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Abstract 
We argue that the trustworthiness of evolving software systems can be significantly 
enhanced by a rigorous process of independent on-line monitoring throughout the 
evolutionary lifetime of the system. Such monitoring can prevent fraud, encourage 
careful maintenance, and serve as an early detector of irregularities in the state and 
behavior of the system. 

Unfortunately, there is a conflict between the concepts of on-line and independent 
monitoring. This conflict is due to the fact that on-line monitoring requires the 
embedding of some kinds of sensors in the base-system. But the introduction of 
such sensors requires a degree of cooperation with the developers of the base­
system, and may interfere with the operations of that system, contrary to the 
requirements of independent monitoring. We describe a way to resolve this conflict 
by means of a concept of continuously auditable system introduced in this paper. 
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1 introduction 
Current large scale software systems are not very trustworthy-which is a serious 
problem, given the increasingly central role played by such systems in modern 
society. The reason for scepticism about the integrity of large systems stem from 
their sheer size, which makes it impossible for anybody to completely understand 
them, and from the fact that such systems tend to evolve throughout their useful 
lifetime. The evolution of software systems carries serious perils to its integrity, 
which are due to the ease of making changes in software, combined with the 
ability of even a small change to cause large changes in system's behavior. An 
enterprise that uses an evolving software is thus susceptible to destructive, and 
even disastrous, effects caused either by inadvertent errors, or by malicious 
attacks by the programmers employed to maintain this software. 

It is the thesis of this paper that the trustworthiness of evolving software 
systeI1}s can be significantly enhanced by a rigorous process of on-line mon'itor­
ing, which is driven by an authority that is independent of the developers of the 
system being monitored. Such monitoring can help prevent fraud, encourage 
careful maintenance, and serve as an early detector of irregularities in the state 
and behavior of a system. Unfortunately, as we shall see in Section 2, there 
is a conflict between independent and on-line monitoring-which we intend to 
resolve in this paper. 

We start, in Section 2, with a discussion of the difficulties involved with 
the proposed process of independent on-line monitoring. In an attempt to re­
solve these difficulties we introduce, in Section 3, a model for a continuously 
auditable system, which is our term for a system that lends itself to independent 
on-line monitoring, throughout its evolutionary lifetime. l The realization of 
this model turns out to require a departure from the conventional view of large 
systems, into what we call law-governed architecture (LGA) 14,6]' the essence of 
which is introduced in Section 4. The actual implementation of continuously au­
ditable systems under the LGA-based software development environment called 
Darwin-E [7] is discussed in Section 5. (This paper is a revision of [5].) 

2 Independent On-Line Monitoring, and its prob­
lematics 

By on-line monitoring I mean a process that observes, records and analyzes 
selected computational events of a given system as they occur. On-line monitor­
ing has been used effectively in many computer systems to facilitate debugging, 
testing, and performance evaluation and to help protect the security of systems 
from attacks from the outside (for an overview, see (10)). But as long as the 

1 We confine ourselves here to centralized systems; the case of dish'ibuted systems is ad­
dressed briefly in (8). 
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monitoring is driven by the same programmers that maintain the system, it is 
much less effective in deterring fraud by the system programmers themselves, 
and in engendering good programming practices by them. For this the moni­
toring needs to be independent. 

A monitoring mechanism is independent, if the selection of events to be 
monitored and the choice of information to be recorded upon the occurrence 
of an event, is done witho'ut the knowledge of the developers of the system 
being monitored (henceforth, the "base system"). The knowledge that a system 
can be audited effectively by an independent authority is likely to discourage 
would be attackers by presenting them with a credible chance of being caught, 
and to encourage system developers to be more careful. For these reasons, 
independence has long been one of the main principles of financial auditing (1], 
and is required by law in some countries. Dut in spite of some recent attempts 
in this direction, the independent monitoring of finaucial systems is never done 
truly on-line (Il]-this is due to a genuine difficulty in realizing such monitoring. 

