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Abstract 
We describe the techniques of the DEJA VU Scheduling Class Library to achieve a 
library of reusable and extendible c1asses for the construction of interactive 
scheduling systems. The constructed systems shall be efficient and user centered. 
We describe abstract scheduling objects, constraints between them, and potential 
user interactions with the system. A first scheduling system was developed for the 
steel plant of Böhler Kapfenberg. We demonstrate which extensions were neces­
sary and show prototypical examples from the graphical user interface. 
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1 INTRODUCTION 

DmA VU is a framework of C++ c1asses supporting the construction of industrial 
scheduling systems. The design was directed by the following criteria: 

• the evaluation of a schedule is based on the evaluation of individual constraints 
and their weighted aggregation, 

• the user has the full control over the scheduling process with the ability to 
experiment with different settings, 

• iterative improvement methods are applied to optimize solutions, and 
• the framework should be extendible and refinable. 

1.1 Constraint-based Representation of Schedules 

Scheduling is an activity controlled by constraints and guided by several objective 
functions. Usually scheduling is described as a problem of satisfying temporal con­
straints. However, temporal constraints such as due dates and objectives such as 
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minimization of the mean flow-time are often insufficient to represent industrial 
problems. DEJA VU supports constraints and objectives like compatibility con­
straints, idle time constraints, minimization of substitutable resources, or equilibre 
load of sharable resources. These constraint types have been derived from several 
scheduling problems. New constraint types can be generated by deriving from 
existing types with minimal effort due to the general approach to represent them. 

Many constraints of industrial production environments are soft and can be 
relaxed. Moreover, objectives may be contradictory and a trade-off between them 
must be found for a good solution. These requirements are reflected by the con­
straint model: A constraint is a relation between two or more scheduling objects 
and/or attributes. The relation is mapped on a satisfaction degree that evaluates 
how good this constraint is satisfied in the actual schedule. Different constraint 
types obtain a domain-dependent weight reflecting the constraint' s importance for 
the domain. A schedule is evaluated by a weighted aggregation of all satisfaction 
degrees. Further, for each constraint type a threshold to decide whether the con­
straint violation is hard can be specified. 

1.2 Interactive Scheduling 

An automatic scheduler cannot consider all aspects relevant to the evaluation of a 
schedule because the environment of industrial scheduling systems is too complex 
and many quantities cannot be measured. The complexity also comes from the ever 
changing production environment: new machines are erected and new production 
techniques and objectives arise regularly. The software must therefore be adar't­
able, but under the full control of the user to overrule outdated system rules. 
Although production control and planning software shall support human personnel 
as far as possible, the responsibility should remain in human hands. Mixed-initia­
tive scheduling is a paradigm that solves this problem best. Whenever the user has 
the ability to let the system schedule automatically or to perform some scheduling 
tasks manually. The user can always change the schedule constructed by the sys­
tem, but the system should show new conflicts effected by this change to the user. 
Furthermore the user can "freeze" some part of the schedule and let the system im­
prove the remaining part. DEJA VU supports interactive scheduling by scheduling 
tasks for schedule alterations providing a common interface with methods for un­
doing, redoing, evaluating, etc. 

1.3 Iterative Improvement Methods 

Iterative improvement is a search method which starts with an initial solution and 
tries to improve it by "local" modifications. The initial schedule can be constructed 
randomly, by a constructive method, or by an heuristic method. It can also be cre­
ated by a human or another computer process. To modify given schedules, 
scheduling tasks are used to trans form a schedule into a new and similar schedule. 
A scheduling task can be e.g., the exchange of two adjacent jobs. If several tasks 
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are applicable, a procedure must choose the task to be applied. This selection can 
be made randomly or with some look-ahead, allowing the selection of the best 
"neighbor". To determine whether an improvement can be achieved by a task, the 
evaluation of schedules is compared. The most efficient look-ahead is achieved 
when the new schedule can be evaluated locally. 

A simple hill-climbing algorithm would accept only schedules having a better 
evaluation. Since scheduling problems tend to have many solutions with different 
qualities that are not direct neighbors, a search method based on local improve­
ments can be trapped in a local optimum. An important feature of all iterative im­
provement methods is the capability to escape from local optima. However, with 
this ability the probability of searching in cycles raises and some kind of control to 
avoid repetitions is needed. 

DEJI\. VU allows the user to select between different improvement methods and 
to set different parameters of these algorithms indi vidually. Furthermore, if another 
combination of techniques seem to be appropriate this can be easily realized by 
derived classes since the optimization algorithms are also designed as classes that 
can be inherited. Experimental comparisons of these algorithms with data from the 
VA Stahl Linz LD3 plant are described in (Dorn et al. 1996) and important design 
issues for iterative improvement methods in (Dorn 1995). 

