
12

A Model for Specifying Individual
Integrity Constraints on Objects

Y. Lahlou
GMD, German National Research Center for Information technology
Schloss Birlinghoven,
D-53754 Sankt Augustin, Germany.
Tel: +492241 142146.
Fax: +492241 142071.
E-Mail: lahlou@gmd.de

Abstract
This paper presents an approach for specifying individual integrity constraints on
objects, which is based on a conceptual class-based model that emphasizes the indi­
vidual structure for objects by allowing those belonging to a class to have structures
not previously abstracted in that class.

Integrity constraints specification on objects makes use of this particularity of the
model, which yields particular constraint definition on individual objects. For in­
stance, one can define a constraint on object 0, that lies on the fact that 0 is composed
of another object 0'. This constraint is taken into account as long as 0' is composing
o. If this happen to cease, the constraint is disregarded.

This approach finds a suitable application area in the domain of architecture,
where such a kind of constraints is important during the design process.

Keywords
Integrity constraints, Individual constraints, Object model, Object Design

INTRODUCTION

When designing object-oriented applications (e.g. databases) the capability to attach
integrity constraints to objects or object classes is an important tool for achieving a
coherent and correct design. In particular, attaching individual constraints to specific
objects allows direct assistance for managing their life-cycle and imposing coher­
ence rules on it.

In database models, the conceptual schema requires that each object belongs to a
class and hence implements a structure that is common to a group of objects (the class

Integrity and Internal Control in Information Systems Volume I
S. Jajodia, W. Lis~ G. McGregor & L. Strous (Eds) © 1997 lAP. Published by Chapman & Hall

218 Part One Integrity and Internal Control in IS

instances). Consequently, even when the DBMS used allows one to attach individual
constraints on objects, these constraints make use of the class structure. We show in
this paper that it is sometimes useful that objects have individual structures which
can be involved in defining integrity constraints.

The problem is simultaneously a data model problem and a constraint specification
problem. In this paper, we introduce an integrity constraints specification technique
which takes into account individual object structures. This technique is based on a
data model that emphasizes individual object structures which we investigated in a
previous research (LAHLOU & MOUADDIB 1996) and which we will extensively
refer to in this paper.

We present a short bibliographic survey on integrity constraints handling in data­
bases, in section 2. We introduce the main features of the data model in section 3.
Section 4 develops our approach for integrity constraints handling. A special interest
is given to individual constraints. Finally, we show in section 5 that this approach
has been implemented within a research prototype.

2 INTEGRITY CONSTRAINTS HANDLING IN DATABASES

Integrity constraints specification and handling is mandatory for keeping databases
in coherent states.

Would it be a relational model (DELOBEL & ADIBA 1982, BRIALES & DE TROYER
1991), a semantic model (CHUNG, RIOS-ZERTUCHE, NIXON & MYLOPOULOS
1988, PECKHAM, MARYANSKI, BESHERS, CHAPMAN & DEMURJIAN 1989,
CORTE & PRESENZA 1992, COOPER & QIN 1992) or an object oriented model
(NASSIF, QIU & ZHU 1991, SU & ALASHQUR 1991, KIM, LEE & SE~ 1992,
KHOSHOFIAN 1993), each data model involves means by which data coherence is
achieved, according to its specific features.

One can enumerate two types of integrity constraints (DELOBEL & ADIBA 1982,
NASSIF et al. 1991):

• static constraints specify conditions which the database have to obey at any time;
they express valid combinations of data in the database, according to the entity
constructors of the model (e.g. official cars have dark colors);

• dynamic constraints define correct database transitions from a state to another, or
in other words valid state modifications (e.g. salaries can not decrease).

We are more particularily interested in static constraints; among them (COOPER &
QIN 1992):

A model for specifying individual integrity constraints on objects 219

• global constraints express particular data types that can be handled by the data
model (e.g. ASCII, sound, video, ...);

• data model constraints set out rules for correct use and combination of the model
constructors (e.g. each object instanciates one and only one class);

• database schema constraints rely on a specific user-defined database schema; they
precise particular conditions inherent to application semantics (e.g. a student is
not more than 30 years old);

• concrete data constraints address particular objects in the database (e.g. the client
X should not have a debit account greater than 4000).