The problem at hand is partially due to the fact that on-line monitoring re­
quires the embedding of some kinds of sensors in the base-system - which, to 
be fully effective, must be programmed at the logical level of the base-system it­
self [10]. But the ability to introduce such sensors without the knowledge of, and 
consent by, the developers of the base system-as is required by independence­
is very problematic. It certainly cannot be tolerated by the system developers, 
without a firm assurance that such sensors cannot interfere with the operations 
of the base system itself. Such assurance, along with other requirements of in­
dependent on-line monitoring, are formulated more rigorously in the following 
model of what we call continuously auditable systems. 

3 A Model for Continuously Auditable Evolving 
Systems 

We refer in this paper to an evolving software system as a project. Given such 
a project, :I, we denote the system developed and maintained under :I by S, 
and the set of persons involved in this project by 'P. 

We partition both Sand 'P as follows (see Figure 1 ).: 

• The system S, which executes from a single address space, is partitioned 
into two disjoint divisions: the base di'uision S6, whose purpose is to carry 
out the activities for which the system is built; and the a'udit diuision Sa, 
which is the set of modules whose purpose is to audit Sb . 

• The set of programmers 'P is partitioned into two disjoint teams: the team 
of developers 'Pb, who construct and maintain the base division Sb; and 

. the team of auditors 'P a, responsible for the audit of the system, including 
the construction and maintenance of Sa. 
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Figure 1: The Architecture of an Continuously Auditable System 

We assume that there can be two threads executing from S: the thread Tb, 
which starts somewhere in the base part Sb, and the thread T" which starts 
somewhere in the audit part Sa. (This assumption is not absolutely necessary 
for our model, but it makes it a bit simpler, and somewhat more powerful. We 
comment briefly in Section 5.4 about how we handle a system without threads.) 

Now, we say that a project :J is contin'uo'Usly auditable if it satisfies the 
principles stated below, and illustrated by Figure 1. 

Principle 1 The process of software deVelopment and evolution must satisfy 
tlte following req'uirements: 

(a) Members of eaclt of the teams of programmers, PI> and P", sltould be able 
to update and examine tlteir respective system di'vision, Sb and Sa. 
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(b) Programmers in P a (the aud'itors) should be able to exam'ine Sbl and to 
monitor changes in it, 

Part (b) of this principle provides the auditors with the ability to familiarize 
themselves with Sb, so that they can program the desired monitoring of it into 
their division of the system - Sa. Moreover, the ability of auditors to monitor 
changes in Sb should enable them to adapt Sa to the evolving Sb in a timely 
fashion. 

Principle 2 The 'interaction between the two divisions Sb and Sa of S m'ust 
satisfy the following req'uirements: 

(a) The audit division Sa Ij}wuld be allowed to examine the state of the base 
division Sbl and monitor its activities (at a certain level of granularity, 
such as procedure call). 

(b) Sa shQuld not be able to affect in any way the state or behavior of Sb. 

(c) Sb should have no access to Sa. 

We note that in Figure 1, a module in Sa is depicted as making a "SEF call" to 
a module in Sb' By SEF we mean here "side effect free," which means that the 
routine being called is guaranteed not to leave any side effects on the system, 
in accordance with point (b) of the above principle. We will discuss later how 
such a guarantee can be achieved. 

It is, of course, possible to build a specific system S that satisfy Principle 2. 
But this won't do, of course. One needs the assurance that any Sb can be 
monitored by some Sa, and that no Sa can possibly interfere with the operations 
of Sb. For this, and other reasons, we require the following: 

Principle 3 Principles 1 and 2 should be invariant of the evolution of the 
project, and cannot be 'violated by any of the developers or auditors. 

What is notable about these principles is that they involve global constraints 
on both, the process of development of the project, and the structure of the 
system being developed, requiring these constraints to be invariant of system 
evolution. Conventional approaches to software development do not support 
such constraints. Although the so called "process oriented environments," such 
as Marvel [3] and Polis [2], can constrain the process of software development, 
they do not provide any constraints over the system being developed, and they 
cannot make their constraints invariant of evolution. But as we shall see in the 
following section, our model can be satisfied under law-governed architecture, 
to be discussed next. 
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4 An Overview of Law-Governed Architecture 
The Law Governed Architecture (LGA) for evolving software projects associates 
with every project .:1 an explicit set of rules £, called the la'w of this project, 
which is strictly enforced by the environment that manages.:1. Droadly speak­
ing, the law consists of two Ji:;tinct parts: 

