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Abstract 
This paper presents a High Level Synthesis (HLS) method for specialized coproces­
sors in embedded systems. In recent years, the synthesis of hardware systems has 
moved to a higher level of abstraction, but the existing tools leave very little initia­
tive to the designer. With User Guided High Level Synthesis (UGH), we introduce 
the notion of Draft Data-Path Scheme (OOPS) which we consider an efficient way 
for the user to guide the HLS process. It describes the general structure of the data­
path, without detailed information like signal-widths or physical implementation of 
multiplexers. Guided by these structural constraints, UGH intends to deliver a full 
data-path and a scheduled Finite State Machine that takes into account the detailed 
timing characteristics of the target physical library. 
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1 INTRODUCTION 

Several high-level synthesis systems have been proposed in the last decade. The input 
description is generally a procedural description, using a Hardware Description Lan­
guage such as VHDL, and the output is a Register-Transfer Level architecture. Major 
steps include the operation scheduling and the functional resource allocation. How­
ever, despite the need to increase the design productivity, these tools are not totally 
accepted in the industry. One reason may be sought in the scheduling strategy (Paulin 
et al. 1989, Gajski 1992, Biesenack et al. 1993, Bergamaschi et al. 1993, Rahmouni 
et al. 1994) used by the existing tools. The major purpose of scheduling is to define 
the best possible serial/parallel tradeoff with respect to user-required performance 
and size constraints. Time and area are the two main optimization criteria. To solve 
this complex problem, the scheduling algorithms make the following assumptions: 
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1. They rely on a characterized library of physical (or virtual) operators. For each op­
erator, a static table gives the area and timing characteristics. The characterization 
of the latency of the operations is most often limited to the delay of the physical 
operator. In particular, the delays induced by the physical connections and regis­
ter characteristics are seldom taken into account. This issue becomes critical in 
submicron technology (Ramachandran et al. 1992, Chaiyakul et al. 1991). 

2. The constraints given by the designer to explore the design space are global con­
straints such as defining the total number of busses, registers or arithmetic opera­
tors. Such constraints are too loose to let the user precisely guide the m...s tool. 

3. There are two ways to synthesize the conditional instructions. They can be imple­
mented in firmware, in the control FSM, or they can be hard-wired by multiplexers 
in the data-path. Tools usually either micro-program them all, or hard-wire them 
all. The firmware approach is simpler, but generates a Mealy FSM with a com­
plex output logic. It induces delays that are not properly taken into account by the 
schedulers, as opposed to Moore FSMs. 

Existing tools cope with some of those problems. For conditional instructions, 
CALLAS (Biesenack et al. 1993) allows the user to choose the conditions to be hard­
wired, by direct specification of basic block boundaries. CATHEDRAL (Lanneer et 
al. 1990) and GAUT (Martinet al. 1990) remedy the second issue using directives 
included in the behavioral description that allow the designer to guide the m...s tool 
so precisely that it can generate the operative part prior to scheduling. To integrate 
the precise timing characteristics of the data-path into the scheduling, ALMA (Auge 
et al. 1995, Brune11996) requires an explicit description of the data-path structure. 
This allows the scheduler to take into account not only the data dependencies, but 
also the exact physical delays and setup/hold times extracted from the layout. 

The User Guided High level synthesis (UGH) approach described in this paper 
tries to merge the three solutions presented above into a single tool. The designer 
specifies the data-path structure, using the Draft Data-Path Scheme (DDPS), which 
is a synthetic description of the target coprocessor architecture. Section 2 presents 
the general overview of the synthesis flow, and defines the supported VHDL input. In 
section 3 the proposed approach is illustrated on the classical example of the Highest 
Common Factor (HCF). The final section concludes with some perspectives. 

2 GENERAL OVERVIEW 

2.1 The Co-Simulation and Co-Synthesis Environment 

The User Guided High level synthesis tool presented here is part of the COSYS co­
design environment for embedded system, developed at UPMC. In complex core­
based embedded systems, where several processors or dedicated coprocessors have 
to communicate through a shared memory, the system level communication scheme 
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(a) 

Figure 1 Generic Target Architecture. 

Figure 2 Main Scheme of UGH. 