The relational model (DELOBEL & ADIBA 1982) distinguishes among database
schema constraints some meaningful categories (key unicity, individual constraints,
intra-relation constraints, inter-relation constraints).

Semantic and object oriented data models involve other types of constraints (COOPER
& QIN 1992, KHOSHOFIAN 1993): existential constraints (equivalent to referential
integrity in relational databases), specialization constraints, disjunction constraints
and covering constraints on subclass instances.

Integrity constraints specification can be achieved within different terminologies
(NASSIF et al. 1991). Equations are atomic constraints, consisting of two expres­
sions (defined by paths in the database schema) separated by an operator. Assertions
are combinations of equations with boolean operators, but not involving quantifiers.
More complex constraints may be defined by using restrictions of first order predi­
cates calculus (COOPER & QIN 1992).

Managing integrity constraints yields different strategies for restauring database
integrity when a constraint is violated. The most obvious strategy is to prohibit every
action that would violate a constraint (especially updates). More flexible strategies
make use of the notion of transaction, which defines a set of actions between two
coherent states of the database. While those actions are executed, some constraints
may be temporarily violated (DELOBEL & ADIBA 1982, MEYER, WEIGAND &
WlERINGA 1989, COOPER & QIN 1992).

Another approach aims at exhaustively managing the database behaviour by insur-
ing its coherence after each elementary action (adding, update, suppression) (ABITEBOUL
& VIANU 1989, WORBOYS 1991). Specifying integrity constraints is achieved in
a dynamic way (rather than a predicative one) by listing all the operations that may
violate the constraint along with mechanisms for avoiding it. This approach is partic­
ularily interesting in an object oriented environment, where encapsulation facilitates
such a dynamic specification.

In such approaches, two main problems arise:

220 Part One Integrity and Internal Control in IS

• insure elementary transactions coherence (correction),
• insure an equivalent predicative expressivity (completion).

In (ABITEBOUL & VIANU 1989), completion is insured for some particular
constraint types (especially functional dependencies).

While data model and application schema constraints (according to the classi­
fication in (COOPER & QIN 1992» have been widely investigated, data (object)
dependent constraints are derived from schema dependent constraints in most cases.

The omnipresence of database schemata in databases compels objects structures
by "conceptual" ones (relationships, class structures, ...). This is of course a good
design tool but also an obstacle against flexible design (one has to predict object
structures before actually creating them).

This study aims at relaxing this constraint (!) by defining a flexible data model
(LAHLOU & MOUADDIB 1996) and providing users with simple means for spec­
ifying individual and schema-dependent integrity constraints on objects. It is vali­
dated by examples taken from an architectural application.

We have not investigated integrity maintenance yet. As a first step, we only intro­
duce a technique for specifying and checking integrity constraints.

3 THE DATA MODEL

Our data model is based on classical notions such as object classes, inheritance, ...
but it allows objects related to a class to have individual features, not predicted within
the class as instance variables.

Let us consider as an example the architectural project described in figure I.

ew5

ew6

ewl

ew4 iwl

ew2
iw2

ew3

Figure 1 The plan for a construction (viewed from the top).

This construction is composed of six external walls (ewI' ... , eW6) and two in-

A model for specifying individual integrity constraints on objects 221

temal ones (iwl et iW2). It will be represented by object c which belongs to a class
named Construction. In a classical class-based object model, one has to predict in
that class some instance variables that would contain objects eWj and iWj compos­
ing the object c. But, in architectural design, objects structures are so different that it
is not always easy to predict object structures and contents at a conceptual level (in
classes).

In order to make it easier to design such applications, we proposed a data model
(LAHLOU & MOUADDIB 1996) where objects belonging to a class instanciate
its instance variables by attaching other objects to them, but also refer individua\1y
to other extra component objects. We also proposed a suited query language where
queries address individual object contents as well as common conceptual class struc­
tures (LAHLOU & MOUADDIB 1996). From a structural viewpoint, this model
can be considered as laying on both class-based and prototype-based object oriented
models (LIEBERMAN 1986, DONY, MALENFANT & COINTE 1992).

In the following, we sum up the main features of the model. More details can be
found in (LAHLOU & MOUADDIB 1996).

Fundamental notions in the model are types (cf. 3.1), classes (cf. 3.2), objects (cf.
3.3) and the realization link (cf. 3.4).