1. The evolution-sublaw, that governs the process of development and evolu­
tion of the system, and of the law itself. 

2. The system-sublaw, that governs the structure and behavior of any system 
developed under the project in question. 

Although these two sublaws are structurally similar they are enforced very differ­
ently, as is illustrated in Figure 2. The evolution-sublaw is enforced dynamically, 
when I1n operation on the system is invoked, typically by a programmer. The 
system-sublaw, on the other hand, is enforced mostly staticaUy, when the indi­
vidual program-modules are introduced, and when a configuration of modules 
is assembled into a rullnahle program. 

The state of a project under LGA is represented by means of its object base 
B. This is a collection of objects of various kinds, including: program mod'ules, 
such as classes; design documents; builders, which serve as loci of activity for 
the people who participate in the process of software development; rules, which 
are the component parts of the law; and metaR'ules, which are instrumental in 
the creation of new rules. 

The objects in B may have various properties, or attributes, associated with 
them, defined by terms such as property...name(value). Some of these proper­
ties are built-in, that is, they are mandated by the environment itself, and have 
predefined semantics. For instance, a term type (builder) associated with an 
object makes it a builder-object. The semantics of other properties is defined for 
a given project by its law. For example, in the continuously auditable project to 
be discussed in the following section modules with the property division(base) 
belong to the base division S", and modules with the property division(audit) 
belong to the audit division SQ' We will see later how the semantics of these 
properties is established by the law of the project. 

Our discussion of this architecture in this paper is based on the LGA-based 
environment called Darwin-E [9], which is an operational specialization of the 
language-independent Darwin environment to systems written ill the object ori­
ented language Eiffel. 

4.1 Evolution and its Sublaw 

A software project .:1 evolves, under Darwin-E, by means of messages sent 
to various objects that populate the project. Formally, a message is a triple, 
(s,m,t), where s is the sender, typically one of the builders; t is the target, 
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which is any of the objects in object-base Bj and m is a method applicable to 
t. Darwin-E supplies methods that can thus be used to create and destroy 
objects, and to update and observe existing objects. (For details about the 
methods provided by Darwin-E the reader is referred to [9J.) 

But messages are subject to the law L of the project, or, more precisely, to 
the evolution-sublaw of L. This part of the law is defined by a collection of 
Prolog-like rules of the form: 

R.l. canDo(S,M.T) :- c(S,M,T). 

where c(S,M,T) specifies the condition under whicll message (S.M,T) should be 
allowed, and may mandate some action to be carried out along with, or instead 
of, the method specified in this message. 2 The disposition of a given message 
(s,m.t) is determined, at run-time, by evaluating the "goal" canDoCs.m,t) 
with respect to this set of rules. We now illustrate the structure of such rules, 
and their effect, by means of two example rules (for a detailed discussion the 
reader is referred, again, to [9]). 

First, Rule R.2 below 

R.2. canDo(S.M.T) ;- division(base)~S,divisionCbase)~T. 

if included in law L, authorizes all messages whose semler and target belong to 
the base division, thus providing developers with complete access to all objects 
in the base division. 

Our second example illustrates the manner in which the law can cause se­
lected operations to be monitor-cd. Rule R.3 below 

R.3. canDoCS,M,T) :- division(base)~S,division(base)~T, 

$do(d.3Donitor(S,M.T» . 

is identical to Rule R.2 except of the term $do (d.3Donitor(S ,M. T», which has 
the following effect: whenever a message authorized by this rule is sent, the 
primitive operation d.3Donitor(S, M, T) would be carried out. This operation 
(' 'd" here stands for "development' ,) stores a time-stamped copy of the 
message in question in a distinguished object called d_spy. We shall see later 
how this monitoring capability can be used for our purpose in this paper. 