(b) 

is the critical point We don't want to re-invent a new communication protocol for 
each new design, and we don't want to synthesize the complex bus controllers that 
can be found in optimized libraries. So we defined a generic architecture (Figure La) 
around the PI BUS (OMI 1996). Thus, the first component in COSYS is a library of 
PIBUS compliant modules: parameterized hardware bus controllers (in master and 
slave mode shown on Figure l.b ), the corresponding software drivers, a MIPS R3000 
microprocessor core and several reusable macro-cells such as an interrupt controller, 
a PI/PCI bridge, ... 

The second component in COSYS is the high speed simulation environment for 
hardware/software co-simulation. PISIM (Petrot et al. 1997) is a cycle-based simula­
tor that can simulate more than I 00 000 MIPS instructions per second. The hardware 
components in the system can be described in C or VHDL, as long as they behave as 
synchronous FSMs. The cycle-precise PISIM simulator is used for a reliable perfor­
mance evaluation of several possible architectural solutions in the hardware/software 
system-level partitioning along with functional validation. The third component is 
the high level synthesis tool UGH, presented in the remainder of the paper. 
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HODEL HCF (IN DIN; OUT DOUT) 
{ 

OFF RA, RB; 
SUB a; 
EQ eq; 

a.A • RA.Q, RB.Q; 
a.B • RA.Q, RB.Q; 
eq.I • a.S; 
dout • a.S; 
RA.D • a.S, DIN; 
RB.D • a.S, DIN; 

(a) File Sources (b) Schematic Draft (c) Final Data Path 

Figure 3 Draft Data-Path Scheme of HCF. 

2.2 The Co-processor Generic Architecture 

467 

The synthesis flow is expliciled in Figure 2. The generic architectural model of a 

control-dominated coprocessor is a data-path controlled by a Finite State Machine. 

The data path contains registers, local memory and logic or arithmetic operators that 

are interconnected by busses or multiplexers. All these functional resources belong 

to a library of virtual, generic, operators that must be mapped to the physical cell 

library available for the target fabrication process. 

The User Input 
The main input is the behavioral VHDL description of the co-processor. It is a 
VHDL entity with a well defined interface, that generally communicates with a 

predefined bus controller (taken from the PIBUS module library) through a simple 

READ/WRITE protocol. This makes the coprocessor's behavior fully independent of 

the complex multi-master PIBUS protocol. The VHDL description must be a single 

synchronous VHDL process: the only signal in the VHDL WAIT statements is the 

system clock. All external communications must be synchronized using the VHDL 

WAlT statement. The internal computation performed by the coprocessor can be a 

fully procedural description, including loops and conditional instructions, without 

any reference to the system clock. From a simulation point of view, it means that 

all the internal computation between two external input/output accesses takes only 

one simulated system clock cycle. At this stage, simulation cannot give any reli­

able performance evaluation for the embedded system. The goal is only a functional 

validation of the coprocessor specification in the system environment However, the 

designer can use an arbitrary number of WAIT statement to indicate an estimated 

number of cycles needed to perform the algorithmic calculation in order to have a 

better idea of global system performances. 
Once the VHDL model has been validated, the designer must provide a simpli­

fied structural description of the target data-path called 'Draft Data-Path Scheme' 

(DDPS) to proceed further to the synthesis. It contains all physical registers, and 

all functional operators, but it is not necessary to describe explicitly multiplexers or 

tri-state busses, and there is no detailed infonnation about signal widths. All regis­
ters instantiated in the DDPS must correspond to variables in the VHDL process, 
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entity RCF is 
port (CK, FULL, EKPTY: in bit; 

DIN in integer: 
OOUT : out integer; 
REQ : out bit_vector(1 dovnto 0)); 

end HCF; 

architecture UGH of RCF is 
CONSTANT READ : bit_vector (1 dovnto 0):•"01" ; 
COWSTANT WRITE: bit_vector (1 dovnto 0):•"10" ; 
CONSTANT NOP : bit_vector (1 dovnto 0):•"00"; 
BEGIN 
RCF : PROCESS 

VARIABLE RA, RB : integer; 
VARIABLE BUL, INF : boolean ; 

BEGIN 
REQ <• READ; -- reading first operand 
WAIT on CK until ( CK • '1' and EMPTY • '0' ); 
RA :• DIN; 
REQ <• READ; -- reading second operand 
WAIT on CK until ( CK • '1' and EMPTY • '0' ); 
RB :• DIN; 
REQ <• NOP; -- calculation of HCF 
NUL :• (RA • RB ); 
WR ILE ( NOT NUL ) 
LOOP 