1.4 Reusability of Scheduling CIasses 

The main principle to support the reusability is the object-oriented design of the 
software. However, the critical task in designing reusable software (or reusable 
objects) is always to foresee the potential extensions and problems of new applica­
tions. A good practice is to implement existing theoretical frameworks because 
they are based on abstractions of many practical applications. Especially in 
scheduling, there is a large amount of theoretical work offering many forms for 
such a design. Objects like order, job, operation, resource, allocation, and sched­
uZe or synonyms exist in almost every theoretical investigation. Unfortunately, this 
theoretical work does not integrate user interaction with schedule optimization. 

The core of DEJI\. VU are abstract classes realizing the basic scheduling theory. 
Forms for the representation of constraints are also realized by abstract classes. 
This abstract core enables an application- and platform-independent definition of 

• a schedule evaluation (all constraints stored in a constraint list are evaluated 
and aggregated), 

• scheduling tasks (exchange of operations on aresource, exchange of jobs, ... ) 
• algorithms that apply and compare applicable scheduling tasks to find better 

schedules, and 
• graphic entities like windows, panes, and text fields to represent scheduling 

objects on the user's desktop. 

On top of this core common specializations such as a job-shop or a flow-shop 
schedule and several optimization algorithms are implemented. A further deriva­
tion layer consists of specific classes for steelmaking applications. 
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2 SCHEDULING OBJECTS 

The main scheduling object is a schedule consisting of three conceptual parts: 

• a list of resources with scheduled allocations, 
• a list of jobs with their operations, and 
• a list of constraints. 

The main design criteria for a schedule are: 

1. the representation should be as flexible as possible to enable the representation 
of schedules of different applications with different resources and jobs, 

2. support of scheduling tasks initiated either by a user or iterative improvement, 
3. scheduling tasks must be very efficient to provide users an immediate feedback 

and to fasten the optimization algorithms, and 
4. a schedule should be an object that can be copied efficiently. 

Flexibility and efficiency are two potential conflicting objectives for which a trade­
off must be found. Thus, pointer arithmetic is used for the core schedule instead of 
pure object oriented representation. Lists are realized as pointer arrays based on the 
template mechanism of C++. They can be extended dynamically and store only 
pointers, because it is not know in advance how much storage is needed for the 
objects. A typical resource points to a double-linked list of allocations that store 
when operations are performed on the resource and a job points to a double-linked 
list of allocations describing allocations of a job. 

The dynamic links between allocations support the algorithm that checks and 
enforces temporal consistency of all allocated operations. Each time an operation is 
moved in the schedule, the adjacent allocations of its resource and its job are 
adjusted temporally. An adjustment of another allocation will be propagated. This 
consistency mechanism is complete because only simple temporal algebra is used. 

Schedule 

Allocations 

Figure 1 Structure of a Schedule 
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The sequence of the jobs in the list of all jobs represents also the sequence of 
jobs in the schedule. This sequence may be changed by certain scheduling tasks, 
but a move of a job is further propagated to each resource on which this job is 
scheduled to move also the allocation accordingly. 

We define one abstract root schedule dass which realizes many methods suffi­
cient for handling schedules. However, we specialize a schedule to reflect certain 
characteristics of job shops and flow shops. For a certain application, we may 
further specialize to represent in this dass application specific information and to 
overload general methods by more efficient domain-dependent strategies. 

Methods dependent of the schedule type are the methods that realize different 
scheduling tasks. For the efficiency of scheduling tasks it is better if inverse 
scheduling tasks can be defined instead of copying whole schedules. Moving a job 
from one position to another in a flow-shop is more efficient, because its opera­
tions are in the same sequence for both jobs and its inverse task can be defined 
easily by storing the old position. In a job-shop, it is not dear what an exchange of 
two jobs means. The jobs may be allocated on different resources which cannot be 
used for the other job and two jobs may be scheduled overlapping. We can define 
the move, but for the inverse task we must return to the old schedule by copying 
the old schedule. For a flow-shop, the move of single operations is not useful. Each 
schedule type has its own method for deciding which scheduling tasks are applica­
ble and how it can be performed, if possible. 

