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Abstract 
Image recognition may consist of three main steps: edge detection, edge link­
ing, and object/template matching. Edge detection algorithms usually pro­
duce thin edges with discontinuities. In this paper, a real-time algorithm and 
its VLSI implementation for linking broken edges is presented. First, all bro­
ken edge points inside a 12 x 12 moving window are identified. The 12 x 12 
window scans the input gray level edge map converting it into three levels of 
intensities using two threshold values. Decisions of linking the stronger edge 
break points are made based on their directions and/or with the guidance of 
the weak edge lines. The proposed VLSI architecture is capable of running 
the proposed edge linking algorithm in real-time outputting one pixel of the 
linked edge map per clock cycle with a latency of 11n+12 clock cycles, where 
n is the number of pi: eel columns in the image. 
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1 INTRODUCTION 

One of the most important features in an image for object recognition is edge 
information (Marr, et. al. 1980). Experiments in the past have shown that 
human visual system reacts strongly to sharp changes in pixel intensity in an 
image. Robot systems and many other computer vision applications, as well, 
are based on using the edge information to extract certain features within the 
environment (William, et. al. 1989). 

An edge point, then, is a sudden change in the intensity level of an image 
over a number of pixels either in a horizontal and/or a vertical directions 
{Alzahrani, et. al. 1997, Ungureanu, et. al. 1993, Farag, et. al. 1991, Farag, 
et. al. 1995, Xie 1992). But, edges are not all the same. Some of them are 
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much sharper, or stronger, than the others depending on the gray levels of 
the adjacent areas. 

Edge detection algorithms were developed in the past to produce high qual­
ity edge maps. The focus of most of these algorithms is to ensure good quality 
of the edge output regardless of time consumed to produce them. Besides, 
edge detectors based on the first derivative do not guarantee to produce edge 
maps with continuous edge contours nor unwanted branches (William, et. al. 
1989, Breen, et. al. 1994, Bernand 1994, Diamond 1983). Edge detectors based 
on the second derivatives, such as zero-crossing, suffer wrong edge detection in 
textured images and noisy images. Many object recognition algorithms prefer 
closed contours of objects for comparisons and matching. Thus, the output 
edge maps produced by the first type edge detectors may not be useful in 
follow-up processing steps. 

In this paper, we propose a real-time edge linking algorithm and its VLSI 
architecture that is capable of producing binary edge maps in a rate up to 
28.5MHz clock frequency. Our algorithm employs a moving window of size 
12x12 pixels that scans the input images. For a VGA sized image, only 12 
shift registers of 480 cells are needed to store 12 rows of the input image at a 
time. The delay time of producing edge maps of different input frames is zero 
and only a latency of 12x480 clock cycle presents. 

2 EXISTING EDGE LINKING ALGORITHMS 

William and Shah (William, et. al. 1989) proposed a Multiple Scale edge link­
ing algorithm such that all edge points produced by the Canny edge detector 
(Canny 1986) are stacked in a queue. The output edge map produced by the 
Multiple Scale algorithm are of high quality and the edge contours are closed 
and connected. However, the complexity of the algorithm is at the order of 
3n, where n is the number of the image pixels. An edge linking algorithm 
using a Causal Neighborhood Window was proposed by Xie (Xie 1992) to 
achieve lower computational complexity. His algorithm performs poorly and 
produces non-localized edge points when texture images are used. Farag and 
Delp (Farag, et. al. 1991) proposed a linear path metric function for a se­
quential search process. Their algorithm involves less amount of calculations 
compared to the Multiple Scale algorithm and performs well for textured 
images. However, some statistics such as a and a priori information about 
the processed images have to be known. Miller and Madeda (Miller, et. al. 
1993) proposed a different type of edge linking algorithm using template based 
method. This template based algorithm scans the image three time to produce 
the final edge map. 

Earlier attempts to map edge linking algorithms into VLSI included work 
by (Ungureanu, et. al. 1993) who used a programmable gate array chip of 
ACTEL type to produce linked closed edge contours. Their algorithm involves 
path search procedures to track the contour lines. The processed image pixels 
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Figure 1 (a) The Basic Structures (b) The direction representation and po­
sition. 

should first be stored in an off-chip memory before the linking process starts. 
An initial edge point should be chosen manually for the chip to start tracking 
the contour lines from it. The time needed to process one image exceeds 30-50 
ms for images of size 256 x 256. 