3.1 Types

We assume that there exists several terminal object types, corresponding to basic
object types: integers (1), reals (R), strings (S), ... and a particular type named the
empty type.

Object types, elements of T (set of all object types) are recursively defined by:

• terminal types and the empty type are types,
• if t is a type, then t* is also a type, named set type,
• if tl , ... , tn are types, then tl x ... x tn is also a type, named tuple type.

Examples:
R x S* x J and (R x J)* are types.

Assuming that its restriction to terminal types is known, we recursiveley define a
partial order on T to represent the notion of sub-typing (LAHLOU & MOUADDIB
1996).

222 Part One Integrity and Internal Control in IS

3.2 Classes

Object classes, elements of the set C, are defined as follows:

• a terminal class is the association of a class name with a terminal type,
• a simple class is defined by a class name c and a list < a I : Cl, ... , an : Cn >,

possibly empty and named structure of c; we shall note C =< al : Cl, ... , an :
Cn >; the ai are attribute names and the Ci are classes; if the structure of a simple
class c is empty, c is an empty class,

• if C is a simple class, then c* is also a class, named set class.

We assume that the recursive definition of classes does not yield cycles. In other
words, a class c can not refer in its structure to a class c' which is one of its sub­
classes (according to the inheritance relation we will evoke later on).

Examples:
Integer, String, Real, ... , terminal classes
Date =< day: Integer, month: Integer, year: Integer>
Person =< name: String, firsLname : String, age: Integer>
Construction =< architect: Person, date: Date, location: String,
characteristics: String* >
ExternaLwall =< inf _point! : Point, inf _point2 : Point, height: Real>
InternaLwall =< inf _pointl : Point, inf _point2 : Point, height: Real>
Point =< x: Real,y: Real,z: Real>

To each class C is associated an object type noted [[c]L recursively defined from
terminal classes types (LAHLOU & MOUADDIB 1996).

Example:
[[Construction]] = [[Person]] x [[Date]] x [[String]] x [[String*]]
= ([[String]] x [[String]] x [[Integer]]) x ([[Integer]] x [[Integer]] x [[Integer]]) x
[[String]] x [[String]]*
= (S x S x 1) x (I x I x 1) x S x S*

Just like the sUbtyping relation between object types, we define an inheritance
relation between classes as a partial order on C, that respects the subtyping relation
on related object types (LAHLOU & MOUADDIB 1996).

A model for specifying individual integrity constraints on objects 223

3.3 Objects

An object 0 = (i, s), element of 0 (set of all objetcs), is defined by a unique and
exclusive identifier i(0) E I (where I is the set of all object identifiers) and a structure
s(o).

We distinguish three types of objects, according to their structure s:

• terminal objects, where the structure is a value associated to a given tenninal type;
• simple objects, where the structure is a list < a1 : 01, ... , an : On >, possibly

empty (in which case 0 is an empty object), where the ai are attribute names and
the 0i are objects named "components"; for components that are not in the class
of the object (individual components), a special attribute, noted X, will be used;

• set objects, where the structure is a set {01, ... , op}, where the 0i are objects.

Examples:
Here, we give examples of object structures, related to figure I; the whole construc­
tion is represented by object c.

s(c) =< architect : aI, date : d1, location : Sl, characteristics e1, X
eWl,X: eW2,X: eW3,X: eW4,X: eW5,X: eW6,X: iWl,X: iW2 >

s(ad =< name: s2,jirsLname: s3,age: n1 >
S(82) = " Duchemin"
S(S3) = "Emile"
s(nl) = 50

s(dd =< day: n2, month: n3, year: n4 >
s(n2) = 12
s(n3) = 12
s(n4) = 1996

s(sd =" Nancy"
s(el) = {S4,S5}

S(S4) = "By the sea"
S(S5) = "Sloping"

s(ewd =< in/_pointl : PI, in/_point2 : P2, height: r1 >
s(pd =< x: r2,Y: r3,Z: r4 >

s~r2) = 14.0
s(r3) = 11.0
s(r4) = 0.0

S(P2) =< x: r5,y: r6,Z: r7 >
s(r5) = 23.0
s(r6) = 11.0
s(r7) = 0.0

s(rd = 4.0

224 Part One Integrity and Internal Control in IS

To each object 0 is associated an object type noted [loll, recursively defined from
terminal object types. For set objects, the related object type is the upper bound of the
types of the composing objects, according to the sub-typing relation. This definition
makes sense because each set of types admits an upper bound (in the worst case, the
empty type, greatest element of T) (LAHLOU & MOUADDIB 1996).