Finally, we point out that Darwin-E provides means for the changing of the 
law itself, which are themselves controllable by the law. In particular there is a 
special type of objects called meiaRule8, each of which serves as a template for 
a certain kind of rules. Given one such metaRule mr, one can create a specific 
rule of its kind by sending a message createRule to it. But such messages, like 
all others in Darwin-E, are regulated by the law. We shall see an example of 
such a regulation later. 

2Labels like 711 are not part of the rule; they are used here only for the sake of discussion. 
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4.2 The System-Sublaw 

The system-sublaw regulates various types of interactions between the com­
ponent parts of the Eiffel system S being developed. An example of such a 
regulated interaction is the relation inherit (c 1, c2), which means that class3 

c 1 inherits directly from class c2 in S. Another regulated interaction is the 
relation call (f 1 ,c 1 ,f2 , c2) which means that routine f 1 featured by class c 1 
contains a call to feature f2 of class c2. These, and other regulated interactions, 
are discussed in detail in [7). 

The disposition of a given iuteraction is determined by evaluating the "goal" 
can_t with respect to the the system-part of law L, which is expected to contain 
appropriate rules. For example, Rule R4 below 

R.4. canJnherit(Cl,C2) ;­
(division(X)~Cl,division(X)~C2). 

deal with the inherit interaction, permitting classes in the same division to 
inherit from each other. 

System-interactions can be also monitored under Darwin-E, in a law-governed 
manner, in some analogy to the way developmental messages are monitored un­
der this environment. The following example illustrates how this is done for 
call-interactions. Consider Rule R5 below. 

R5. can_call(Fl,Cl,F2.C2) 
;- F2=withdraw,C2=account,$do(monitor(Fl,Cl,F2,C2». 

This rule authorizes arbitrary invocations of the withdraw method defined in 
class account, subjecting all such calls to monitoring, as mandated by the term 
$do(monitor(Fl ,Cl,F2,C2». This term causes the system to be instrumented 
in such a way that when the interaction authorized by this rule actually happens, 
at run time, its details will be provided to a distinguished object called spy, 
which is guaranteed to exist at run time in the system. The information thus 
provided to spy include the identity of the caller and of the colee, the name of 
the called routine and the actual parameters of the call. -! We shall see the use 
of this facility later. 

4.3 The Initialization of a Project 

A software development project starts under Darwin-E with the formation of its 
initial state, and with the definition of its initial law. The initial state typically 
contains one or more builder-objects that can "start the ball rolling," and often 

3 Note that contrary to the convention of Eiffel we use lower case sYlllbols to namc classes, 
beeaulle upper-calle lIymbol. huve .. tcdlllicwmewullg in our rules, wlwogous to thut of vari­
abl .. in Prolog. 

4This is a special case of a more general monitoring capability of Dru'win-E which will be 
described in .. forthcom.ing paper, 
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some metaRules that allow for the creation of new rules into the law. The 
initial law defines the general framework within which this project is to operate 
and evolve; and, in some analogy with the constitution of a country, establishes 
the manner in which the law itself can be refined and changed throughout the 
evolutionary lifetime of this project. In the following section we consider an 
example of such an initial law designed to make a project continuously auditable. 

5 An Implementation of an Continuously Au­
ditable Project 

In this section we describe an continuously auditable project called M (for 
"monitoring") which we have implemented5 under Darwin-E. We start with the 
initial state of this project, followed by its initial law, a discussion of its use, 
and we conclude with the known limitation of this implementation. 

5.1 The Initial State of Project M 

The initial state of project M consists of "primitive objects" that are included 
in any project under Darwill-E (not to be discussed here), as well as a small set 
of objects specifically designed for this project. The latter set is outlined below: 

• One builder object in each of the two teams Sb and Sa introduced in 
Section 3. These objects are characterized by the terms division(base) 
and division(audit), respectively. 

• An object called d-spy which would serve as a repository for the audit 
trail of developmental operations; and a module-object (representing a 
class) spy which would be instrumental ill the monitoring of run-time 
interactions of any system developed under M. Both of these objects are 
defined, by the term division(audit), to be in the audit division. 

