
2

Semantic Approaches to
Structuring and Querying Web
Sites

E. Damiani
Universita di Milano - Polo di Crema
Via Bramante, 65, 1-26013 Crema, Italy, edamiani@crema.unimi.it

L. Tanca
Universitd di Verona and Politecnico di Milano
Ca' Vignal2, 1-37134 Verona, Italy, tanca@sci.univr.it

Abstract
In order to pose effective queries to Web sites, some form of site data model
must be implicitly or explicitly shared by users. Many approaches try to com­
pensate for the lack of such a common model by considering the hypertextual
structure of Web sites; unfortunately, this structure has usually little to do
with data semantics. In this paper a different technique is proposed that al­
lows for both navigational and logical/conceptual description of Web sites.
The data model is based on WG-Iog, a query language based on the graph­
oriented database model of GOOD (Gyssens et al. 1997) and G-Iog (Paredaens
et al. 1995), which allows the description of data manipulation primitives
via (sets of) graph(s). The WG-Iog description of a Web site schema is lexi­
cally based on standard hypermedia design languages, thus allowing for easy
schema generation by current hypermedia authoring environments. The use
of WG-log for queries allows graphic query construction with respect to both
the navigational and the logical parts of schemata. Site schemata are man­
aged by Schema Robots, which assist clients in the process of identification
and retrieval of a set of candidate schemata. On the basis of the set of can­
didate schemata, the client may then query individual Web sites; extensive
data caching is used to avoid flooding resulting from an excessive number
of candidates. A remote Qu.ery Manager process, running side by side with
standard Web servers, manages query execution and handles the presentation
of the results to the client. Our schema is particularly suited for Intranets,
while allowing for a smooth migration of Internet Web sites as more and
more of them are produced on the basis of hypermedia design and generation
methodologies.

Keywords
World Wide Web, query languages, schema-based semantics of Web sites

Data Mining and Reverse Engineering S. Spaccapictra & F. Maryanski (Eds.)
© 1998 IFlP. Published by Chapman & Hall

22 Part One Invited Talks

1 INTRODUCTION

The steady growth in the amount of data published via the World Wide
Web (WWW) has led to a number of attempts to index Web's contents.
Initially, these attempts only tried to collect and index title-like information
about every reachable page of data on the WWW, and then build Boolean
keyword searches into that database. Today, one could hardly find a Web
search engine relying on term indexing alone. However, although many of the
new search engines present a sophisticated query interface, the results they
deliver are perceived by the user community as unsatisfactory. In our opinion,
this situation is mainly due to the following three causes:

• Noise effect
In the current systems, query language interfaces suggest precise semantics
while the underlying keyword search mechanism remains mainly syntactical
in nature and therefore prone to the well-known noise and silence side­
effects. Sophisticated indexing techniques exploiting HTML tagging may
relieve this problem, but by no means solve it completely.

• Flatness of results
Currently, query results are flat lists of pages that do not capture the
underlying structure of the searched Web sites. As a consequence, retrieved
information neither is easily presented to the user nor can be efficiently
reorganized.

• Non-HTML objects indexing The increasing presence of non-HTML
objects (Hu et al. 1996) attached to Web pages (such as multimedia clips
or Java applets) jeopardizes automatic index construction and update.

The above considerations suggest to complement keyword-based searching
with database-style support for querying the Web. Several research projects
addressed this problem, and are reviewed in Section 2

1.1 An outline of our approach

Our approach, differently from the others, is based on the following two prin­
ciples:

• The availability of a schema is a prerequisite for the development of an
effective query mechanism, since the schema carries most of the semantic
information needed for querying.

• If a well specified methodology is used to design a Web site, some notion
of schema is present during the site design process

Structuring and querying Web sites

Logical Description Languages
(e.g. G-Log, GOOD)

Mixed logicaVnavigational
description languages

(Automatic publishing tools
e.g. MS FrontPage)

Real Web Pages
(static or dynamic)

23

Figure 1 Links between conceptual and hypermedia description languages

So, this paper proposes to reuse site design artefacts to attain (semi)automatic
construction of schemata for Web sites. As outlined in Fig. 1, many popular
authoring environments for Web sites already hint at the idea of some sort
of navigational schema to be chosen by the user as the basis of automatic
site generation. Moreover, several research prototypes of Web site generators
(Fraternali et al. 1997)) based on hypermedia design languages such as HDM
(Garzotto et al. 1995) (Hypermedia Design Metholf), YOO (Balasubramanian
et al. 1995), RMM (Isakowitz et al. 1995) and the like, are becoming available.
This suggests the possibility of semi or fully automatic generation of schemata
during the design process, allowing for smooth migration to a more organized
Web as more and more sites are produced on the basis of standard design
and generation methodologies. In our approach, Web site schemata form a
distributed hierarchy, managed by server processes called Schema Robots. A
Schema Robot is a server process which mantains and provides information

