
5

An Extensible Framework for
Repairing Constraint Violations

M. Gertz, U. W. Lipeck
Institut fur Informatik, Universitiit Hannover
Lange Laube 22, 30159 Hannover, Germany
Phone/Fax: ++49-511-762-49501-4951
{ mgi ul} @informatik.uni-hannover.de

Abstract
In this paper we describe a new approach to repairing violations of integrity
constraints in relational databases with null values. By adopting basic con­
cepts from model-based diagnosis, we show how simultaneous reasons for vi­
olations of (different) constraints can be determined. These reasons, repre­
sented as sets of facts, directly indicate possible repair actions that guarantee
to remove the observed violations.

By interleaving the diagnosis of constraint violations and the execution of
repair actions, we draw an enumeration schema for possible minimal repair
transactions as sequences of repair actions. Each such transaction, when ap­
plied to the inconsistent database, guarantees to result in a database consis­
tent with all constraints. In order to enumerate possible repair transactions,
repair actions are performed hypothetically using auxiliary relations. This
enables the user to query intermediate as well as result states obtained by
different repairs in advance.

In order to provide a suitable front-end to the general enumeration schema,
we describe various repair strategies which can be imposed by the user. These
strategies follow individually specified repair goals and can easily be integrated
into the enumeration schema for repair transactions. The proposed strategies
range from aspects of minimal change over priorities of stored facts up to the
user interaction with the repair process.

Keywords
Constraint Enforcement, Inconsistent Information, Model-Based Diagnosis,
Repairing Inconsistencies, Repair Strategies

1 INTRODUCTION

Numerous papers have been written on specifying and maintaining integrity
constraints in databases since the first large database conference (Eswaran
and Chamberlin 1975, Hammer and McLeod 1975) (for an overview see, e.g.,
(Grefen and Apers 1993, Widom 1994)). The aim has always been to develop

Integrity and Internal Control in Information Systems Volume I
S. Jajodia, W. List, G. McGregor & L. Strous (Eds) © 1997 IFIP. Published by Chapman & Hall

90 Part One Integrity and Internal Control in IS

methods that efficiently check integrity constraints for violations. Several pro­
posals on integrity maintenance have been made for relational, deductive and
object-oriented databases (Grefen and Apers 1993, Widom 1994, Celma et
al. 1994, Jeusfeld and Jarke 1991).

Nearly all of these approaches are passive, i.e. in case of constraint viola­
tions a rollback of the complete transaction is performed. For several applica­
tions, however, such a drastic action is insufficient. This holds in particular for
nowadays emerging database applications like engineering or design databases
(Morgenstern et al. 1986, Encarnacao and Lockemann 1990, Buchmann et
al. 1991), where thus transactions containing a multitude of operations would
be undone and a lot of work would get lost. Furthermore, in case of constraint
violations the designer has to identify reasons for the violations and possi­
ble repairs of the violating transaction by her/himself. This, of course, is not
a trivial task since respective applications typically contain numerous com­
plex semantic integrity constraints that describe interdependencies between
various relations.

To overcome these problems so-called active constraint enforcement meth­
ods performing repairing actions have been developed. The topic of repairing
constraint violations has recently become a new discipline in the database
area. Several proposals have been made to this topic in the context of ac­
tive databases, e.g., (Urban and Desiderio 1992, Ceri et al. 1994, Gertz 1994,
Schewe and Thalheim 1994), and deductive databases, e.g., (Moerkotte and
Lockemann 1991) (see (Fraternali and Paraboschi 1993) for an extensive
overview).

The drawback of these approaches is, however, that they in general realize
an autonomous repair of constraint violations. Although the user can choose
from automatically derived repairing triggers at compile-time, these triggers
are kept fixed at run-time. Once a repair is triggered in an inconsistent data­
base, there is no way to interact with the repair process. Furthermore, often a
repair of violations may introduce new violations which are then automatically
repaired and so on. Hence it is difficult for the user to identify why what hap­
pened. Interesting questions are also what happens if the result state does not
reflect the user's intention or the application requirements? How can she/he
choose between possible alternative repairs?

With respect not only to the application domains mentioned above, we think
that the properties listed below are important for any method performing the
repair of constraint violations:

• determination of facts, i.e. stored tuples (positive facts) as well as missing
tuples (negative facts) that contribute to the different constraint violations,

• exposition of common reasons for different violations,
• possibility for the user to choose a repair strategy following a repair goal,
• enumeration of possible repair transactions from which the user chooses

before executing a repair transaction on the inconsistent database, and
• comparison of the effect of different possible repair transactions.

An extensible framework for repairing constraint violations 91

In this paper we describe a general framework which tries to fulfill these
requirements and which is extensible concerning further demands on the
repair of constraint violations. We propose a sound and complete enumer­
ation schema for possible minimal repair transactions for an inconsistent
database. For this we employ basic concepts from model-based diagnosis
(Reiter 1987, Hamscher at al. 1992). The reason for this is that there is a
close relationship between repairing constraint violations in databases and
the diagnosis and repair of malfunctioning components of (technical) systems
(Gertz and Lipeck 1995). The used concepts provide a diagnostic means to de­
termine minimal sets of facts that contribute to all violations in an inconsistent
database. From these sets minimal repair actions are derived that guarantee
to remove the observed violations, but which may possibly introduce new vi­
olations. By iterating the diagnosis and repair of constraint violations finally
minimal repair transactions for the inconsistent database are computed. Iter­
ations are performed using auxiliary relations, thus allowing the user to query
different computations and result states of repair transactions.

In contrast to other approaches we additionally consider marked null values.
The rationale for this is that often missing facts are reasons for constraint
violations and that only some attribute values of these facts are known. Null
values provide a suitable means to represent such missing information, e.g.,
in order to satisfy referential integrity constraints.

The enumeration of all minimal repair transactions, of course, is not well­
suited for practical usage, but provides a suitable framework for application
independent or application dependent extensions. That is why we propose
various repair strategies which can be individually imposed by the user for
the computation of possible repairs. Aside from the effect that such strategies
reduce the number of possible repairs they are a suitable means to integrate
semantic aspects into the repair process. The proposed repair strategies range
from minimal change semantics like a minimal undo or consistent completion
of a violating transaction up to the user interaction with the repair process.