• Two metaRule objects that provide for the creation of the two kinds rules. 
These are what we call monitor_update rules, which would govern the 
monitoring of changes in the system; and the monitor _call rules, which 
would govern the monitoring of call-interaction within a system developed 
under M. (For the structure of metaRule objects the reader is referred to 
(9]. ) 

Finally, the initial state of M contains a collection of rule-objects, or, simply, 
rules. Some of these rules are primiti've, in the sense that they are present in 
every project under Darwin-Ej they will not be discussed here. The other kind 
of rules are those designed specifically for M. This collection of rules is what 
we call here the initial la'w of the project, to be discussed next. 

~The implementation was calTied out by Partha PaL 
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5.2 The Initial Law of Project M 

The initial law Co of project M is given here, in its entirety. It is presented 
in two parts, in the following two sections. Each of the rules introduced below 
is accompanied by a comment in italics. These comment, together with the 
following text, should be sufficient for one who is not familiar with the structure 
of our rules. 

5.2.1 The Initial System-Sublaw of M 

The purpose of this part of Lo, given in Figure 3, is to establish Principle 2 
of continuously auditable projects introduced in Section 3. It regulates sev­
eral kinds of interactions between the modules of system S developed under 
this project. First, the inheritance betwcell cl,\s::;cs is rcgulated by Rule Rl, 
which allows only classes in the same division to inherit from each other. This 
leaves calls as the only possible means for interaction between the two different 
divisions of S. Calls are regulated by rules R2 through R4, as explained below: 

'Rl. can_inherit(Cl,C2) :- division(D)CC1, division(D)GC2. 

Only classes iII tIle same division are allowed to iJIlJerit from cadi otller. 

'R2. can_call (Fl, Cl, F2, C2) : - di vision(audit )CC1, divi:oion(audit)GC2. 

All iIltra-S" calls are permitted. 

"R3. can_call(Fl,Cl,F2,C2) :-
division(base)CC1,division(base)GC2, 
(monitor-call(Fl,Cl,F2,C2) -) $do(monitor(Fl,Cl,F2.C2» 
true). 

IIItra-Sb calls are permitted, but tlley are subject to mOIlitoriIlg if so required 
by monitor-rules (see explanation in tIle text). 

'R4. can_call(Fl,Cl,F2,C2) :-
division(audit)GC1,division(base)GC2. 
sef(F2)GC2. 

Only 8ide-effcct-free (SEF) calls from Sa to Sb arc permitted. 

Figure 3: Rules in Co that Regulate the System Under Development 

First, rules 'R2 and R3 allow for unconstrained inter-di'/Jision calls, in both 
divisions. However, by Rule R3, every inter-Sb call that satisfies a moni tor-call 
rule would be monitored, - that is, the details of this call will be provided to 
object spy of the distinguished class spy. Note that no monitor-call rule ex­
ist in Co, but as we shall see later, such rules can be created by auditors. This 
means that auditors can cause arbitrary calls to be monitored. Moreover, note 
that, as stated in Section 5.1, class spy belongs to the audit division, which 
means that it can be examined and operated upon only by code in Sa. All 
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told, then, the auditors can decide which calls of the base division should be 
monitored, and what silOuld be done with the resulting information. 

Second, Rule R4 allows, what we call, side-effect-free (SEF) calls from Sa to 
Sb; these are calls to routines that are guaranteed not to make any permanent 
change to the system. As we shall see in the following section, a routine f 
defined in a class C is a SEF routine, if the object that represents class C in our 
object-base B has a property sef(!). 

The examination by Su of objccts in Sb by lIIeans of SEF-routillcs is con­
sistent with our principles of continuously auditable systems. Dut it depends 
OIl the existence of such routines in Sb. In addition to "organic" SEF routines 
that may be provided by various classes of Sb, the environment should provide 
a universal SEF rO'utine called inspect, which may be used to read the state 
of any given object in Sb.6 

Finally, it is interesting to note that the moni tor-call rules derive their very 
meaning from the inclusion of the goal monitor-call in Rule R3. This is an 
example of a general and powerful method for creating new types of rules whose 
semautics is defined by the illitiallaw of a projl:ct. III the followillg sectioll we 
shall see another example of such a rule. 