3.4 Realization link

The realization link is a binary relation, noted +-, that is defined on the set 0 x C. It
takes the place of the instanciation link of class-based object models and is defined
(LAHLOU & MOUADDIB 1996) in such a way that if 0 +- c, then [[all is a SUbtype
of [[ell.

With analogous definitions in a class-based model, the two object types would
have been identical.

Examples:
According to the previous definitions, we have:

c +- Construction ([[ell strict SUbtype of [[Construction]])
al +- Person (identical types)
d1 +- Date (identical types)
el +- String* (identical types)
eWi +- ExternaLwali (identical types)
iWj +- InternaLwali (identical types)
Pk +- Point (identical types)
Su +- String (identical types)
n" +- Integer (identical types)
r w +- Reali (identical types)

Remarq:
In order to provide objects with richer structures than their classes', we defined sep­
arately the notions of type and class. Opposite to the terminology used in (HULL
1989), a class is not a set of objects; it refers to an object type that is more generic
than that of its related objects (according the the subtyping relation).

A model for specifying individual integrity constraints on objects 225

3.5 Discussion

Such a data model allows for an easier definition of application schemata since
schema designers do not have to predict at the class level the exact structures of ob­
jects. This model is especially suited for what we call "incremental design": minimal
definition of classes, then object creation with richer structures and then redefinition
of classes by use of actual common object properties.

The fact that objects can have individual structures can also be used for several
interesting tools. In querying the database, it allows for specifying special content­
based queries rather than the common navigational ones (LAHLOU & MOUADDIB
1996). In integrity management, it allows for specifying special individual integrity
constraints on objects.

Now, we present integrity constraints specification according to the model fea­
tures. The constraint model makes full use of the realization link in allowing partic­
ular individual integrity constraints to be defined on objects.

4 INTEGRITY CONSTRAINTS

In this section, we introduce integrity constraints specification for the model pre­
sented above. We provide means for specifying constraints and a technique for eval­
uating them on a given state of the database. We do not consider (in the purpose
of this study) the integrity enforcement. Our aim here is only to show that the data
model yields particular individual integrity constraints that can be very useful in sev­
eral application areas (e.g. architecture).

4.1 Constraint specification

Constraint specification is achieved by means of assertions: predicates specified ac­
cording to a particular formalism, that we introduce in the following.

Assertions may be defined on classes or on specific objects. When an assertion is
defined on a class, it must be satisfied by all objects realizing that class or one of its
sub-classes. When an assertion is defined on an object, it obviously must be satisfied
by that object only.

In order to specify integrity constraints, we first define some preliminary notions:
valid paths and destinations (Dest function) for classes and objects.

A path is a list of attribute names from a class or an object, separated by dots; e.g.
date.day or architect.age. As we introduced the particular attribute name X for in­
dividual object components, we allow paths defined on objects to contain component

226 Part One Integrity and Internal Control in IS

object names (cf. b).

(a) Valid paths and their destinations for classes
Simple classes:

• A path of length I: p = a, is valid for a class c =< al : Cl, ... , an : Cn > if and
only ini E [l,n],a; = a; then we have: Dest(c,p) = Ci,

• a path p = al ... aq(q > 1), is valid for a class c, if and only if p' = al ... aq-l
is valid for c and p" = aq is valid for Dest(c, p'); then we have: Dest(c, p) =
Dest(Dest(c, p'), p").

Set classes:

a path is valid for c* if and only if it is valid for c; then we have: Dest(c*, p) =
(Dest(c,p))* .

Example:
Dest(Construction, date.month) = Dest(Dest(Construction, date), month)
= Dest(Date, month)
= Integer.

(b) Valid paths and their destinations for objects
First of all, a path p which contains no object names is valid for an object 0, if and
only if ::Jc E C,o +--- c and p valid for c.

As mentioned before, particular paths are defined for objects. They begin with
object names: p = 01 ... On .al .. . am . They are intended to be used for imposing con­
straints related to the fact that an object is composing another, when the component
does not correspond to an instance variable from a class which the composed object
realizes.