The paper is structured as follows: In Section 2 we shortly introduce the ba­
sic relational concepts and we sketch the main idea of model-based diagnosis
and its connection to the repair of constraint violations. Section 3 describes
how to collect information about constraint violations and how violations are
diagnosed for simultaneous reasons using techniques from model-based diag­
nosis. In Section 4 we present our algorithm to enumerate alternative possible
minimal repair transactions for an inconsistent database. Section 5 presents
some repair strategies which can be imposed on the enumeration schema. A
complete discussion and formalization of the presented approach can be found
in (Gertz 1996).

92 Part One Integrity and Internal Control in IS

2 INTEGRITY CONSTRAINTS AND MODEL-BASED
DIAGNOSIS

2.1 Constraint Specification and Checking

For our approach we assume an extended relational model with marked null
values (Reiter 1984, Imielinski and Lipski 1984). An extended relational data­
base schema is essentially the same as for ordinary relational databases with­
out null values; that is, it contains a set P = {Pl, .. . Pn} of base relations, a
collection V of domains and a set C of integrity constraints. The difference
is that each domain Di E V may contain, aside from ordinary constants, a
finite set {eil' ... ,ei,} of marked null values (or special constants). Marked
null values differ from ordinary constants. They denote constants that are
incompletely identified in the database; they can denote ordinary constant
or completely new ones. Two occurrences of the same marked null value in
relations, however, denote the same unknown value. In the sequel we denote a
database state (or database for short) determined by the tuples in the relation
instances at a given point of time by B.

Integrity constraints C are formulated in the relational language that can
be associated with a given database schema. In this paper we concentrate on
integrity constraints in implicative normal form.

Definition 1 (Integrity Constraint) An integrity constraint in implica­
tive normal form (INF) is a closed range-restricted formula of the pattern

Each Pi, qj is either a base predicate corresponding to a base relation, or
a comparison operator like =, <, > etc. The notations x, y, xPi , Y qj denote
domain respecting vectors of variables and/or constants as arguments of the
predicates. This class of constraints is very general since it includes foreign
key constraints, functional dependencies etc. Several classes of more complex
constraints (also called semantic integrity constraints) can be transformed
into constraints in INF by means of transformation rules similar to those
presented in (Lloyd and Topor 1984).

The prevailing logical approach to databases with null values is the model­
theoretic approach. For a database B without null values, the model-theoretic
approach always succeeds in choosing the least Herbrand model. This is not
the case in the presence of null values; there several models of the database
may exist, each model describing a database with complete information com­
patible with B. Roughly speaking, these models are characterized by possible
mappings ~ : £ ~ JiB (as part of an interpretation) that assign (ordinary)
constants from the Herbrand base JiB to the null values £. It should be clear

An extensible framework for repairing constraint violations 93

that in this case a formula can be true in some models of B and false in some
others.

For the satisfaction of a constraint C in a database B we adopt an optimistic
view as suggested in (Vardi 1986), since requiring a constraint C to be true
in all models of a database B with null values would be too restrictive.

Definition 2 (Constraint Satisfaction) An integrity constraint C is said
to be satisfied in a database B if there exists a model of B (corresponding to
an assignment { to the null values) such that B{ is a also model of C. If the
constraint C is satisfied in B, this is denoted by B ~ C. If there does no exist
such a model of B, i.e. C is unsatisfiable in B, C is said to be violated in B.

In a given database B, a constraint C is checked by evaluating its associated
violation query

C : = {x I PI (xp1) /\ ... /\ Pn (xpJ /\
'VYqj: -'qI (Xqjl Yqj) /\ ... /\ 'VYqm : -'qm (Xqm, Yqm n·

If the query evaluates to the empty set, C is said to be satisfied in B,
otherwise it is violated and each tuple determined by C is called a violation
of C. For a query evaluation algorithm in the presence of null values see,
e.g., (Reiter 1986). For further issues and problems connected with querying
incomplete information see (Abiteboul et al. 1991).

2.2 Model-Based Diagnosis

During the last decade model-based diagnosis has become a prominent re­
search area in Artificial Intelligence for describing techniques that can be used
to identify malfunctioning components of a system (Hamscher at al. 1992).
One fundamental approach to diagnostic reasoning is called model-based di­
agnosis or consistency-based diagnosis (Reiter 1987). Starting point of this
approach is a description (a model) of a real-world system. Such a model
represents the structure of the system; that is, its components and their inter­
relations. If now the actual behavior of the system conflicts with the expected
behavior of the system a diagnostic task has to be performed. This task com­
prises identifying those components of the system which, when assumed to
function abnormally, will account for the difference between expected and
observed behavior.

In model-based diagnosis a system is defined as a pair (SD, CaMP), where
S D is a system description as a set of first order sentences defining how the
system components are interrelated and how they normally behave. CaMP
is a finite set of constants denoting the system's components. In the system
description a distinguished predicate ab on the components is defined whose
intended meaning is "abnormal". The literal ab(c) holds when a component
c E CaMP is behaving abnormally. Typically system descriptions will specify
system behavior on the condition that all components are not abnormal. An

94 Part One Integrity and Internal Control in IS

observation OBS on the system and its components is a finite set of first
order sentences. Using the ab-predicate REITER (Reiter 1987) characterizes a
diagnosis as follows:

Definition 3 (Diagnosis) A diagnosis ~ for (SD, COMP,OBS) is a subset
~ E CaMP such that

SD U OBS U {ab(c) IcE~} U {--,ab(c) IcE CaMP -~}

is consistent. A diagnosis is minimal if no proper subset of it is also a diagnosis.

In other words, for a diagnosis ~ the assumption that these components
are abnormal, i.e. ab(c), c E ~ holds, together with the assumption that all
other components are behaving normal, is consistent with the system descrip­
tion SD and the observations OBS. REITER'S subsequent characterization of
diagnosis and its computation exploits the notion of conflict sets.

Definition 4 (Conflict Set) A conflict set for (SD, CaMP, OBS) is a set
{CI,'" ,Cn} ~ CaMP such that SDUOBSU{--,ab(cI),'" ,--,ab(cn)} is in­
consistent. A conflict set is minimal if no proper subset of it is also a conflict
set.

A conflict set thus is a set of components that cannot altogether assumed
to be not abnormal without leading to an inconsistency with the system de­
scription and the observations. The next definition characterizes a hitting set
for a collection S of sets:

Definition 5 (Hitting Set) A hitting set for S is a set H ~ UMES M, such
that H n M f:. { } for each M E S. A hitting set is minimal if no proper subset
of it is also a hitting set.

In other words, a hitting set for a collection S of critical sets contains at
least one component from each M E S. Based on these definitions a diagnosis
can be characterized in a way that builds the basis for an efficient computation
of diagnoses.