5.2.2 Side-Effect-Free (SEF) Routines 

The law-fragment in Figure 4 makes sure that if a class c has the property 
sef(f) then the Eiffel routine f defined in c is a SEF routine7 Note, however, 
that this fragment uses rules of types not considered so far in this paper, but 
discussed in detail in [7]. These rules differ from those we have seen before, 
in two ways. First, they are all prohibitions, like the cannot-call rule here, 
which is, in a sense, all inversc of a pCnnil1l1io1L like a can_call rulc. SceoJl(}, 
the first two rules in this fragment control assignments, and the generat'ion of 
new objects - two kinds of interactions not considered so far in this paper. 

Rule R5 of this law-fragment prohibits SEF-routines from making any as­
signments into attributes of an object, which includes prohibition of instanti­
ations into attributes. Rule R6 prohibits all instantiations by SEF routines, 
even instantiations into local variables of a routine (note that assignment to 
local variable is not prohibited by this law.) Finally, Rule R7 does not let a 
SEF routine f1 to call another routines f2 unless (a) f2 is also a SEF routine, 
or (b) f2 is an attribute (and thus inherently SEF), or (c) f2 is certified as SEF 
routine. The third possibility refer to a property certified..as.-aef(f2) of a 
class c2 where f2 is defined as a C-coded routines. The poiut here is that ollr 
law does not analyze C-coded routines, which thus require their SEF status to 
be certified by one of the builders of the system. Such certification should, of 

6We note here that at this point in time, when this paper is written, the inspect routine 
has not been implemented yet. 

7We asswne here that C-coded routines cannot be marked in th.is way, which can easily be 
emw'ed by the law wlder Darwin-E. 
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'R5. cannoLassign(F,C,_,_) ;- sef(F)~C. 

A SEF routine sllOuld not perform any assignments (except aslJignmeIJts 
to local variablelJ, wljich arc JJot controlled by thi8 rule). 

'R6. cannot...generate(F,C._,_) :- sef(F)~C. 

A SEF routilJe is not allowed to create new objects 

'R7. cannoLcall(Fl.Cl.F2.C2) ;- sef(F1)~Cl, 

not sef(F2)~C2, 
not defines(attribute(F2)._)~C2. 
not certified.As_set(F2)~C2. 

A SEF routine Fl cannot call F2 uIl1esIJ it is also a SEF routine, or it is 
an attribute (and tlws inherently SEF), or it is certified as SEF routine. 

Figure 4: Establishing the Concept of Side Effect Free (SEF) routine 

course, be regulated by the law of the project. A reasonable policy (not spelled 
out here) would be to insist that such a certification would be approved by a 
developer and by an auditor, cooperatively. 

5.2.3 The Initial Evolution-Sublaw of M 

Let us turn now to the control provided by Co over the process of software 
development under project M, including the manner in which the law itself 
is allowed to be changed. This control is provided by the set of rules listed 
in Figure 5, which collectively establishes Principles 1 and 3 of continuously 
auditable projects. 

Rule 'R8 provides for the creations of new objects (of various kinds) into the 
object base B of the project, forcing the newly created object to reside in the 
division of its creator. In other words, by this rule, programmers can create new 
objects only in their own division. 

Rule 'R9 allows programmers to operate almost freely on objects in their 
own division, sending them any message except those defined by Rule 'RIO as 
"special." These special messages include new which is handled by Rule 'R8j 
messages that create and destroy rules, which are handled by Rules 'RI2 and 
'R13j and messages that can change the division of an object, which are not 
permitted by this law, for obvious reasons. 

Rule 'R9 also causes all updates made to objects in Sb to be monitored, 
subject to moni tor ..llpdate rules. There are no such rules in the initial law £0, 
but they can be created by auditors, as we shall see below. Thus, auditors have 
the power to cause arbitrary updates of the base division to be monitored. 

Rule 'Rll allows auditors to send to objects in Sb any message M that satisfies 
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~8. canDo(S,nev(X,_),T) :- division(D)tS, $do(set(division(D»tX). 

AU new objects (like program-modules) created by programmers would reside 
in the division of tllCir creator. 

~9. canDo(S,K,T) :­
division(D)tS,division(D)GT, 
not special(M), 
«D=base,not observOP(M),monitor~peration(S,K,T» -) 
$do(trace(S,K,T» I true). 

