. Counting minimal undoes and counting 
minimal consistent completions are the most restrictive strategies on minimal 
change that can be adopted to determine possible repair transactions for an 
inconsistent database. 
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5.2 Priorities 

In this section we shortly sketch how priorities or preferences can be utilized 
for the repairing process. This consideration is needed because typically some 
information in the database is more important than others. This aspect, of 
course, should suitably be respected by repairing inconsistencies since it allows 
to describe a partial order on the consistent databases obtained by different 
repair transactions. 

The main idea for a priority based repair is to tag the facts in an inconsistent 
database; that is, for a fixed n E N, a number i ~ n is assigned to each positive 
and negative fact like, e.g., p(a)3. Tagging a database in this way can be done 
on a tuple level; from the practical point of view, however, it is reasonable to 
tag facts belonging to the same relation with the same priority. A database 
obtained in this way is called a database tagged by n where n is the lowest 
priority given to a fact. Given a repair transaction T, the operations contained 
in T can be grouped according to the priorities of the affected facts: 

Definition 16 Let B be an inconsistent database tagged by n. For a given 
repair transaction T for B, let Ti, 1 ~ i ~ n, denote the subset of T defined 
as 

Ti := {insp(a) I insp(a) E T, -,p(a)i E B} U 

{delq(c) I delq(c) E T, q(C)i E B}. 

Definition 17 (Priority Based Repair) Let B be an inconsistent data­
base tagged by n. Let Tl and T2 be two minimal repair transactions for B. Tl 
is said to accomplish a better priority based repair of B than T2, denoted by 
Tl <r T2, if for some 1 ~ i ~ n we have 

ITtl = ITdl for each j E {I, ... ,i -I}, but ITt! < IT41· 

Tl and T2 are said to be equal with respect to a priority based repair, denoted 
by Tl =r T2, if we have ITtl = IT41 for each i E {I, ... ,n}. 

Example 18 Consider the two repair transactions Tl = {delp(a)} and T2 = 
{delq(c), delq(d)} where all facts in the relation p have the priority 1 and all 
facts in the relation q have the priority 2. Intuitively this means that the facts 
contained in the relation p are more important than those contained in q. 
According to Definition 17, the transaction T2 accomplishes a better priority 
based repair since more important information is kept. 

In (Gertz 1996) we have furthermore introduced the notion of weighted 
priorities where weights can be assigned to priorities. This allows to numer­
ically compare transactions by evaluating weighted counts of their facts. A 
transaction based tagging furthermore is introduced that allows the user to 
assign priorities to the operations of her Ihis violating transaction. Hence it 
is possible to distinguish between important operations and less important 
operations. 



108 Part One Integrity and Internal Control in IS 

Assuming that the facts in an inconsistent database are suitably tagged 
(and assumptions are made for the priorities of facts not contained in the 
database), checks for a better priority based repair can easily be included in 
the procedure add..repair _transaction. 

5.3 Interaction with the Repair Process 

The proposed repair strategies up to now all rely on the issue that the user 
specifies the desired repair goal in advance to the enumeration of possible 
repair transactions. Presuming a suitable environment, it should also be pos­
sible for the user to interact with the repair process. The most trivial way of 
interaction is that the user inspects the determined state diagnoses and re­
pair actions level by level. She/he then selects those repair actions that reflect 
her /his intention at most and which should be considered further. This can 
lead to a drastic pruning of the enumeration tree for repair transactions. 

Repair transactions contain only insertions and deletions of tuples, and facts 
to be inserted may contain null values (cf. Section 3). Given a repair action, 
the user can replace such null values by ordinary constants, thus obtaining 
repair transactions with complete information only. Instead of deleting facts 
as part of repair actions, it is possible to perform updates instead such that 
some attribute values of the tuples to delete are replaced by marked null 
values. In (Gertz 1996) we call this the weak deletion approach. 

Finally the user can add further insertions and deletions to a derived repair 
action. This, of course, leads to the fact that the computed repair transac­
tions are not minimal anymore. In all these cases of user interaction with 
the repair process, the proposed algorithm for enumerating repair actions and 
transactions nevertheless can be used as a guiding tool for the user. 

6 SUMMARY 

In this paper we have presented a new approach to repairing constraint vi­
olations in relational databases. This approach allows to enumerate possible 
minimal repair transactions for an inconsistent database. Using techniques 
from model-based diagnosis we have shown how state diagnoses and associ­
ated minimal repair actions can be determined. The advantage of the diag­
nostic approach is that simultaneous reasons (facts) for violations of different 
constraints can be computed, an important aspect not considered by other 
approaches to constraint enforcement. In particular the usage of marked null 
values provides a suitable means to handle missing tuples where not all at­
tribute values are known. 

Based on the diagnostic task we have presented a sound and complete al­
gorithm for enumerating possible minimal repair transactions for an inconsis­
tent database. The algorithm performs an iteration of diagnosis and repair of 
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constraint violations in a breadth-first search manner through hypothetical 
databases. Using hypothetical databases, which can efficiently be represented 
by means of differential relations, the algorithm permits to query alternative 
possible repairs as well as alternative consistent result states. 

The presented algorithm provides the formal basis for various repair strate­
gies which can be individually imposed by the user previous to the enumer­
ation of possible repair transactions. These strategies, which have not been 
considered before in related work, are not fixed but can be chosen and com­
bined by the user for different inconsistent databases. The important feature 
of these strategies is that they all use the same enumeration schema and that 
they can easily be integrated into the presented algorithm. Extensions by fur­
ther useful repair strategies and repair goals, of course, need to be discussed. 

We have implemented a first prototype of the proposed system on top of the 
Oracle RDBMS. The diagnostic task is performed by a Prolog system coupled 
with the database system. Two applications, one from the domain of electrical 
engineering and one from the domain of rail traffic management, have been 
implemented using the repair system. Both enumerating repair actions and in 
particular the usage of repair strategies led to reasonable means for handling 
constraint violations. 

In (Gertz 1996) we have shown that the presented approach can also be ex­
tended to temporal databases and deductive databases. Further work includes 
investigations into the repair of violations of dynamic integrity constraints and 
the application of the presented approach to object-oriented databases. 
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