3 THE EDGE LINKING ALGORITHM 

3.1 Basic Concepts 

In this paper, we use six basic structures of which all edge lines take at any 
point. These basic structures form a complete set of edge line shapes, and 
they are divided into connected basic structures and broken basic structures 
as shown in Figure l(a). Edge lines can be decomposed into a number of basic 
structures in many different ways. In general, we define a break point as an 
edge point from which it is impossible to extract any connected basic structure. 

Once a break point in some position in an edge map is identified, its direc­
tion must also be determined. We define the eight directions by using complex 
number notations as shown in Figure l(b). The real part of a break point di­
rection represents the horizontal shift that the next linking edge point should 
take, and the imaginary part represents the vertical shift of it. A break point 
at position (x,y) is said to have a direction a+jb, where a,b f. { -1,0, +1} , if it 
is connected to a previous edge point located at the position (x-a,y-b). 

To guide the edge linking process effectively, some weak edge points are pre­
served during the intensity edge map conversion. Thus, two different threshold 
values are used such that the larger value is used to produce only the wanted 
edge points without any branches and the smaller threshold value is used to 
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preserve some weak edge points. The first threshold value is referred to as the 
strong threshold. The other threshold value is referred to as the weak threshold. 
The edge map output resulted from using two thresholds is referred to as the 
trinary edge map. 

3.2 The Algorithm 

When using two threshold values to produce the trinary edge map, finding the 
break points and determining their directions is applied only for the strong 
edge map. Unlike some existing edge linking algorithms which tend to operate 
on a large area of an image thus requiring large amount of memory, our 
approach takes a small portion of an image at a time utilizing the weak edge 
points as guides to maintain accuracy while requiring much smaller amount of 
memory. The small portion area is marked as window. The entire image is then 
scanned by the window once to complete the edge linking process. Assuming 
that the image pixels are fetched in a row order form, top left to bottom right, 
the scanning pattern follows the same direction. Generally speaking, the choice 
of window size depends on the requirement for edge linking accuracy and the 
amount of memory and other hardware related constraints, bearing in mind 
that our goal is to map the algorithm onto a VLSI chip. The tradeoff resulted 
in the choice of a 10 x 10 window size with a need of the information from the 
surrounding pixels. Thus, a window size of 12 x 12 is chosen. 

Once the window is moved to a new location, all break points inside the 
window will be counted; their directions will also be determined. In order to 
start linking break points, the window itself is divided into four sub-windows; 
each sub-window has the size of 5x5 pixels from the core area. The linking 
process will start first within each sub-window. Once the process is completed, 
another linking process between sub-windows will start. The edge linking al­
gorithm consists of the following steps: 
Step 1 Intra-Column Linking 

For each column in each sub-window, there are three scenarios with regard 
to break points. First, if there is no break points in a column, no action is 
required and move to the next step. Second, if there is one break point in a 
column, record its presence and move to the next step. Third, if there are two 
break points in a column, check the directions of these break points by testing 
the direction values using the following condition: 

Link= (P.d1 ::5 cos8) A (-P.d2 ::5 cos8) A (-d1.d2 ::5 cos8), (1) 

where: P = (x2 - x1 ) + j(y2 - yl), the position vector; di is the direction of 
the break point i; (xi, Yi) is the location of the break point i; [.] denotes the 
vectors dot product; (J is the maximum allowed directional difference between 
two break points; and (J is set to 45° 
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Step 2 Inter-Column Linking 
In this step, one pair of the unlinked break points from step 1 will be tried to 

be linked across different columns using the same direction matching criterion. 
The way of selecting the pair of break points in this step is to choose the pair 
with the farthest horizontal distance. Choosing the farthest distance points 
instead of the closest was based on some experimental observations which 
indicates better linking among broken edges. If the selected pair cannot be 
linked, one of the break points will be tried to be extended with the guidance 
of some nearly weak edge points if possible. The other break point in the 
pair is passed on to the next step for further processing. All the remaining 
unlinked break points are to be tried again when the window is moved to the 
next location. 
Step 3 Inter-Sub-Window Linking 

During this step, each sub-window may have one break point that has to be 
linked with the others. Thus, a maximum of 4 break points are to be considered 
within the entire window. There are 6 possible combinations of pairing any 
two break points out of possible 4. Linking will be tried on each pair using 
the same direction matching criterion. After linking the break points, any 
unlinked break point will be tried to be extended using nearly weak edge 
points as guidance. 
Step 4 Changing Window Location 

In this step, the window is moved to the next location and steps 1 to 3 are 
repeated. 