Programmers call operate almost freely on objects in tlleir own division, send­
ing tllCm any message except tlJOse defined by Rille ~10 as "special;" lJOw­
ever, 1l011-ohservutiolllJ mest;ages to tlw bltse division will be monitored, if so 
required hy some monitor npdate rule. 

~lO. special(M) : - M= createRule C, _) I M" createMetaRuke <-, _, _) I 
M" nev(_,_)1 M= set(division(_»! M" recant(division(_» 

TlIis auxiliary rule defines some messages to be "special," and tllus not subject 
to Rule ~9 

~ll. canDo(S,K, T) :­
division(audit)tS,division(base)tT, 
observOp(M). 

Auditors are allowed read access on Sb. 

~12. canDo(S,createRule(R,->, T) :­
division(audit) tS ,type(metaRule)GT, 
$do(set(division(D»GR). 

An auditor can create new rules, using metaRule objects that belong to the 
audit division; the newly created rule would be automatically included in tIle 
audit division. 

~13. canDo(S,removeRule,T) :- division(audit)GS,division(audit)GT. 

An auditor can remove from tIle law any rules defined in the audit division. 
Tllese are tile rules crcuted hy auditors; rllks in Co CIUllJOt be removed. 

Figure 5: Rules in £0 that Regulate the Process of Development 
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predicate observOp(M). These, in Darwin-E, are the messages that only read 
their target, leaving no side effects. III other words, this rule provide auditors 
with read access to S~. 

Rules 'R12 and 'R13 regulates the evolution of the law itself. Rule 'R12 au­
thorizes auditors to create new rules, by sending a createRule message to some 
metaR'ule object in the audit division. The newly created rules are automat­
ically placed in the audit division. The actual effect of Rules 1112 in project 
M is determined by the set of metaRules provided in the initial state of this 
project, because Co does not provide for the creation of any other metarules. 
Now, given (as stated in Section 5.1) that the initial state of project M con­
tains just two metaRules, which provide for the creation of monitor _call and 
monitor ..llpdate rules, it follows that these two kinds of rules are the only ones 
that can be adqed to the law of this project, and ouly auditors can add such 
rules. 

Finally, Rule 1lI3 allows auditors to remove from the law any rules defined 
in the audit division. These are precisely the rules created by auditors, by 
Rule 1l12. The rules in initial law Co itself cannot be removed, and are, thus, 
invariant of the evolution of the project, as required by our Principle 3. 

5.3 How Does it All Work 

The purpose of this section is to provide a feel of the manner in which project 
M can be audited in practice. We start by pointing out that the law of project 
M imposes no constraints on the base division S~, or on the process of con­
struction of this division. But the law does provide the auditors with the ability 
to examine the code of SII, as well as various auxiliary objects containing such 
things as design documents. The auditors can also arrange, by adding appro­
priate monitor..llpdate rules, to be alerted to any update of Sb made by the 
developers. Therefore, the auditors can acquire sufficient information about the 
base division to do their job. 

The auditing part of the project has the following distinguishable elements: 

1. The monitoring rules that only auditors can create. 

2. The spy object that accepts and maintains the monitoring information. 

3. The audit division Sa. 

Below is a brief discussion of each of these elements. 

The monitor _call Rules: The ability to create these rules provides auditors 
with the means for causing selected call-interactions in Sb to be monitored. 
(Note that Darwin-E actually allows for other interactions, such as assignment 
to instance variables, to be similarly monitored, but these are not discussed in 
this paper.) 



38 Part One Integrity and Internal Control in IS 

To illustrate the use of monitoLcall rules, consider the following example: 
Let Sb contain a class account that has the method deposit, and suppose 
that auditors wish to monitor all deposits to all accounts. For this purpose, an 
auditor would add the following rule into the law: 

monitor-call(_._.deposit.account) :- true. 

This rule will cause the relevant parts of Sb to be instrumented, as soon as the 
system is recompiled or reconfigured, so that all calls a.deposit( ... ), where 
a is an account object, will be monitored. 