Theorem 6 «(Reiter 1987), p. 67) A set ~ ~ CaMP is a diagnosis for (SD,
CaMP, OBS) iff ~ is a minimal hitting set for the collection of all conflict
sets for (SD, COMP,OBS).

The computation of minimal diagnoses presented in (Reiter 1987) follows
directly from this theorem. All minimal hitting sets corresponding to minimal
diagnoses are computed by constructing a hitting set tree (HS-tree). Due to
space limitations we refer the reader to the respective article (Reiter 1987) for
a detailed description and examples of the algorithm.

It turns out that there is a close relationship between the task of diagnosing
and repairing malfunctioning components of systems and repairing constraint
violations in databases. The following relationships can be drawn:

An extensible framework for repairing constraint violations 95

• specified integrity constraints can be seen as a system description specify­
ing correct system instances

• facts in the database describe the components of an actual system instance

• constraint violations indicate a "misbehavior" of the database contents

• the ultimate goal of repairing constraint violations is to satisfy all integrity
constraints by performing repair actions on the inconsistent database

An essential difference to model-based diagnosis, however, is that for re­
pairing constraint violations we do not only reason about the facts stored
in an inconsistent database, but also about the facts that are not stored in
the database. That is, we do not only consider existing components (positive
facts), but also missing components (negative facts) that are necessary to be
inserted into the database in order to satisfy, e.g., a referential integrity con­
straint. Thus for repairing constraint violations the set of system components
is not as "simple" as in model-based diagnosis. The diagnostic task on an in­
consistent database then can be described as identifying those sets of positive
and negative facts that account for the observed constraint violations.

3 DIAGNOSING CONSTRAINT VIOLATIONS

The objective of this section is to describe an approach which allows

• to determine reasons for the constraint violations in an inconsistent data­
base B by computing those possible minimal sets of positive and negative
facts that account for all violations in B,

• to characterize schemas for possible repair actions as sets of modifications
that can be associated with such sets of facts.

Instead of reacting separately on each constraint violation in an inconsistent
database B, we first require that the result of each violation query C, C E C,
is stored in an auxiliary violation relation, denoted by viole. The schema of a
violation relation is determined by the relation schemas of the base predicates
occurring in C. E.g., in the context of active databases, storing violations
can be done by means of triggers which evaluate the violation queries. For
each such violation in viole we now want to determine facts, i.e. positive and
negative ground literals that contribute to the violation.

Definition 7 (Critical Facts) Let L+ and L~ denote tEe lists of base pred­
icates that occur positively, respectively, negatively in C. Given a violation
v = (aI, ... ,ak) from a violation relation viole. The corresponding set hv of
positive and negative critical facts is defined as

96 Part One Integrity and Internal Control in IS

hv U {p(ap) lap = 7rattr(p) (v)} U U {...,q(aq,£i) I aq = 7rattr(q) (v)}
pEL+ qEL~

where £i denotes a vector of marked null values. A fact in hv is said to be
a critical fact.

Negative facts (or rather missing tuples) are derived from viole by the
rightmost union of the equation above. Depending on the number of quanti­
fied variables in a base predicate qj in C marked null values are introduced to
build the respective critical fact. It is necessary to introduce a new (domain
respecting) null value for each quantified variable and each violation instance.
The reason for this is, that we have to distinguish critical negative facts par­
ticipating on different violations. Choosing the same null value for different
critical facts would imply the same (unknown) attribute value what, of course,
is too restrictive, since the equality of different existentially quantified vari­
ables should remain undetermined. In the sequel we denote the collection of
all sets of critical facts for the constraints C in a database B by He.

It is worth mentioning that in particular negative facts are of interest. They
describe (though possibly incompletely) missing facts in the database which
are needed, e.g., in order to satisfy a referential integrity constraint.

It is obvious, that each critical fact in hv is a possible reason for the vio­
lation v. Critical facts directly suggest respective repairing modifications. If
p(a) E hv, then deleting the tuple a from p, denoted by delp(a), removes the
violation v. Analogously, if ...,q(c) E hv, inserting the tuple c in q, denoted by
insq(c), removes the violation, too. The objective now is to determine possi­
ble minimal sets of modifications that remove all the determined violations. A
naive approach, of course, would be to take a critical fact from each hv E He,
and to perform the associated repair modification, hence removing the viola­
tion associated with hv. But this procedure is not very well structured and
does not necessarily result in a minimal set of modifications.

In contrast to other approaches to active constraint enforcement we are in
particular interested in possible simultaneous reasons, i.e. single facts that
contribute to more than only one violation. For such facts the associated
repairing modifications then remove more than only one violation. We call a
minimal set of positive and negative facts whose corresponding modifications
remove all violations in an inconsistent database B a state diagnosis. The set
of modifications corresponding to a state diagnosis is called a repair action.

Given a collection He of sets of critical facts in an inconsistent database B,
minimal state diagnoses and corresponding repair actions can be determined
by adopting concepts from model-based diagnosis, namely the computation
of hitting sets (Reiter 1987). We will give only the main idea here and refer
the interested reader to (Gertz 1996) where a complete formalization in the
model-theoretic approach with a particular emphasis on null values is given.

An extensible framework for repairing constraint violations 97

It can be shown that each set hv E He of critical facts determines a conflict
set (cf. Definition 4). This is an obvious issue since at least one fact in hv
needs to be modified (i.e. to be inserted or to be deleted) in order to remove
the violation v. Basis for the computation of hitting sets and minimal state
diagnoses, respectively, are now exactly all sets of critical facts contained in
He. That is, we can adopt the hitting set algorithm used in model-based diag­
nosis. Due to possible null values in negative facts, computed hitting sets need
to be checked whether two negative literals that contain null values are null
unifiable. The main idea is to check whether some null values can be reason­
ably replaced by ordinary constants such that the resulting instance provides
more complete information than the negative literals under consideration.

Due to space limitations, we will give only an example here which reflects
how state diagnoses and repair actions are chosen for violations of different
constraints in a database B, and how negative literals containing null values
are unified.

Example 8 Suppose the constraints

C1 == 'tx, Y, z : PI (x, y) A P2(Y, z) ===? 3v: q(v, x) and
C2 == 'tu,v,w: P2(U,V) Ap2(V,W) ===? 3z: q(w,z)

and the following relation instances in a database B:

PI A B P2 B C q B A

b d d a f g
c d b f d g
a b g d b a

The computation of the violation queries C1 and C2 evaluates to the following
violations:

violcl ABC violc2 B ClB C

b d a g d a
c d a

Applying the computation rule for critical facts to these three violations re-
sults in

hVl == {Pl(b,d),P2(d,a),-,q(el,b)},
hV2 == {Pl(c,d),P2(d,a),-,q(e2,c)},
hV3 == {P2(d,a),P2(g,d), -,q(a,e3) }.