2.1 Allocations 

An allocation is an assignment of an operation being part of a job to aresource. 
The allocation is a temporal interval consisting of start, duration, and end. Simple 
allocations are used for resources that can perform only one operation at a time and 
thus cannot overlap temporally . Allocations on a resource are linked forwards and 
backwards. For the basic type of allocation, a temporal sequence can be conduded, 
but the derived capacitive allocation may overlap. To find the job and the resource 
object to which the allocation belongs, two pointers to these objects are stored. 
Further pointers to the next and to the previous allocation of the job exist. If a pre­
decessor allocation exists on the resource, one or more allocation constraints may 
be stored. 

2.2 Resources 

A resource stores the operations of different jobs to be performed on it. Resources 
are generated from a description of the scheduler dass. Resources maintain their 
own list of resource constraints. The dass resource is an abstract dass from which 
no objects can be generated. 

Most typical is the non-sharable resource on which operations required by a 
job are allocated. These allocations are stored in double-linked list whereby the 
sequence in the list reflects also the temporal sequence. The link structure is effi-
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cient for scheduling tasks such as swapping allocations. The non-sharable resource 
has apointer to the first and to the last allocation. A non-sharable resource knows 
how to perform scheduling tasks as allocating, swapping, moving, or deleting an 
operation. Attributes may be defined such as minimal idle time or required set-ups. 
If it allocates operations or modifies the allocations, it maintains the constraints 
derived from the idle time and the set-up attributes accordingly. 

A sharable resource can be used by several jobs simultaneously. An example is 
the space to store products. This space is often limited but several products pro­
duced in different jobs may be stored at the same time. Since such resources have a 
limited capacity and different operations may require different amounts of the 
resource, a capacitive allocation is used to incorporate additional attributes for size 
and amount. Scheduling tasks, such as moving or shifting an allocation must be 
realized for sharable resources. The maximal capacity of a sharable resource is a 
hard constraint, but the equilibre load may be a soft constraint. A typical example 
is energy consumption which has an upper limit. For a cheap production however, 
it is important to distribute the energy consumption as much as possible over the 
whole production period because peaks in the energy consumption are often 
expensive. 

A resource group represents a group of almost identical resources. For the pro­
duction process, it makes no difference which of them is used because all have the 
same capabilities. Yet, an objective such as to minimize the number of used 
resources and constraints on subsequent allocations may constrain the usage of 
resources. The only scheduling task a resource group must support is the move of 
an operation from one of its resources to another. Other tasks are deferred to the 
resources. A special method of a resource group is the method of finding the best 
resource for an allocation. Generally , this will be the first available resource. 
Derived classes will overload this method with more sophisticated heuristics. 

2.3 Orders and Jobs 

An order describes the product to be produced, the required operations and their 
required sequences, its priority, and such constraints as the release and the due 
date. The operations and their temporal relations are described in a process plan. A 
job describes the performance of an order in the shop floor. It may be scheduled to 
pro du ce several orders. The main conceptual difference is the specification of 
planned starting and finishing times for the scheduled operations, whereas the 
order describes only the requirements. 

In some domains the order does not need to have a process plan to describe the 
required operations and their temporal dependencies because the sequence is for all 
jobs mainly the same. In this case a job is generated from an order by following 
predefined rules of its domain. A process plan is then constructed for the job. 

When a job is generated from an order, some attributes like the release and the 
due date are copied into the job. However, a job also has apointer to its order 
because some computations are dependent on the produced good that is not repre­
sented in the job object. A job points at its first and its last allocation and these are 
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linked in the "allocation network". For a simple flow-shop job, the chain of job 
allocations describes a sequence of operations. If a more complex temporal depen­
dency must be described, interval relations are used (Dom 1995b). Jobs have a 
unique identifier to enable pointing to the same job in two schedules. Furthermore, 
a job maintains its own list of job constraints. If certain operations of a job are 
modified, the job updates these constraints accordingly. If the last operation is 
moved, the tardiness constraint is updated. 

2.4 Scbeduling Tasks 

Scheduling tasks are a paradigm for the coupling of automatie scheduling with user 
actions and is derived from concepts in model-based knowledge acquisition (e.g. 
Bylander and Chandrasekaran 1988). In principle, we model each action that can 
be performed by the user as a scheduling task. A scheduling task is described by a 
class that provides all types of tasks a uniform interface. If a new task is to be 
defined, all methods of this interface must be realized. If a task is initiated by the 
user, all necessary data are stored to undo or redo it. The definition of an inverse 
task also supports the iterative improvement methods. With such a search method, 
we apply a scheduling task to check whether a task leads to an improvement. To 
evaluate the schedule, operations and jobs of the schedule have to be adjusted. If 
other alternatives are tried, we must return to the old schedule. For complex appli­
cations it is more effective to have a task that makes the last change undone than 
copying a whole schedule. In cases in which no reverse task can be specified, we 
store the whole schedule before performing the task. Additionally, for tabu search, 
the inverse tasks are used as a tabu criterion, thus forbidding cycles during search. 