To demonstrate the flexibility provided by monitor _call rules consider the 
following rule: 

monitor_call(_.C._.account) :- programmer(jones)QC. 

This rule would cause all calls to objects of class account to be monitored, but 
only if invoked from a class owned by programmer called "jones." 

Finally, it is particularly important to note that it is possible to monitor the 
creation of new objects in Sb, of any desired type, such as accounts. This would 
allow the audit division to make lists of objects of various types, whose state 
may be routinely watched by Sb. 

The spy Object, and its Class: The information extracted from a moni­
tored call is provided to an object spy of a similarly named class, that belongs 
to the audit division. 

Note that the monitoring itself is carried out by the base-thread T b • which 
contributes to the audit trail maintaincd by spy. The examination of this audit 
trail, on thc other hand, is carried out by thread T a executing the code of Sa. 
This is because spy belongs to the audit division of the system, and is not 
explicitly accessible to Sb. 

Note that the class spy is predefined into the initial state of the project, and 
cannot be changed by the auditors. This means, in particular, that the time 
spent by T a on each monitoring even, which is a pure overhead as far as Sb is 
concern cd , can be maintaincd as small as possible, and cannot be increased by 
auditors. 

The Audit Division Sa This is the code cOllstructed by auditors, to be 
executed by thread T a. Here are some typical activities of this division. 

First, it examines the entries provided to spy, which represent information 
about monitored events of Sb, deciding what to do with each of them. It may 
discard some of these entries as unimportant, it may use it to update its own 
model of the working and state of Sb and it may save certain entries for future 
reference. 

Second, Sa may decide to examine the context in which a given monitored 
event occurred. It can do this by means of the SEF-routines of Sb, including the 
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universal inspect routine which can read the state of any given object. (Note, 
however, that since Sa is executed by a separate thread, it may not find the 
prccisc contcxt of an cvcnt it cxamincs. But it ~hollid be able to gct vcry close 
to it, and it can often find out hc nature of the diffcrence by exaruiuing the 
audit trail in spy.) 

Third, Sa might periodically sweep through Sb looking for certain "interest­
ing patterns in its state. Note, however, that this is a dclicate process, which 
must be done with the understanding that the state of Sb may be changing 
while it is being examined. (This cannot be helped because we canllot allow T" 
to synchronize with Tb for fear of blocking the latter thread. But we do not 
believe that this is a serious problem, because a race condition between these 
two threads is likely to bc very rare, and its only effect would be to make some 
of the information read by Sa meaningless.) 

Finally, Sa should should perform some analysis of what it sees, and reports 
its finding to the auditors. In our experimental continuously auditable project, 
for example, auditors can also provide some directions to Su, iuteractivcly, con­
cerning the analysis it should perform. 

5.4 Limitations 

Both our model for continuously auditable systems, and our current realization 
of it, have Bome limitations. Thc model itself iti not completely valid for til11c­
critical systems because of the undue effect monitoring may have on them. 
Moreover, as has already been pointed out, our model is designed for centralized 
systems, and does not address the many difficulties involved with the on-line 
monitoring of distributed ones. 

Our current realization of this model, under the Darwin-E environments, has 
several limitations, none of which is unsurmountable. First, Darwin-E deals at 
present only with the language Eiffcl; but ollr general architecture is language 
independent, and work is underway to apply it to C++. Second, since Eiffel does 
not support threads our audit division had to be detiigned somewhat differently 
from what had been described in Section 5.3. Maiuly, we had to farm out much 
of the analysis that this division has to perform to a separate process. Third, 
because of some fairly minor technical difficulties, we are at present monitoring 
only procedure calls, not function calls. This is not a very serious limitation, in 
part, because we can impose the restriction that all functions are side-effect-free. 
Also, this restriction can be removed without too much trouble. 

6 Conclusion 

We have seen that the support for independent on-line monitoring requires a 
substantial change in the manner software is developed and maintained, whether 
or not one adopts the particular approach presented in this paper. Neverthe-
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less, this kind of change will have to be made - for large evolving software 
systems that perform critical societal functions - because independent on-line 
monitoring is not a luxury for such systems, it is a necessity. 
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