4 EXPERIMENTAL RESULTS 

The Lenna image was used to determine the effectiveness of the proposed edge 
linking algorithm. Applying the ADM edge detection algorithm (Alzahrani, 
et. al. 1997) to the Lenna image, the intensity edge map produced is shown in 
Figure 2(a). This intensity edge map is the input to our edge linking algorithm. 
The trinary edge map produced by the two thresholding process is shown in 
Figure 2(b).The edge linking algorithm outputs the final linked edge map 
shown in Figure 2(c). 

5 VLSI IMPLEMENTATION OF THE EDGE LINKING 
ALGORITHM 

In order to allow real-time edge linking, our edge linking algorithm was 
mapped into hardware. The algorithm was first translated into the structural 
level design using VHDL and verified before gate level design took place. The 
edge linking circuit is organized in three major functional blocks: The Receiver 
Block, the Loop Block, and the Mask Block. Figure 3(a) is the top level block 
diagram which shows the signal flow of the image coming out from the edge 
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Figure 2 (a) The intensity edge map of ADM algorithm (b) The trinary 
edge map by the proposed algorithm (c) The final output edge map. 
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Figure 3 (a) The overall circuit diagram (b) The Receiver block diagram. 

detection chip and passing through the proposed edge linking units till it is 
finally produced. 

The output signal from the ADM edge detection chip (Alzahrani, et. al. 
1997) is a serial flow of the intensity edge map pixels on an 8-bit bus. This 8-
bit signal is to be mapped into 2-bit signal using two threshold values. Figure 
3(b) shows the circuit design for the Receiver block. Two 8-digit comparators 
are contained in this block to produce two binary signals D8 and Dw such 
that D8 = IN 2: T8 , Dw = IN ~ Tw, where: IN is the input signal of 8 bits, 
T8 , Tw are the strong and weak threshold values, respectively. 

The main function of the Loop block is to prepare the image data for the 
Mask block to produce final output edge map. At the beginning of the linking 
process, the data of a 12 x 12 block from the top-left corner of the image must 
first be ready. Therefore, the first twelve rows of the image need to be stored in 
shift registers. Once the data of the first 12 x 12 block are ready in the Mask 
block, the linking process starts. Figure 4 shows the signal flow inside the 
Loop and the Mask blocks. Notice that we divided the Loop into three pieces 
to illustrate the circular movement of the signal. The Loop block contains 
468 x 12 storage cells. Each cell has two D flip-flops: one to pass the strong 
edge points map and the other is for the weak edge points map. 
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Figure 4 The signal flow in the edge linking circuits. 

21 

The Mask block contains lOx 10 internal Cell units to accommodate the 
core part of the moving window, as described in the edge linking algorithm 
section. Figure 5 shows the arrangement of the units inside the Mask block. 
There are 44 Coat units located around the core area making the Mask window 
12x12 in size. The Coat cells are used to provide boundary information to 
the IOxlO mask, no edge linking process is applied to them. The Mask block 
itself is divided internally into 4 sub-windows, each having a size of 6 x 6 pixels. 
The communication between the Cell units is conducted via Net units. Within 
each sub-window, the ControllerS unit is responsible for the Intra-Column and 
Inter-Column linking processes. Links between the sub-windows is controlled 
by the ControllerlO unit. In general, we can list the functionality of the Mask 
as follows: 

• The Cell units identify all break points and determine their directions. 
Figure 6 shows its schematic diagram. 

• Through the Net units, the signals from each Cell unit in a sub-window 
are sent to the ControllerS in order to process the Intra-Column links and 
the Inter-Column links. 

• Each ControllerS selects a pair of break points, if any, from each column 
using five MuxC units. Figure 7(a) shows the logic structure of the MuxC 
unit. The MUX5x2 selects two break points with the longest distance and 
passes them to the follow-up logic for further identification. 

• The pairs from each column is to be linked after checking their directions. 
Five MatchSxl units are used for this purpose, one for each column. Figure 
7(b) shows the design of a MatchSxl unit. 

• The break points information from the each column is then passed to the 
MuxR unit to perform step 2 of the algorithm (Inter-Column linking). The 
way MuxR works is very similar to that ofMuxC in the sense that it chooses 
two break points from among five columns. It then outputs the information 



22 Part One VLSI for Video and Image Processing 

Figure 5 The Mask block diagram. 

Figure 6 The Cell unit. 

nf the two selected break points from two farthest possible columns to the 
Match5x2 unit. 

• The Match5x2 unit checks the direction agreement of the two input break 
points coming from the MuxR unit. Similarly, it passes the location of the 
two break points along with the decision signal to link them. 