The realization of scheduling tasks is dependent of the schedule type. So the 
performance in a job-shop and in a flow-shop can differentiate and some tasks are 
not applicable in all schedule types. For example, the move of an operation in a 
flow-shop and the exchange of ajob in ajob-shop are not allowed. 

Following scheduling tasks are defined: to allocate a job as early as possible, to 
allocate a job after another job, to allocate a job at a certain time, to remove a job 
(back into the list of orders), to exchange two adjacent jobs, to move a job to 
another position, to exchange an operation with an adjacent operation, to move an 
operation to another place on the resource, to move an operation to another 
resource, and to shift an operation. This set of operations can be extended easily if 
other tasks are becoming necessary for an application. 

3 CONSTRAINT EVALUATION 

The evaluation of schedules in DEJA. VU is based on the evaluation of individual 
constraints. Constraint types are differentiated and we define, for example, tardi­
ness constraints. If all tardiness constraints of a schedule are evaluated, the tardi­
ness of jobs is a measure of the schedule. For a certain application, different mea­
sures can be defined. In a preference-setting dialog, the user can select which of 
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these defined measures shall be evaluated for the next schedule construction pro­
cess. The settings can be assigned to a schedule thus constructing schedules with 
different evaluations. 

3.1 Constraint Evaluation 

A constraint is a relation between two or more scheduling objects or attributes of 
them mapped on a satisfaction degree which evaluates how well the constraint is 
satisfied in the actual schedule. A typical example of such a relation is the tardiness 
of a job. A due date indicates when a certain job should be completed, which is 
related to the scheduled finishing time. The relation is mapped on a satisfaction 
degree that indicates how good this constraint is satisfied. If the finishing time 
equals the due date, the satisfaction of this constraint is considered to be very good. 
Otherwise it is considered to be poor. This exact meeting of a due date is modeled 
by a tardiness constraint. The relaxed form where a too early completion is also 
good is realized by a lateness constraint. A tardiness constraint shall illustrate how 
a constraint is specified and how its satisfaction is computed. 

If a job has a due date (DD), the job creates a tardiness constraint having two 
parameters "OptimalDeviation" (OD) and "LeastAcceptableDeviation" (LAD). If 
the deviation between due date and finishing time (Fr) is smaller than the optimal 
deviation, the constraint evaluates to 1.0. If it is larger than the least acceptable 
deviation, it evaluates to O. Otherwise, it is computed as follows: 

'~~::.r~~~~<:J 
LO I I 
0.0 • 

release date due date time 

Figure 2 Satisfaction Degree of a Tardiness Constraint 

3.2 Constraint Types 

Below the abstract root constraint dass, four abstract constraint dasses are defined 
describing relations between different scheduling objects. An allocation constraint 
relates an allocation with its predecessor. If this sequence is changed, the resource 
updates this constraint. A job constraint relates different attributes of a job. If one 
of these attributes is changed, the constraint is updated by the job. A resource 
constraint describes a relation between different objects and attributes of a re-
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source. The update is initiated by the scheduling object if all changes on this 
resource are finished. The fourth kind is a form relating objects of the whole 
schedule. The schedule constraint is maintained by the schedule. The four 
described abstract classes support the construction of new constraint types because 
they define a common interface and a predefined mechanism to create and update 
them. The scheduling objects only know this interface, and the allocation can 
update a constraint without knowing which actual constraint type it iso If a new 
allocation constraint type is defined, a derived class of an allocation has to insert 
this constraint, but no further changes need to be made. 

All constraints defined below the four classes are no longer abstract. These 
constraint types describe actual relations between scheduling objects. After being 
updated, they will have a satisfaction degree which is used to evaluate a schedule. 
To reflect that different constraint types have different importance for the applica­
tion, constraint types are associated with a weight factor between 0 and 1. The sum 
for all types is defined as "1". If several constraint types are defined, a weight of 
e.g . .4 means that this constraint type has a great influence on the evaluation func­
tion. Another attribute describes a threshold to differentiate soft and hard constraint 
violations. A constraint satisfaction below this threshold indicates that the con­
straint must be repaired to get a legal schedule. If the threshold is set to 0, no repair 
will be necessary. 