If one desires to attach a constraint involving an object 0', in its capacity as compo­
nent of object 0, the constraint will be defined on object 0 (and not on the component
object 0'), by preceding each path involved in the constraint by (the name of) 0'. The
path is valid for 0 if and only if the remaining path from removing 0' is valid for
0'; this remaining path can in tum begin with (the name of) a component of 0' (cf.
examples below).

This kind of paths allows for making full use of the free object structures according
to their classes', in the model. We will discuss how important this particular feature
is, in more details in section f.

A model for specifying individual integrity constraints on objects 227

Now, let us define the destination of a path for an object.

Simple objects:

• paths of length I: Dest(o, a) = o.a: object corresponding to the attribute a in
s (0); if a is the name of a component 0' , then Dest(0,0') = 0'.

• paths of length q > 1: Dest(o,al ... aq) = Dest(Dest(o,al ... aq_l),aq).

Set objects:

Dest(o,a) = 0' such that: s(o') = {Dest(oi,a),oi E s(o)}.

Evaluating this destination yields the creation of a new object that did not exist in
the database before.

Examples:
Dest(c, architect. name) = Dest(Dest(c, architect), name)
= Dest(al,name)
= " Duchemin".

Dest(c, eWl.height) = Dest(Dest(c, eWl), height)
= Dest(ewl, height)
= 4.0.

Remarq:
The destination of a path is: either a class, if the origin is a class, or an object, if the
origin is an object.

In the following, we successively define the notions of expression, equation and
assertion, which are the bases of the constraints model. Again, a constraint is defined
either on a class (it must be satisfied by all objects realizing that class and its sub­
classes) or on an object (it must be satisfied by that object).

(c) Expressions
We define the notion of expressions (for classes and objects) along with the notion
of types of expressions. Given an expression E, we associate an object type [[Ell
(element of T) to it.

• Objects (elements of 0), represented by their names or their values (structures)
for terminal objects, are valid expressions for all objects and classes. Their types
are the related object types.

228 Part One Integrity and Internal Control in IS

Examples:
eWI, iW2, 5, "toto", ...

• If 0 E 0 is an object, and if p is a valid path for 0, then o.p is a valid expression
for all objects and classes. Its type is [[Dest(0, p) ll, which is an element of T.
Examples:
c.architect.name, eWI.height, ...

• - Each valid path p for a class c is a valid expression for that class. Its type is
[[Dest(c,p)]], which is an element of T.

- Each valid path p for an object 0 is a valid expression for that object. Its type
is [[Dest(o, p)ll, which is an element of T.

Examples:
The path height for class ExternaLwall.
The path height for object eW2.

• If CI, ... , Cn are valid expressions (for a class or an object) whose types are termi­
nal types, and if r.p is a function defined from [letll x ... x [[cnll to a type t, then
r.p(CI, ... , cn) is also a valid expression for the concerned class or object, whose
type is t.
This notation groups all arithmetic functions (addition, substraction, ... , sinus,
logarithm, power, ...), functions on character strings (concatenation, ...), .. .
Examples:

- sup(in! _poinh .y, in! _point2'Y) is a valid expression for class
External_wall.
The type of this expression is R (reals).

- If a class c has an attribute a whose domain is of type R, then the following
expressions are valid for c: a + log(a) - 1 and sin(a).
Their types are respectively Rand R.

• If c is a valid expression (for a class or an object) such that [[cll = t*, t E T, then
card(c) is also a valid expression for that class or that object and its type is [.
Example:
card(characteristics) is a valid expression for class Construction.

(d) Equations
An equation generally consists of two expressions separated by an operator whose
evaluation yields a boolean value; this operator my be equality, inclusion, superior­
ity, ... , or their negation.

In the following, each time an equation uses two expressions, it is valid for a class
(resp. an object) if both expressions are.

• If Cl and C2 are expressions such that [[cdl = [[c2ll or [[cd], [hll E T, are
comparable object types, according to the partial order on object types, then Cl =

A model for specifying individual integrity constraints on objects 229

102 and 101 I- 102 are equations.
Examples:
height = 4.0 for class ExternaLwall.
A.rchitect = al for object c.

• If 101 and 102 are expressions such that [[cdl and [[c211 are the same tenninal type
having a partial order (1, R or S), then Cl OpC2 is an equation, with op E {<, >
,~, S}·
Example:
in! _pointl'x < 20.0 for class ExternaLwali.