Inter alia, the following minimal state diagnoses ~i with their associated re­
pair actions TAo can be determined for He = {hvPhV2,hvS}:

~1 = {P2(d, an
~2 = {PI (b, d),Pl (c, d),P2(g, dn
~3 = {-,q(a,b),-,q(a,cn

TAl = {delp2 (d,an
TA2 = {delpl (b, d), delpl (c, d), delp2 (g, d)}
TAs = {insq(a,b),insq(a,cn

98 Part One Integrity and Internal Control in IS

For example, the diagnosis ~l indicates that the single fact P2(d,a) is a
simultaneous reason for all three violations; that is, deleting the tuple (d, a)
from the relation P2 guarantees to remove all three violations. Please note that
all state diagnoses and repair actions are minimal, i.e. there exists no proper
subset of a determined repair action that removes the observed violations, too.
Additionally negative literals containing null values as arguments are reason­
ably combined into single literals with more complete information (diagnosis
~3) in order to fulfill the minimality property of a repair action. Due to the
underlying notion of constraint satisfaction (cf. Definition 2), for example,
inserting the tuple (a, b) into the relation q would, aside from removing the
violation associated with hV3' also remove the violation associated with hvJ •

The unification of respective negative literals can suitably be integrated into
the hitting set algorithm as shown in (Gertz 1996).

It is important to note that for an inconsistent database always at least
one minimal diagnosis exists which, in the worst case, corresponds to an undo
of the violating transaction. It is also obvious that the execution of a re­
pair action T t::.i on an inconsistent database does not necessarily result in a
consistent state. This, of course, is not a drawback since repair actions may
require subsequent repairs. Respective considerations have been made in all
approaches to repairing constraint violations. In the next section we show that
it is nevertheless possible to determine consistency preserving transactions by
simulating a "one-step computation" .

4 REPAIRING CONSTRAINT VIOLATIONS

We now describe a general enumeration schema for minimal repair transac­
tions in an inconsistent database. This schema then serves as the basis for the
repair strategies that will be discussed in Section 5. In contrast to a repair
action, a repair transaction always guarantees to result in a consistent data­
base; that is, for applying a repair transaction T to an inconsistent database
B, denoted by T(B), we have that for the result database B' the condition
B' ~ C holds. For this, the proposed method tries to enumerate possible repair
transactions for an inconsistent database B as illustrated in Figure l.

BO,l,O denotes the initial inconsistent database obtained by the violating
user transaction. Performing a diagnosis on the violations in BO,l,O results,
for example, in two different minimal state diagnoses. Executing the associ­
ated repair actions on BO,l,O would result in two different databases B1,1,1 and
B 1,2,1. Each database BI,i,pre has as subscripts the levell, the number i of the
database at that level l and the number pre of the database at the previous
level which led to BI,i,pre by executing the repair action associated with a
diagnosis (i.e. ~l,l,l and ~1,2,d. Assume that in B1,1,1 at level 1 again con­
straints are violated. Again minimal state diagnoses have to be determined.

An extensible framework for repairing constraint violations 99

level 0
BO,1,0 f- initial inconsistent state (B)

level 1 B1,1,1 B1,2,1

level 2

Figure 1 Enumerating Possible Repair Transactions

Iterating this procedure for each database and each diagnosis builds a tree
of possible repair actions and databases reachable from BO,1,0. Leaves of the
tree denote databases which are consistent with all constraints. For example,
the state B2,2,1 obtained by the sequence of repair actions associated with
~1,1,1 and ~2,2,1 is a consistent database. The union of the repair actions
associated with ~1,1,1 and ~2,2,1 together builds a repair transaction T for
BO,1,0 whose execution on BO,1,0 results in B2,2,1.

Instead of executing repair actions on an inconsistent database, respectively,
on base relations directly, we store their effect in auxiliary relations, also called
differential relations. For each base relation p we introduce two relations Ip
and Dp as follows.

Definition 9 (Differential Relations)
For each base relation p(A1' ... ,An) E P two differential relations

Ip(A1' ... ,An, level, num, pre-db) and Dp(A1' ... ,An' level, num, pre-db)

are added to the database schema, where the attributes level, num and pre-db
range over the domain integer.

These relations are used to represent different hypothetical databases as
well as different repair actions on these states. For this the additional three
attributes reflect the node labelling in the enumeration tree. Given a hypo­
thetical database Bl,i,pre, using these relations it is now easy to determine
which facts would have been inserted and deleted from the base relations in
order to obtain this state from the initial inconsistent database BO,1,0.

Definition 10 (Hypothetical Extension) For a base relation pEP the
hypothetical extension p in a database Bl,i,pre is computed by:

100 Part One Integrity and Internal Control in IS

p:= p; 1* original extension as in the database BO,l,O * /
for 11 := 1 to 1 do

/* for a database i at level 11 the pre-state pre is uniquely determined * /
p:= pU {a I (a,ll,i,pre) E Ip};
p:=p- {a I (a,ll,i,pre) E Dp};
i := pre; 1* get the number of the previous state at levellr - 1 * /

end for;

In other words, for a given possible database B1,i,pre we determine those
tuples which need to be inserted in, respectively, need to be deleted from each
base relation pEP in BO,l,O by the repair actions leading to that state. A
hypothetical or possible database Bt,i,pre thus is the collection of hypothetical
extensions of the base relations for that particular database.

It is obvious, that the original integrity constraints C cannot be used to
check violations in hypothetical databases. Instead of a constraint C E C, we
use the corresponding hypothetical state constraint.

Definition 11 (Hypothetical State Constraint) A hypothetical state con­
straint for an integrity constraint C has the pattern:

chyp == \Ix: (PI (xp1) /\ ... /\fin(XpJ) =>
3y: (ql (XqIl yql) V ... V li'm(Xqm,Yqm))

i.e. all predicates in C denoting base relations are replaced by the correspond­
ing predicates denoting hypothetical extensions of the base relation.

In the sequel we denote the set of all hypothetical state constraints corre­
sponding to C by chyp. For these constraints the computation of violations
and associated sets of critical facts occurs in the same way as for the original
constraints as described in the Sections 2 and 3.