INF :• (RA < RB ); 
IF ( INF • '1' ) THEN 

RB:• RB- RA ; 
ELSE 

RA:• RA - RB ; 
END IF; 
NUL :• (RA • RB ); 

END LOOP; 
REQ <• WRITE; -- writing the result 
OOUT <• RA ; 
WAIT on CK until ( CK • '1' and FULL • '0' ); 

END PROCESS; 
END UGH; 

(a) VHDL Description 

Figure 4 Highest Common Factor. 

(DIP=IJ 
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(b) ITPN or CDFG 

and they must have the same name. The opposite is not true: it is possible to use in 
VHDL description variables that will not be synthesized as registers. It allows the 
designer to control the allocation and binding of the behavioral VHDL instructions. 

Architectural Refinement and Coarse Scheduling 
This first synthesis step is fabrication process- and physical cell library-independent. 
UGH performs the architectural refinement and binding, generating a detailed data­
path, as well as a coarse scheduling, generating a first FSM controller. 

The detailed data-path is a complete structural VHDL net-list, containing all nec­
essary multiplexers, and control signals driven by the FSM. The signal widths are 
derived from the behavioral VHDL description. At this stage, the instantiated reg­
isters, operators and multiplexers are still 'virtual' resour<:es, because the physical 
mapping has not been done. The coarse grain controller is not the final, cycle-precise 
FSM, as in this phase zero delay assumptions are made for all operators. 
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Physical Synthesis and Fine Scheduling 
The role of fine grain scheduling and mapping of the Figure 2 is to generate the 
physical layout for a given cell library. This task is performed in the following three 
steps: 

Mapping: The data-path of generic operators is translated into a netlist of physical 
cells. During this step, a generic operator may be directly mapped to one physical 
operator in the target library, or to an equivalent netlist of standard cells. 

Characterization: The propagation delays and the setup/hold times for all oper­
ators in the data-path are computed from the physical netlist. During this step, 
delays induced by the physical connections are taken into account. Routing ca­
pacitances can be estimated or extracted from the layout after place and route. 

Scheduling: The basic-blocks are extracted from the 'coarse FSM'. Then, each ba­
sic block is scheduled for a given system clock frequency. The resulting fine-grain 
scheduling defines the final, cycle-precise FSM. 
The scheduling algorithm is ASAP taking into account the WAR (Write Afte.r 

Read) and WAW (Write After Write) precedence relations {Pangrle et al. 1987, 
Camposano 1991), and it supports operator chaining and multi-cycle operators. The 
fine grain scheduling algorithm is detailed in (Brunel1996). The use of a character­
ized data-path solves the first problem mentioned in the introduction. The two main 
outputs, physical data-path netlist and cycle-precise FSM controller, are VHDL de­
scriptions, directly usable by the back-end tools. The third output is a cycle-precise, 
high speed simulation image for the PISIM simulator, which can be used for cycle­
precise performance evaluation at system level. 

3 ARCHITECfURE REFINEMENT AND COARSE SCHEDULING 

The use of the 'Draft Data-Path Scheme' in the synthesis process is illustrated on 
a classical example: The Figure4.a shows the VHDL behavioral code for a slave 
coprocessor that performs the computation of the Highest Common Facter of two in­
tegers. In this example, the communication between the coprocessor and the PIBUS 
controller is based on two separate FIFOs. The two integers are read sequentially on 
two clock edges. The core of LOOP docs the main calculation. The result is written 
to the output FIFO on a clock edge. The Figure 3.a shows the DDPS corresponding 
to the example of the Highest Common Facter on Figure 3.b. Note that the two vari­
ables used as registers arc clearly identified both in DDPS and the VHDL behavioral 
description. 