• If Cl and C2 are expressions such that [[cd], [hll E T, with [[cdl = [[C2]]*' then
C2 E Cl and C2 rf. C1 are equations.
Example:
"c oncrete" E characteristics for class Construction.

• If C1 and C2 are expressions such that [[cdl and [[c211 are set types, then C1 <;;: C2
and C1 Cl: C2 are equations.
Example:
{" Concrete" , "vVoorf'} <;;: characteristics for class Construction.

(e) Assertions
Assertions (the tenn is borrowed from (CHUNG et al. 1988)) are the main primitives
for specifying integrity constraints in our model. They are based on logical combi­
nations of equations.

Again, in the following, each time an assertion uses some equations, it is valid for
a class (resp. an object) if all equations are.

• Each equation is an assertion.
• If a is an assertion, then -,a is also an assertion.

Example:
-,(" Concrete" E characteristics) is a valid assertion for class Construction.

• If a1 and a2 are assertions, then at V a2, a1 1\ a2, al => a2 and al B a2 are
assertions.
Example:
(architect.name = "Duchemin") => (" Wood" E characteristics) is a valid
assertion for class Construction.

(1) Discussion
We have presented a language for specifying integrity constraints on our data model.
This language attaches constraints either to classes or objects. The coherence of a
database may then be defined at several levels, involving different descriptive ele­
ments of the database.

Especially, constraints making use of the flexibility of the realization link have

230 Part One Integrity and Internal Control in IS

been defined by means of paths including successive object names. This kind of
constraints is particularily useful for defining ponctual coherence rules on specific
objects.

As an example, during the design process for the construction c described previ­
ously in figure I, the designer may move an external or internal wall in a wrong way,
according to some architectural criteria.

Let us assume that during the whole design process, the room delimited by ex­
ternal walls eW4, eW5, eW6 and internal wall iWl should be sufficiently wide (width
superior to a threshold).

This constraint can obviously not be defined within the class Construction, since
it involves individual components of object c, absent in the class definition.

Our constraints language allows one to specify such a constraint with an assertion
attached to object c, e.g. eW5.inf_pointl'Y - iWl.inf_pointl'Y ~ 7.0 which is a
valid assertion for that object, according to the previous definitions.

This constraint obliges walls eW5 and iWl to stay sufficiently distant from each
other during the whole design process. If it happens that after an update they become
too close, the constraint is violated. It shows how useful it is to include component
names in individual constraints.

This feature of the constraint language allows for attaching criteria of coherence
to an object, not only by using its class structure (with valid class paths) but also
its individual components. The previous constraint is thus attached to object c but
addresses its individual components eW5 et iWl'

As a matter of fact, this constraint addresses those objects in their capacity of
components of object c, which justify the fact that it is attached to object c.

4.2 Evaluating constraints

Integrity constraints evaluation is achieved on database objects. The objective now is
to give formal semantics for the constraints language presented above. We will de­
fine a method that accepts an object and a valid constraint for that object and returns
a boolean value stating of its satisfaction (T RU E if the object satisfies the constraint
and F ALS E otherwise).

We note eval(p, 0) the result of evaluating a part p of a constraint (path, expres­
sion, ...) on object o. The evaluation function eval yields boolean results.

(a) Evaluating expressions
Let c be an expression and 0 E 0 be an object.

A model for specifying individual integrity constraints on objects 231

• Iff = 0' E 0, then eval(o', 0) = 0'.
Examples:
eval(ewj,o) = eWj
eval(5, 0) = 5
eval (" toto" , 0) = " toto"

• Iff = o'.p, having 0' E ° andpvalidpath foro',theneval(o'.p, 0) = Dest(o',p).
Example:
eval(ewj.height, c) = Dest(ewj, height) = 4.0.

• If E = p, having p valid path for objet 0, then eval(p, 0) = Dest(o, p).
Example:
eval(architect.!irsLname, c) = Dest(c, architect.!irsLname) =" Emile"

• Iff = ip(fj, ... , fn), theneval(f,o) = ip(eval(fj,o), ... , eval(fn,o)).
Example:
eval(sup(in! _pointj.y, in! _point2'Y) ' ewd =
sup(eval (in! _pointj.y, eWj), eval(in! _point2.y, eWj))
= sup(Dest(ewj, in! _pointj.y), Dest(ewj, in! _Point2'Y))
= sup(O.O, 4.0)
= 4.0

Remarq:
Such evaluations on objects might yield errors (division by zero, logarithm of
a negative quantity, ...) even if the expression is a priori valid. In that case, the
constraint is automatically violated, e.g. eW2 .in! _pointj.z / eWl.in! _point2 .z.