Below the central algorithm describing a sound and complete enumeration
schema for all possible minimal repair transactions on an inconsistent data­
base is presented. The algorithm has to be applied to a database B obtained
by a user transaction. It performs a breadth-first search for minimal repair
transactions through hypothetical databases.

Algorithm 12

variables
1 := 0; /* initial (inconsistent) database BO,l,O is at level 0 * /
hyp_dbs_atJ := 1; /* BO,l,O is the only hypoth. database at level 0 * /
violation..found := false; /* violation in hypothetical database found * /
new _dbs := 0; 1* number of hypothetical databases at level 1 + 1 * /
diagnoses := 0; 1* number of state diagnoses on a hypoth. database * /
T : = { }; 1* collection of determined repair transactions * /
He := { }; 1* collection of sets of critical facts * /

An extensible framework for repairing constraint violations 10 1

1* Main Loop * /
repeat

violationl"ound := false;
for i := 1 to hyp_dbs..atJ do
/* consider hypoth. database Bl,i,pre (pre is determined by I and i) * /
for each pEP do

determine hypothetical extension p for Bl,i,pre according to Def. 10;
end for;

1* check hypoth. database constraints based on the p 's in Bl,i,pre * /
for each Chyp E Chyp do

viole = {};
insert result of the evaluation of violation query Chyp into viole;

end for;

if all violation relations are empty then
if I = 0 then user transaction led to consistent database; exit;
else
/* repair transaction leading to Bl,i,pre has been determined * /
add-I'epair _transaction(I, i, pre);

else violationl"ound := true;
He := { }; 1* determine sets of critical facts for database BI,i,pre * /
for each non-empty violation relation viole do

He := He U { sets of critical facts determined for violations in viole}
end for;

1* compute number of minimal state diagnoses on BI,i,pre using He * /
diagnoses := hitting....sets(He,l,i,new_dbs);

1* increase number of hypoth. states to be considered at next level * /
new_dbs := new_dbs + diagnoses;

end for;
I := 1+1; hyp_dbs_atJ:= new_dbs; new_dbs:= 0;

until violationl"ound := false;

The structure of the main loop is very simple: Each hypothetical database
at a given level is checked for violations of the hypothetical state constraints.
For this, the extensions of the hypothetical relations are evaluated in this
database. In the case where no hypothetical state constraint is violated, i.e.
when BI,i,pre ~ Chyp holds, a repair transaction has been determined. One
can picture this situation as when a leaf in the tree of possible hypothetical
databases has been reached (see Figure 1).

The following procedure add-I'epair _transaction checks if a sequence of
repair actions leading to the consistent database under consideration builds a
minimal repair transaction.

102 Part One Integrity and Internal Control in IS

procedure add..repair _transaction(l, i,pre)j
1* sequence of repair actions leading to Bl,i,pre

determines repair transaction T * /
/* (1) determine tuples deleted up to Bl,i,pre * /
Tdel := U {delp(a) I a E (p - jJ)}j

pEP

1* (2) determine tuples inserted up to Bl,i,pre * /
Tins := U {insq(c) IcE (q - q)}j

qEP

T := {Tins U Tdedj

if there exists a repair transaction T' E T such that T' c T then
T is not a minimal repair transactionj

else if there exists a repair transaction T' E T such that T' :::> T then
drop T' from T

T := T U Tj 1* store computed minimal repair transaction * /
end.

In the case where there exists a non-empty violation relation in the database
BI,i,pre under consideration, the diagnostic task is performed on the collection
of sets of critical facts determined in Bl,i,preo The collection He and further
information about the current hypothetical database are then passed to the
function below 0

function hitting..sets(Hc, 1, i, n) : mj
invoke the hitting set algorithm with He and
determine the set g of minimal state diagnoses on Bl,i,nj
m := OJ /* number of diagnoses * /

for each state diagnosis ~ E g do
if there exists a positive literal p(a) E ~ such that a E p - p or

there exists a negative literal ...,q(c) E ~ such that cEq - q
then 1* repair action Tl:!.. undoes previous repair(s) leading to Bl,i,n * /

do nothingj
else /* store repair action associated with ~ in differential relations * /

for each positive literal p(a) E ~ do
insert (a,I+I,n+m+l,i) into Dp end forj

for each negative literal ...,q(c) E ~ do
insert (c,I+I,n+m+l,i) into Iq end forj

m := m + Ij /* increase the number of admissible state diagnoses * /
end forj

return mj 1* number of diagnoses determined on database Bl,i,n * /
end.

An extensible framework for repairing constraint violations 103

The current number of diagnoses on hypothetical databases at level I is
passed to the function hitting...sets in order to suitably enumerate further
diagnoses and associated repair actions which are stored in the differential
relations. The number of admissible diagnoses (i.e. those not performing an
undo of previous repairs) on B1,i,n is returned to the main loop in order to in­
crease the total number of hypothetical databases which need to be considered
at the next level I + 1.

In order to guarantee termination of the algorithm, in the function hit­
ting...sets those diagnoses are excluded whose associated repairs would undo
a previous· repair leading to the state under consideration (hence only the
number of "admissible" diagnoses is returned).

(end algorithm 12)

A voiding the undo of a repair is essential for the termination of the algo­
rithm as well as for its soundness and completeness. Since we do not allow
function symbols in our constraint specification language, the only possibility
of non-termination of the algorithm is when a repair action is undone and
thus possibly non-terminating cycles can be introduced.

Repair cycles are also critical points in active constraint enforcement meth­
ods and they have been investigated in several work, e.g., (Aiken et al. 1992,
Baralis et al. 1993). By storing previous repairs, however, with our approach
we can check whether a repair action (on the path to a hypothetical data­
base) would be undone by a repair derived from a state diagnosis. Roughly
speaking, in this case then the path need not to be considered further since
the net-effect of a resulting repair transaction containing an undo is guaran­
teed to be computed on another path. This result is due to the completeness
of the hitting set algorithm for minimal state diagnoses and is shown to be
sufficient for the soundness and completeness for enumerating minimal repair
transactions (Gertz 1996).

The presented approach for enumerating possible repair transactions has
several advantages. First, it provides a well structured method to compute
all and only minimal repair transactions. Second, no changes on base rela­
tions are necessary; all operations are performed on the auxiliary relations
reflecting changes on hypothetical databases. Third, it is possible to inspect
derived repair transactions and to check whether or not a specific repair trans­
action reflects the user's intentions or the applications requirements. Thus the
whole process of checking constraint violations, determining reasons and pos­
sible repair actions for violations as well as their subsequent effects, i.e. new
constraint violations, becomes more visible.