A special constraint which is elaborated upon is the compatibility constraint. It 
is a relation between subsequent operations assigning a value to this pair, reflecting 
how optimal it is to schedule both after each other. In the process industry, re­
sources are often infiltrated with residuals of the produced good which may spill 
subsequent products. This infiltration can either be accepted (if small enough), or 
some cleaning operation must be scheduled as weIl. A compatibility constraint can 
represent the cost of a cleaning operation or the quality-Ioss due to the infiltration. 
For some processes, such as steel making, cleaning operations are either not possi­
ble, or too expensive. It is therefore important to find sequences that incorporate 
only a small infiltration. Thus, the threshold cannot be "0". Compatibility con­
straints can be seen as a prototype of the way new constraints can be integrated in 
the framework. For allocations having such a compatibility aspect the compatible 
allocation class was derived from an allocation. It creates a compatibility con­
straint if certain conditions hold. Compatibility constraints and the way they are 
handled are explained in more detail in (Dorn and Slany 1994). 

4 REUSABILITY OF DEJA. VU 

With the DEJA VU Class Library we have implemented a scheduler for the Böhler 
company in Kapfenberg (Austria) to schedule heats in a steelmaking plant. This 
application described in detail in (Dorn and Shams 1995) is a prototype for indus­
trial applications, characterized by a lot of domain-dependent data that users want 
to see on their computer desktop. Moreover, many of the preferences in solving 
subproblems must be applied. These very domain-dependent features are realized 
by new derived classes. For example, the existing order class with 10 attributes 
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must be speeialized to read more attributes (about 30). Nevertheless, teehniques as 
presenting an order graphieally, deleting an order, or to sehedule an order neednot 
be re-implemented. These modifieations have no effeet on the interaetion classes or 
on the algorithms that require the evaluation and seheduling tasks. Another refine­
ment that must be performed for the applieation is the design of new windows. 
This ean again be aehieved by deriving from existing window classes. 
We estimate that only about 10% new eode has been developed for the applieation. 
A seeond applieation for a different steel plant has been used as a further test-bed 
whieh shows that approximately the same effort is required here. 

The following graphies show two views of the sehedule whereby the first is 
generie and the seeond speeifie for the applieation. The main sehedule window 
shows the whole sehedule in aseroll pane. Resourees are shown below eaeh other. 
For example, the first resouree in the figure is an eleetrie are furnaee (EAF), then 
one sees a group of ladles. The alloeations on these resourees are depieted by small 
panes. The last two resourees are sharable resourees that deseribe the spaee 
requirements in the teeming bay and the load of the workers in the teeming bay. 
The bottom window shows the total evaluation and the mean ehemical eompatibil­
ity. With apopup menu the user ean also seleet other measures. 

Figure 3 Graphical Representation of a Sehedule 

B Y clieking on the panes in the window, the user ean seleet operations and jobs to 
move them to other plaees in the sehedule. If an operation or a job is seleeted, 
menu eommands ean also be applied to the seleeted objeet. 

The information shown in the sehedule window is not always suffieient. With a 
double-click on the resouree name's pane, the system opens a window speeifie for 
a resouree. The following figure shows a window for the eleetric are furnaee. On 
the right side one ean see a logarithmie diagram that visualizes the ehemieal eon­
tent of subsequent orders on the furnaee. 
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Figure 4 Resource Window 

5 CONCLUSIONS 

To improve the reusability of DEJA VU for new applications, it seems important to 
define an order description language from which the system can automatically 
generate the order class. Although the logic behind this class is simple the con­
struction is error-prone. 

At the moment, only a very simple temporallogic is used to describe the tem­
poral constraints between operations of one job. Since we use only before and 
after-relations, we cannot express any possible constellation of operations. The 
temporal consistency mechanism incorporated into the system is based on this 
simple model. Using the full expressiveness of Allen's interval algebra (Allen 
1983) for the consistency mechanism would be computationally too expensive 
(NP-complete), but it seems tractable to apply it in describing the temporal rela­
tions of process plans. 

The most important extension however, will be the introduction of reactive 
scheduling. The main problem for the application at Böhler is the daily work with 
the adaptation of the schedule to react 011 unexpected events such as new orders, 
machine break-downs, destroyed products, etc. Based on (Dorn, Kerr, and Thal­
hammer 1995), we have already built a reactive scheduling prototype for Böhler 
which shall be integrated into DEJA VU. Since this prototype has worked in a sim­
ulation model we must now test it in areal domain. 

A documentation of the scheduling class library is publically available at: 
hup ://www.dbai.tuwien.ac.atlprojlDeja V ulDocument. 
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