• Iff = card(f') theneval(f,o) = card(s(eval(f', 0)))
Example:
eval (card(characteristics), c) = card(s(eval (characteristics, c)))
= card(s(ed)
= card({" By the sea" , "Sloping"})
=2

(b) Evaluating equations
Let fj and f2 be two expressions and ° E ° be an object.

According to d, an equation takes the following form: fJ 0Pf2, where op is an
operator in the set {=, -:/:-, >, <, 2':, ~, E, rf., <;;;, ~}.

Example:
eval(" Sloping" E characteristics, c) = "Sloping" E eval(characteristics, c)
= "Sloping" E {" By the sea", "Sloping"}
= TRUE

232 Part One Integrity and Internal Control in IS

(c) Evaluating assertions
• eval(-'0:,0) = -,eval(o:, 0).

Example:
eval(-,("Sloping" E characteristics), c) = FALSE.

• If lop E {v, 1\, =?, {:}}, then eval(o:] lop0:2' 0) = eval(o:] , 0) lopeval(0:2' 0).
Example:
eval((architect.name = "Duchemin") =? (" IF ood" E characteristics), c) =
FALSE.
It comes from the following results:
eval(architect.name = "Duchemin", c) = T RU E
eval("Wood" E characteristics, c) = FALSE.

To conclude this section, we remind that we have only presented a constraint spec­
ification language and formal semantics for it (taking the form of an evaluation func­
tion). Techniques for enforcing such constraints have to be defined, and that is one
of the future developments for this study.

5 IMPLEMENTATION

The data model we have presented in section 3 has been validated by a research
prototype written in Smalltalk-80 (GOLDBERG & ROBSON 1983). This prototype
actually implements a more sophisticated model, named EMIR (Extended Model
for Information Retrieval) (LAHLOU 1996), which is based on the fundamental no­
tion of realization link and integrates other features such as semantic relationships
between objects.

We have also defined a formal language that expresses the integrity constraints
model presented in section 4 (ISSELE 1995).

The prototype allows for:

• defining integrity constraints according to the constraints model presented in 4.1
within a graphical interface supporting automatic assistance for navigation through
class and object structures when formulating expressions,

• checking the database coherence at a given state, according to the evaluation tech­
nique presented in 4.2 and displaying all violated constraints along with the re­
lated objects.

A model for specifying individual integrity constraints on objects 233

6 CONCLUSION

This paper presented particular aspects of integrity management in databases related
to a class-based object data model that allows objects to have individual references
to other objects.

We have proposed an integrity constraints specification model, by means of asser­
tions on such databases. Assertions might be related to classes or particular objects.
Constraint specification makes full use of the data model properties, especially the
so-called realization link (paths with object names). This allows for attaching to ob­
jects some constraints related to the fact that particular objects are composing them,
which is very useful as we have shown in domains such as architectural design.

The approach has been validated within a research prototype.

Future developments for this work will deal with actual integrity enforcement. We
have only presented an evaluation technique for integrity constraints (for checking
constraints satisfaction at a given state of the database) but in the future we are ex­
pecting to define means for forbidding any operation on the databases that would
violate specified constraints.

REFERENCES

ABITEBOUL, S. & VIANU, V. (1989), 'A Transaction-Based Approach to Rela­
tional Database Specification', Journal of the ACM 36(4),758-789.

BRIALES, M. & DE TROYER, O. (1991), Object-Oriented Integrity Enforcement
in a Relational Environment, in 'British National Conference on Databases,
BNCOD'91', Wolverhampton, UK, pp. 38-68.

CHUNG, K., RIOS-ZERTUCHE, D., NIXON, B. & MYLOPOULOS, J. (1988),
Process Management and Assertion Enforcement for a Semantic Data
Model, in 'Extending Database Technology, EDBT'88', Springer-Verlag,
Lecture Notes in Computer Science, No 303, pp. 469-487.