A drawback of the approach, of course, is its computational complexity,
which, depending on the number of state diagnoses determined for each pos­
sible database, can be exponential. This complexity, however, can be reduced
by imposing restrictions on admissible state diagnoses and repair transactions.
For this, repair strategies are used which are discussed in the next section.

104 Part One Integrity and Internal Control in IS

5 REPAIR STRATEGIES

In the previous section we have presented a general enumeration schema which
forms the lowest level of a repairing system that determines possible repair
transactions for an inconsistent database. For nearly all applications, how­
ever, additional semantic knowledge about the application domain as well as
requirements for the repair are present. For a repairing system to be applica­
ble in practice such information must be utilized in order to reduce the search
space for possible repair transactions.

The objective of this section now is to outline how the enumeration schema
can be extended by repair strategies that allow to achieve well specified repair
goals in an efficient way. These strategies should be as general as possible, i.e.
independent of any specific application domain.

5.1 Aspects on Minimal Change

Up to now, the enumeration of possible repair transactions exclusively utilizes
the concept of minimality in a set-oriented manner. The repair strategies
which are discussed in the following also all have the common goal to keep
"as much information as possible" in the database while determining possible
repair transactions. The goal can analogously be formulated as to "perform
changes as minimal as possible". In this context, the meaning of "as much
information as possible" is subject to the interpretation of a repair transaction
as well as to the interpretation of information. Typically, there are two natural
questions which a user might want to know in case of a constraint violation
by her/his transaction:

• What are possible maximal subsets of operations of her/his transaction
which are consistent with the integrity constraints?

• What are possible minimal sets of operations she/he has to perform in
addition to the violating transaction in order to obtain a consistent state,
while keeping the original transaction?

The notion of a repair transaction up to now neither exploits the knowledge
of the state before the violating transaction, nor the contents of the violating
transaction itself, i.e. its associated operations. In the sequel we assume that
the transaction T performed by the user is represented by a set of insertions
into base relations and deletions from base relations, respectively. A transac­
tion can also be considered as a set of positive and negative literals, denoting
insertions and deletions, respectively.

Definition 13 (Minimal Undo) Let T be a violating user transaction re­
sulting in an inconsistent database B. A repair transaction T' is said to be an

An extensible framework for repairing constraint violations 105

undo of T in B if for each operation insp(a) E T' there exists the operation
delp(a) E T and if for each operation delq(c) E T' there exists the operation
insq(c) E T; T' is a minimal undo iff no proper subset of T' is an undo, too.

In other words, a minimal undo of violating transaction T identifies a min­
imal (not necessarily unique) subset of operations in T which need to be
undone in order to obtain a consistent state. These sets also identify those
minimal subsets of operations from T which caused the violations in B. Since
for a minimal undo only operations of the violating transaction T can be
undone and the rest of the database contents should be kept, we get the fol­
lowing restriction for the computation of possible repair transactions: Only
the positive and negative facts associated with the modifications represented
by T can contribute to critical facts as the basis for a state diagnosis. From the
computational point of view, each fact contained in a set h of critical facts can
be removed from that set if the fact does not appear in T. This property can
easily be checked in the function hitting-Bets. It is obvious that this strat­
egy reduces the search space for possible repair transactions since only sets
of critical facts with few elements need to be considered for the computation
of minimal state diagnoses; that is, the branching factor at each hypothetical
database is reduced.

As the contrary to a minimal undo (which, in the worst case, is a complete
rollback of the violating transaction), a consistent completion of violating
transaction completely "keeps the effect" of the violating transaction.

Definition 14 (Consistent Completion) Let a violating transaction T be
given. A repair transaction T' is said to be a consistent completion of T if
there exists no operation in T' that undoes an operation of T.

In contrast to a minimal undo, for a consistent completion only the facts
not inserted or deleted by the violating transaction can contribute to sets
of critical facts. Consequently, all facts in sets of critical facts which were
introduced by the violating transaction can be removed from these sets in
advance.

For a violating transaction, however, not always a consistent completion
exists. Assume, for instance, the constraint Vx, y : p(x, y) ===> x > y and
a transaction T = {insp(10, 20)}. The constraint is violated and the corre­
sponding set of critical facts is h = {p(lO, 20) }. With regard to a consistent
completion of T this fact cannot be a critical fact. Removing p(lO, 20) from
h results in an empty set h and thus no repair action as a completion of T
exists and which can be performed in order to restore the consistency.

The computation of both a minimal undo and a consistent completion can
easily be integrated into the algorithm for computing minimal state diagnoses
(Gertz 1996). Presuming that the user transaction is suitably represented by a
set of positive and negative facts, in the function hitting-Bets respective facts
can be removed from each set of critical facts before applying the computation
of hitting sets, respectively, state diagnoses for He.

106 Part One Integrity and Internal Control in IS

The repair goal to keep "as much information as possible" can also be
interpreted in terms of a counting semantics for repair transaction. Let ITI
denote the number of deletions and insertions contained in a repair transaction
T.

Definition 15 A repair transaction T is said to be counting minimal if there
exists no repair transaction T' such that IT'I < ITI, i.e. T' performs less
modifications than T in order to obtain a consistent state.

Adopting the counting semantics as a criteria for enumerating possible re­
pair transactions again drastically reduces the number of possible transac­
tions. It resembles a uniform cost search where the path costs are determined
by the number of operations leading to a hypothetical database. Once a repair
transaction T has been determined at a level l, each hypothetical database
at that level need not to be considered further if the overall number of mod­
ifications performed by repair actions leading to that state is greater than

ITI·
lt is important to note that the counting semantics can be used in combina-

tion with a minimal undo or a minimal completion of a violating transaction.
Respective cardinality checks then need to be integrated in the procedure
addJ"epair _transaction. The following figure illustrates the restrictiveness
of repair transactions obtained by the possible combinations of repair strate­
gies ("a -+ b" means that b is more restrictive than a).

minimal undo

counting minimal
undo

1

set-minimal

counting minimal minimal consistent 1 completion

counting minimal
consistent completion

Figure 2 Restrictiveness of Repair Strategies

Set-minimality is the most permissive strategy that can be utilized for the
enumeration of repair transactions. Counting minimal undoes and counting
minimal consistent completions are the most restrictive strategies on minimal
change that can be adopted to determine possible repair transactions for an
inconsistent database.