3.1 Translating behavioral VHDL into Petri Nets 

In the first phase the VHDL is compiled into a formal model based on Interpreted and 
Timed Petri Nets (ITPN) (Encrenaz 1995, Bawa 1996). The Petri Net (Murata 1989) 
represents the control structure (CDFG) of the VHDL processes. An external data 
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if (cond) then 
R. :• A - 8; 

else 
R. :• 8 - A; 

endif; 
(Sl) 

if (cond) then 
R. :• A - 8; 

elae 
R. :• C + D; 

endif; 
(S2) 

if (cond AND WIRED) then 
R. :• A + 8; 

else 
R. :• 8 - A; 

endif; 
(S3) 

Figure 5 Some conditional statements. 

fSM 

(a) (1>) 

Figure 6 Minimizing the Number of Multiplexers. 

part of the Petri Net contains the data modified by the firing of transitions in the 
control part. 

Each process is composed of places and transitions. Places refer to the states of 
the process and transitions are fired to pass from one state to the next, representing 
the VHDL statement executed between these two states. Transitions are split into 
two disjoint sets. Those modeling VHDL wait statements belong to the RES set, 
they are only firable during the RESUME phase of VHDL delta cycles. All other 
VHDL statements are represented by EXE transitions, which are firable during the 
EXECUTE phase of VHDL delta cycles. 

Interactions between the control part and the data part takes place while transitions 
are fired. These interactions are represented by means of attributes associated to each 
transition, t, of the Petri Net : 

• g(t) is the guard of transition t : t may fire only if its guard is true. g(t) is a 
boolean function of data contained in the data part. 

• ASG(t) is the set of data modified while firing transition t. 
• TRF(t) is the set of transformations applied to the data in ASG(t). TRF(t) is a 

set of couples (d, trf r~. 1) where dE ASG(t) and tr/d,t is a function of data in the 
data part. 

This formal model of ITPN has been used with success for several applications 
notably model checking {Bawa-b et al. 1996), behavioral equivalence {Bawa-a et 
al. 1996) and behavioral synthesis (Bawa-a et al. 1996). The 11PN generated from 
the VHDL code ofHCF is shown on the Figure4.b. 
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FSM 

('I) (b) 

Figure 7 Allocation for hard-wired conditional statement. 

Binding_ITPN(JTPN, DDPS) 
{ 
if !Consistency_Check(JTPN, DDPS) 

abort(); II DDPS inconsistent with ITPN 

Let R = set of the registers in OOPS 
A = set of assignations to elements of R in ITPN 
Ah • set of hard-vired assignations in A 
.Am. • set of micro-coded assignations in . .4. 

Such that A = A1> u A, vith Ah n A, 0 

For each Sig E R : { 
For each Assign E Ah vit.h R. • target(Assign) : { 

Balance_branches([TPN, R., Ahl 
Let Ar • set of parallel assignations to R 
Let Op " set of (sets of) operator(s) from OOPS performing A, 
OptR • Find_Optimal_Element(01,) 

OOPS • Bind(R., OptR, As.ign, OOPS) II Assign toR will be done by OptR 
II here we incrementally update the DDPS into a data-path 

} 
For each As•ign E A,., with R. = target(Aas·ign) : { 

PathR • Get_Possible_Paths(7l, A,,, OOPS) 
OptPathR • Minimal_Cost(PathR, DDPS) 

} 

II minimal communication and most adequate operator~ 
OOPS • Bind(R, OptP .. thR, Assign, OOPS) 
} 

Return (DDPS) II it is now a data-path 
} 

Figure 8 Allocation Algorithm. 

3.2 AHocation and Scheduling 
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Allocation starts with a consistency check (see algorithm on FigureS): All the oper­
ations required by the behavioral description must correspond to a possible transfer 
in the DDPS. Also enough registers must have been instantiated to store all the non­
trivial variables. Classical compiler methods adapted to the formalism of ITPN and 
to the signaVvariable semantic differences are used to strip off variables that are just 
place-holders and then check the availability of registers (Bawa 1996). 

To build the coarse FSM, along with the data path synthesis, the fields of the 
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Micro-Instruction Register (MIR) are defined. There is one field for each controlled 
resource in the Data-Path. One state in the control FSM is generated (with the transi­
tion function) for each transition in the Petri Net. Let us see in more details how the 
data-path synthesis is done for some simple, yet demonstrative, examples. 

The first step in the allocation is to determine which operators could be used to 
perform a given transformation in the data space. This is done by a backward explo­
ration of the allowed paths in the DDPS, starting at the target register (R), through the 
possible operators (SUB), and ending at the input data (A,B). These possible paths 
are shown on the left-hand sides of figures in this section. Whenever an operator has 
to be shared between several transfers, we solve the conflict with multiplexers on its 
inputs. The operator-to-transfer binding is done in a basically greedy fashion with 
some extra rules. 