COOPER, R. & QIN, Z. (1992), A graphical Data Modelling Program with Con­
straint Specification and Management, in 'British National Conference on
Databases, BNCOD'92', Springer-Verlag, Lecture Notes in Computer Sci­
ence, No 618, pp. 192-208.

CORTE, P. & PRESENZA, D. (1992), Understanding Data Behavior from its
Static Structure, in 'The 5th International Conference on Putting into Prac­
tice Methods and Tools for Information System Design', Nantes, France,
pp.291-302.

DELOBEL, C & ADIBA, M. (1982), Bases de donnees et systemes relationnels,
Dunod Informatique.

DONY, C, MALENFANT, J. & COINTE, P. (1992), Prototype-Based Languages:
From a New Taxonomy to Constructive Proposals and their Validation, in

234 Part One Integrity and Internal Control in IS

'Object-Oriented Programming Systems, Languages and applications, OOP­
SLA'92 , ,pp. 201-217.

GOLDBERG, A. & ROBSON, D. (1983), Smalltalk-80: The Language and its Im­
plementation, Addison-Wesley.

HULL, R. (1989), Four Views of Complex Objects: A Sophisticate's Introduction, in
'Nested relations and complex objects in databases', Springer-Verlag, Lec­
ture Notes in Computer Science, No 361, pp. 87-116.

ISSELE, N. (1995), 'Environnement de conception et de recherche d'information
dedie au modele EMIR', These CNAM.

KHOSHOFIAN, S. (1993), Object-Oriented Databases, Wiley Professional Com­
puting.

KIM, w., LEE, Y. & SEO, J. (1992), 'A Framework for Supporting Triggers in
Object-Oriented Database Systems', International Journal of Intelligent &
Cooperative Information Systems 1(1),127-143.

LAHLOU, Y. (1996), 'Modelisation et recherche basees sur Ie contenu d'objets com­
plexes. Le systeme EMIR', These de I 'Universite Henri Poincare - Nancy I.

LAHLOU, Y. & MOUADDIB, N. (1996), Relaxing the Instantiation Link: Towards
a Content-Based Data Model for Information Retrieval, in 'Conference on
Advanced Information Systems Engineering, CAiSE '96', Springer-Verlag,
Lecture Notes in Computer Science, No 1080, pp. 540-561.

LIEBERMAN, H. (1986), Using Prototypical Objects to Implement Shared Behav­
ior in Object Oriented Systems, in 'Object-Oriented Programming Systems,
Languages and applications, OOPSLA'86', pp. 214-223.

MEYER, J., WEIGAND, H. & WIERINGA, R. (1989), A Specification Language
for Static, Dynamic and Deontic Integrity Constraints, in 'The 2nd Sympo­
sium on Mathematical Fundamentals of database Systems' , Springer-Verlag,
Lecture Notes in Computer Science, No 364, pp. 347-366.

NASSIF, R., QIU, Y. & ZHU, J. (1991), Extending the Object-Oriented Paradigm
to Support Relationships and Constraints, in 'Object-Oriented Databases:
Analysis, Design & Construction, IFIP DS-4', pp. 305-329.

PECKHAM, J., MARYANSKI, E, BESHERS, G., CHAPMAN, H. & DEMUR­
HAN, S. (1989), Constraint Based Analysis of Database Update Propaga­
tion, in 'International Conference on Information Systems, ICIS '89', Boston,
Massachussets, pp. 9-18.

SU, S. & ALASHQUR, A. (1991), A Pattern-Based Constraint Specification Lan­
guage for Object-Oriented Databases, in 'COMPCON Spring 91 ',San Fran­
cisco, California, pp. 522-531.

WORBOYS, M. (1991), Database Specification using Transaction Sets, in 'Inter­
national Workshop on Specifications of Database Systems', Glasgow, UK,
pp. 300-311.

A model for specifying individual integrity constraints on objects 235

BIOGRAPHY

Youssef Lahlou graduated from the "Institut d'Informatique d'Entreprise", Evry­
France, as an "Ingenieur" in 1991. He then got his Ph. D. from the Henri Poincare
University, Nancy-France, in 1996. His domains of interest cover databases, infor­
mation retrieval, object oriented design and digital libraries. He is currently on a
post-doctoral position as an "ERCIM fellow" in GMD, Bonn-Germany, within the
"Digital Library Initiative" of the European Research Consortium for Informatics
and Mathematics (ERCIM).