An extensible framework for repairing constraint violations 107

5.2 Priorities

In this section we shortly sketch how priorities or preferences can be utilized
for the repairing process. This consideration is needed because typically some
information in the database is more important than others. This aspect, of
course, should suitably be respected by repairing inconsistencies since it allows
to describe a partial order on the consistent databases obtained by different
repair transactions.

The main idea for a priority based repair is to tag the facts in an inconsistent
database; that is, for a fixed n E N, a number i ~ n is assigned to each positive
and negative fact like, e.g., p(a)3. Tagging a database in this way can be done
on a tuple level; from the practical point of view, however, it is reasonable to
tag facts belonging to the same relation with the same priority. A database
obtained in this way is called a database tagged by n where n is the lowest
priority given to a fact. Given a repair transaction T, the operations contained
in T can be grouped according to the priorities of the affected facts:

Definition 16 Let B be an inconsistent database tagged by n. For a given
repair transaction T for B, let Ti, 1 ~ i ~ n, denote the subset of T defined
as

Ti := {insp(a) I insp(a) E T, -,p(a)i E B} U

{delq(c) I delq(c) E T, q(C)i E B}.

Definition 17 (Priority Based Repair) Let B be an inconsistent data­
base tagged by n. Let Tl and T2 be two minimal repair transactions for B. Tl
is said to accomplish a better priority based repair of B than T2, denoted by
Tl <r T2, if for some 1 ~ i ~ n we have

ITtl = ITdl for each j E {I, ... ,i -I}, but ITt! < IT41·

Tl and T2 are said to be equal with respect to a priority based repair, denoted
by Tl =r T2, if we have ITtl = IT41 for each i E {I, ... ,n}.

Example 18 Consider the two repair transactions Tl = {delp(a)} and T2 =
{delq(c), delq(d)} where all facts in the relation p have the priority 1 and all
facts in the relation q have the priority 2. Intuitively this means that the facts
contained in the relation p are more important than those contained in q.
According to Definition 17, the transaction T2 accomplishes a better priority
based repair since more important information is kept.

In (Gertz 1996) we have furthermore introduced the notion of weighted
priorities where weights can be assigned to priorities. This allows to numer­
ically compare transactions by evaluating weighted counts of their facts. A
transaction based tagging furthermore is introduced that allows the user to
assign priorities to the operations of her Ihis violating transaction. Hence it
is possible to distinguish between important operations and less important
operations.

108 Part One Integrity and Internal Control in IS

Assuming that the facts in an inconsistent database are suitably tagged
(and assumptions are made for the priorities of facts not contained in the
database), checks for a better priority based repair can easily be included in
the procedure add..repair _transaction.

5.3 Interaction with the Repair Process

The proposed repair strategies up to now all rely on the issue that the user
specifies the desired repair goal in advance to the enumeration of possible
repair transactions. Presuming a suitable environment, it should also be pos­
sible for the user to interact with the repair process. The most trivial way of
interaction is that the user inspects the determined state diagnoses and re­
pair actions level by level. She/he then selects those repair actions that reflect
her /his intention at most and which should be considered further. This can
lead to a drastic pruning of the enumeration tree for repair transactions.

Repair transactions contain only insertions and deletions of tuples, and facts
to be inserted may contain null values (cf. Section 3). Given a repair action,
the user can replace such null values by ordinary constants, thus obtaining
repair transactions with complete information only. Instead of deleting facts
as part of repair actions, it is possible to perform updates instead such that
some attribute values of the tuples to delete are replaced by marked null
values. In (Gertz 1996) we call this the weak deletion approach.

Finally the user can add further insertions and deletions to a derived repair
action. This, of course, leads to the fact that the computed repair transac­
tions are not minimal anymore. In all these cases of user interaction with
the repair process, the proposed algorithm for enumerating repair actions and
transactions nevertheless can be used as a guiding tool for the user.

6 SUMMARY

In this paper we have presented a new approach to repairing constraint vi­
olations in relational databases. This approach allows to enumerate possible
minimal repair transactions for an inconsistent database. Using techniques
from model-based diagnosis we have shown how state diagnoses and associ­
ated minimal repair actions can be determined. The advantage of the diag­
nostic approach is that simultaneous reasons (facts) for violations of different
constraints can be computed, an important aspect not considered by other
approaches to constraint enforcement. In particular the usage of marked null
values provides a suitable means to handle missing tuples where not all at­
tribute values are known.

Based on the diagnostic task we have presented a sound and complete al­
gorithm for enumerating possible minimal repair transactions for an inconsis­
tent database. The algorithm performs an iteration of diagnosis and repair of

An extensible framework for repairing constraint violations 109

constraint violations in a breadth-first search manner through hypothetical
databases. Using hypothetical databases, which can efficiently be represented
by means of differential relations, the algorithm permits to query alternative
possible repairs as well as alternative consistent result states.

The presented algorithm provides the formal basis for various repair strate­
gies which can be individually imposed by the user previous to the enumer­
ation of possible repair transactions. These strategies, which have not been
considered before in related work, are not fixed but can be chosen and com­
bined by the user for different inconsistent databases. The important feature
of these strategies is that they all use the same enumeration schema and that
they can easily be integrated into the presented algorithm. Extensions by fur­
ther useful repair strategies and repair goals, of course, need to be discussed.

We have implemented a first prototype of the proposed system on top of the
Oracle RDBMS. The diagnostic task is performed by a Prolog system coupled
with the database system. Two applications, one from the domain of electrical
engineering and one from the domain of rail traffic management, have been
implemented using the repair system. Both enumerating repair actions and in
particular the usage of repair strategies led to reasonable means for handling
constraint violations.

In (Gertz 1996) we have shown that the presented approach can also be ex­
tended to temporal databases and deductive databases. Further work includes
investigations into the repair of violations of dynamic integrity constraints and
the application of the presented approach to object-oriented databases.

REFERENCES

S. Abiteboul, P. Kanellakis, G. Grahne (1991) On the Representation and
Querying of Sets of Possible Worlds. Theoretical Computer Science 78,
159-187.

A. Aiken, J. Widom, J. M. Hellerstein (1992) Behavior of Database Produc­
tion Rules: Termination, Confluence, and Observable Determinism. In
M. Stonebraker (ed.), Proc. of the 1992 ACM SIGMOD International
Conference on Management of Data, 59-68, ACM Press, New York.

A. P. Buchmann, R. S. Carrera, M. A. Vazquez-Galindo (1991) Handling
Constraints and their Exceptions: An Attached Constraint Handler for
Object-Oriented CAD Databases. In K. R. Dittrich, U. Dayal, A. P.
Buchmann (eds.), On Object-Oriented Database Systems, 65-83, Topics
in Information Systems. Springer-Verlag, Berlin.