• In the Link5x2 unit, two stages are needed to draw a line between the two 
break points if the linking decision is high. In each stage, two Step5x5 units 
are used to fill the gap between the two break points. The output from the 
two Step5x5 units in the first stage is the X-Y location of two new points 
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Figure 7 (a) The MuxC unit (b) The Match5x2 unit (c) The Link5x2 block 
diagram. 

such that the gap between them is shorter than the original gap of the 
break points. Another stage of a similar process is then enough to connect 
the break point by a linking line. The block diagram for the Link5x2 unit 
is shown in Figure 7(c). 

• If the linking decision signal from the Match5x2 unit is low (decision for 
not linking), one of the selected break points will be fed to a Weak unit. 
The function of the Weak units is to extend the input break point one or 
two pixels toward the break direction if there is weak edge points nearby. 
The advantage of extending break points along their directions on a weak 
edge path is to shorten some long gaps between break points. This way, 
the linking process inside the sub-window becomes effective and sufficient. 

• All the functional units mentioned above constitute the Controller5 unit 
as shown in Figure 8. 

• The other unlinked break point left from the Match5x2 unit will be sent to 
the ControllerlO unit which receives up to four possible break points from 
the four sub-windows. Six possible comparisons will be conducted to draw 
linking lines at the Inter-Sub-Window linking stage. 

6 COMPLEXITY ANALYSIS, CHIP SIZE ESTIMATIONS 

The entire edge linking circuit consists of about 10,000 logic gates a.D:d 11,520 
flip-flops. Estimation of the chip area was carried out by using a 0.8JLm CMOS 
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Figure 8 The Controller5 block diagram. 

standard cell library. Adding up the areas of the all gates used in the circuit, 
we get approximately the overall gate area of the chip to be 10 mm2 • The 
routing area is approximated to be the same as the gate area needed on the 
chip. Thus, the total chip area is about 20 mm2 • 

A critical path measurement is also carried out to determine the potential 
performance of the edge linking chip. Tracing the critical path in the circuit, 
we find the critical path consisting of 35 cascaded gates. Figure 9 shows the 
critical path indicating the delays of each unit at its output. The maximum 
fanout among these gates on the critical path is 4. Assuming a conservative 
average gate delay of Ins using the O.BJLm CMOS technology, the minimum 
clock cycle time is 35 nsec. Thus, the maximum allowable clock frequency is 
about 28.5 MHz. Considering that the chip is capable of outputting a pixel per 
clock cycle for the linked edge map, this is 3 times the video rate requirement 
for VGA-sized images, or 1.2 times the video rate requirement for SVGA-sized 
images. 

7 SIMULATION RESULTS OF THE VLSI ARCHITECTURE 

The Lenna image was processed by the circuit through a logic simulator as 
well as a structural level VHDL simulator. Both the schematic logic circuit 
and the VHDL code are tested using the Lenna image. Figure 10 shows the 
output edge map of the Lenna image from the simulated VLSI circuit and 
from the simulated VHDL code. The threshold values used for the Lenna 
image were T8 = 40 and T w = 20. 
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Figure 9 The critical path. 
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Figure 10 (a) The VHDL code output (b) The logic gate circuits output. 

8 CONCLUSION 

In this paper, we have presented a new algorithm for edge linking and its 
VLSI implementation. The software implementation, using a C++ code, was 
proven to give good output results through four major steps of edge linking: 
the Intra-Column Linking step, the Inter-Column Linking step, the Inter-Sub­
window Linking step, and the Changing Window Location step. 

Although our algorithm does not produce better results than other exist­
ing edge linking algorithm, the hardware implementations of it have been 
developed and proven to produce output edge maps in real-time processing 
environment. In implementing the VLSI circuits, we tried to make the design 
as simple as possible in order to have smaller die size. The strategy used while 
building the circuits in the gate level is to have symmetric designs with less 
inter metal wiring between blocks. The proposed edge linking circuit is able to 
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process 33 VGA/SVGA frames per second in a normal operation mode with 
the clock frequency of up to 28.5 MHz. 

The proposed edge linking circuit has two major limitations. First, the 
output edge maps are not guaranteed to have closed contours. It maybe the 
same situation for other well-known edge linking algorithm, but we should 
consider it as a problem. Second is that the edge linking process is sensitive 
to the choice of the strong threshold values. That is, fixing an initial number 
for the edge linking chip to be a permanent threshold value for all possible 
input images would result in poor edge linking. 

One possible solution to the threshold problem is to build a feedback con­
troller circuit that adjusts the threshold values such that a feedback signal 
from the image matching circuit gives the matching percentage of the detected 
image versus a known template image. The control circuit then increases or 
decreases the threshold value correspondingly. 
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