Firstly, we evenly balance transfers on operators, so as to minimize the amount of 
communication required (for instance, when binding behavior {Sl) with the DDPS 
of Figure6.a we choose to usc both substracters and multiplex their outputs thus 
sparing 1 multiplexer). 

Secondly, when dealing with multiple-transfer operators, like an Adder-Substractcr 
in the example for (S2) on Figure 5, a merely greedy allocation of operators could 
first associate ASB to A-B, then force the reuse of ASB forC+D. The rule that avoids 
this suboptimal allocation is that we always try to allocate the most specific operator 
that matches the requirements of an operation (so SUB is associated to A-B instead 
of ASB). 

The statement (S3) on FigureS illustrates our solution to the third problem men­
tioned in the introduction: the user guides the choice between firmware and hard­
wiring for conditional instructions. In case of a WIRED request, the algorithm checks 
that assignations (from set A,. of FigureS) on all execution paths of the branch are 
balanced (i.e. the same variables are assigned in all the branches) and that there are no 
data-dependencies inside the branches. The balance is necessary because all register 
WRITE-ENABLE signals must be controlled by the FSM. The in<Jependence is nec­
essary in order to keep the scheduling manageable. Note that an improper balancing 
can be corrected automatically (by adding pseudo-assignations like V ar : = Var;) 
but dependencies can only be corrected by the designer (by rewriting the branch or 
alleviating the structural constraints). 

The DDPS given for the synthesis of (S3) is shown on Figure 7 .a. Here the rule is 
to allocate the operator, if any, that matches all the operations targeted for the register 
R: we allocate the ASB and spare the SUB (Figure7.b). This prioritizes code-op 
wiring over multiplexers, for best data-path performance. The resulting algorithm is 
summarized in Figure 8. The final Data-Path generated for the HCF example, starting 
from the DDPS exhibited on Figure 3.b, is shown on Figure 3.c. 
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4 CONCLUSION 

The UGH project is the direct follow-on of the ALMA synthesis tool, that has been 
developed in the framework of a cooperation between the LEP laboratory (PHILIPS) 
and the MASI laboratory (UPMC) (Auge et al. 1995, Brunet 1996). A first soft­
ware implementation is under development at UPMC. Several critical modules ex­
ist (including the VHDL to Petri Net compiler, and the fine grain scheduler), but 
the complete synthesis flow is not yet available. The first experimentations are very 
promising, but there are possible improvements such as automatic loop unrolling or 
unfolding. 

UGH requires a DDPS input, which seems somewhat contradictory with the no­
tion of high-level synthesis. Other HLS tools do not use such a feature. Nevertheless 
CALLAS (Biesenack et al. 1993) and CATHEDRAL (Lanneer et al. 1990) expect 
more information from the designer than just the pure behavioral description, to drive 
the synthesis process towards a specific target architecture. In HIS, the order of con­
current instructions is crucial. In the SYNOPSYS behavioral synthesis tool, the de­
signer identifies the registers by precise and specific VHDL templates. The DDPS 
actually plays the same role but in an explicit form rather than through hidden added 
semantics in the behavioral description. UGH is conceptually a HLS tool, but it gives 
the designer a much better control over the synthesis process. 

• The design process starts from a synchronous VHDL behavioral description, that 
supports fast, cycle based simulation at system level. The resulting, cycle-precise 
synthesized coprocessor can be simulated in the same system environment for 
reliable performance evaluation. 

• The designer has a total control on the data-path structure, which is the condition 
for efficient optimization in practical cases. UGH does not limit the designer's 
skill: One can obtain the same result as a classic custom design by gradually 
refining the DDPS towards an explicit data-path. 

• The coprocessor cycle time is not a result of the synthesis process. It is an external 
constraint defined by the designer. The timing behavior of the physical synthe-­
sized coprocessor is guaranteed by construction, which avoids design iterations. 

• Last but not least, DDPS provides a safeguard mechanism against the temptation 
to write non-synthcsizable behavior. Forcing the designer to propose a consistent 
DDPS, makes him aware of the architectural complexity of the target coprocessor. 
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