E. Baralis, S. Ceri, J. Widom (1993) Better Termination Analysis for Active
Databases. In N. W. Paton, M. H. Williams (eds.), Rules in Database
Systems, Proceedings of the 1st Int. Workshop in Edinburgh, 1993, 163-
179, Workshops in Computing, Springer-Verlag, London.

S. Ceri, P. Fraternali, S. Paraboschi, L. Tanca (1994) Automatic Generation
of Production Rules for Integrity Maintenance. ACM Transactions on

110 Part One Integrity and Internal Control in IS

Database Systems 19:3 (September 1994), 367-422.
M. Celma, C. Garcia, L. Mota, H. Decker (1994) Comparing and Syn­

thesizing Integrity Checking Methods for Deductive Databases. In
M. Rusinkiewicz (ed.), Proc. of the 10th IEEE CS International Confer­
ence on Data Engineering, 214-222, IEEE Computer Society Press.

K. Eswaran, D. Chamberlin (1975) Functional Specifications of a Subsystem
for Data Base Integrity. In D. Kerr (ed.), Proc. of the 1st International
Conference on Very Large Data Bases, 48-68, Morgan Kaufmann Pub­
lishers, Los Altos, CA.

J. L. Encarnacao, P. C. Lockemann (eds.) (1990) Engineering Databases.
Springer, Berlin, 1990.

P. Fraternali, S. Paraboschi (1993) A Review of Repairing Techniques for
Integrity Maintenance. In N. W. Paton, M. H. Williams (eds.), Rules in
Database Systems, Proc. of the 1st Int. Workshop in Edinburgh, 333-346,
Workshops in Computing, Springer-Verlag, London.

P. W. Grefen, P. M. Apers (1993) Integrity Control in Relational Database
Systems - An Overview. Data €1 Knowledge Engineering 10:2 (March
1993), 187-223.

M. Gertz (1994) Specifying Reactive Integrity Control for Active Databases.
In J. Widom, S. Chakravarthy (eds.), RIDE'94 - Fourth International
Workshop on Research Issues in Data Engineering, 62-70, IEEE Com­
puter Society Press, Los Alamitos, CA.

M. Gertz (1996) Diagnosis and Repair of Constraint Violations in Database
Systems, PhD Thesis, University of Hannover, Hannover, July 1996.
(Table of contents available under
ftp.informatik.uni-hannover.de/papers/1996/Ger96a.ps.gz)

M. Gertz, U. W. Lipeck (1995) A Diagnostic Approach to Repairing Con­
straint Violations in Databases. In W. Nejdl (ed.), Sixth International
Workshop on Principles of Diagnosis (DX'95), Working Papers, October
2-4, Goslar, Germany, 65-72, University of Hannover, Hannover.

W. Hamscher, L. Console, J. de Kleer (1992) Readings in Model-Based Diag­
nosis. Morgan Kaufmann Publishers, San Mateo, CA.

M. Hammer, D. McLeod (1975) Semantic Integrity in a Relational Database
System. In D. Kerr (ed.), Proc. of the 1st International Conference on
Very Large Data Bases, 25-47, Morgan Kaufmann Publishers, Los Altos,
CA.

T. Imielinski, W. J. Lipski (1984) Incomplete Information in Relational
Databases. Journal of the ACM 31:4 (October 1984), 761-791.

M. Jeusfeld, M. Jarke (1991) From Relational to Object-Oriented Integrity
Simplification. In C. Delobel, M. Kifer, Y. Masunaga (eds.), Deductive
and Object-Oriented Databases - Proceedings DOOD'91, 460-477, Lec­
ture Notes in Computer Science 566, Springer-Verlag, Berlin.

J. W. Lloyd, R. W. Topor (1984) Making Prolog More Expressive. Journal of
Logic Programming, 225-240.

An extensible framework for repairing constraint violations 111

M. Morgenstern, A. Borgida, C. Lassez, D. Maier, G. Wiederhold
(1986) Constraint-Based Systems: Knowledge About Data. In L. Ker­
schberg (ed.), Expert Database Systems: Proc. from the First Interna­
tional Conference, 23-43, Benjamin/Cummings, Menlo Park, CA.

G. Moerkotte, P. C. Lockemann (1991) Reactive Consistency Control in De­
ductive Databases. ACM Transactions on Database Systems 16:4 (De­
cember 1991),670-702.

R. Reiter (1984) Towards a Logical Reconstruction of Relational Database
Theory. In M. L. Brodie, J. Mylopoulos, J. W. Schmidt (eds.), On Con­
ceptual Modelling, 191-238. Springer-Verlag, New York.

R. Reiter (1986) A Sound and Sometimes Complete Query Evaluation Algo­
rithm for Relational Databases with Null Values. Journal of the ACM
33:2 (April 1986), 349-370.

R. Reiter (1987) A Theory of Diagnosis from First Principles. Artificial Intel­
ligence 32, 57-95. Also in (Hamscher at al. 1992).

K.-D. Schewe, B. Thalheim (1994) Achieving Consistency in Active
Databases. In J. Widom, S. Chakravarthy (eds.), RIDE'94 - Fourth In­
ternational Workshop on Research Issues in Data Engineering, 71-76,
IEEE Computer Society Press, Los Alamitos, CA.

S. D. Urban, M. Desiderio (1992) CONTEXT: A CONstrainT EXplanation
Tool. Data & Knowledge Engineering 8:2 (May 1992), 153-183.

M. Y. Vardi (1986) On the Integrity of Databases with Incomplete Informa­
tion. In Proc. of the 5th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, 252-266, ACM Press, New York.

J. Widom (1994) Database Constraint Management Data Engineering 17:2
(June 1994), (Special Issue), 2-51.

7 BIOGRAPHY

Michael Gertz is a teaching and research assistant at the Database and In­
formation Systems Group of the Institute for Informatics at the University of
Hannover. His research interests include temporal and active databases, mul­
tidatabase systems, logical and physical database design, database integrity,
database models and languages, and the development of database adminis­
tration tools.

Udo Lipeck is Professor for Databases and Informations Systems at the Uni­
versity of Hannover. His research interests include formal system specifica­
tions (algebraic, logic-based, and object-oriented approaches), non-standard
logics (in particular temporal and default logics), conceptual database design,
database integrity, deductive databases, and tools for database design and
administration.