24 Part One Invited Talks

about Web sites schemata, stored and presented in WG-log form, to the clients
in execution over the Net. Although in this paper we will not elaborate on
site classification issues, it is worthwhile to remark that Schema Robots need
not be all equal; for instance, a set of domain schema robots might form a
distributed partitioned repository of all known schemata on the Net, while
category schema robots might allow for a subject-related search. In this per­
spective, Robots can also be regarded as browsable similarity-based hypertexts
of WG-Iog schemata, providing semantically rich information about Web sites.
This hypertextual structure should not be regarded simply as "another tech­
nique" for schema identification; the availability of large, searchable schema
repositories may prove a significant contribution to the much needed Web
restructuring via resource indexing systems (Budi et al. 1996). All queries

are formulated w.r.t. a site schema, supposed to be known in advance to the
client formulating the query. In order to formulate and execute the query, the
following steps are performed:

1. Schema identification
2. Schema retrieval and query formulation
3. Instance retrieval
4. Presentation of results

In the following, we shall describe each step in some detail.

• Schema identification
To get the best results, queries to the Web must be formulated on the
basis of a known schema. In order to help the user in identifying a suit­
able schema w.r.t. the planned query, facilities for schema browsing and
keyword-searching, together with a Thesaurus are available at Robot sites.
The Thesaurus is mainly intended to provide a browsable controlled vo­
cabulary to help the user in getting acquainted with the schema data dic­
tionary. Note that, as the number of stored schemata will grow, automatic
Thesaurus inizialization and update (Damiani et al. 1995) will become cru­
cial for the Robots' performance.

• Schema retrieval
With the help of the keyword-based information provided by the user, the
Schema Robot's search engine identifies candidate schemata to be proposed
to the user. With the help of a graphical editor, the user constructs ap­
propriate queries for the schemata identified by the Robot; therewith, on
reception of the 'schema-based user queries, the Robot consults an instance
cache to discard sites that surely do not contain the desired information.
This cache holds, for each schema, the values of selected attributes of some
entities; aging mechanisms are required to ensure its consistency. The result
of this second step is a list of Web sites together with valid references to
them, i.e. the network addresses of the associated query manager processes.

Structuring and querying Web sites

INTRODUCTION

..-__________ --;~ Query Reception

I
Query + Filter Conditions , - - - ~

Client Area I
'- - - -

Query + Filter
Conditions

List of Query
r----''----, Manager ID

1----IScheme Robot

I
List of Entry
Points (URL)

• Instance retrieval

Query
"Broadcast"

f----I Instance Cache
Manager

,------
" s~<;!! E~in! A!:!:.a _ I

,-------.
" ~m~te ~te ~re! _ J

Figure 2 System architecture

25

The query is now broadcast to all query managers running on candidate
Web sites. If the candidate Web site is based on an underlying database,
the Query Manager process can provide an interface to the existing DBMS.
In general, however, the Query Manager will maintain a copy of the WG­
log schema and some indexing information linking navigational entities to
(a list of) URLs. The resulting instance is computed at the target site;
efficiency is critical at this moment, both in terms of time of computation
of the resulting instance and of amount of gathered data that has to be
trasmitted to the originating site.

• Presentation of Results
This last step performs gathering and presentation of the result pages, on
the basis of the data structures mapping HTML pages and the navigational
part of the schema. This is a very interesting problem, since the amount of
information contained in the resulting instance may be huge and the user
must be presented with a synthesis of the available information, organized
in such a way that he/she can choose to browse the resulting instance
according to different perspectives. The synthetical result submitted to the
user must enable him/her to formulate one or more appropriate goals that
select exactly the needed information from the computed instance, to be
transported to the originating site.

Fig.2 summarizes the system architecture. This paper is organized as follows:

26 Part One Invited Talks

WebqucryapproM:be$

Figure 3 A semantics-based classification of research approaches to WWW
querying

Section 2 presents a survey of existing techniques, Sections 3 and 4 describe the
data model and language of WG-Iog; Section 5 presents the naive computation
of WG-Iog queries, while Section 6 draws the conclusions and outlines future
research on the same subject.

2 RELATED WORK

The huge amount of data published via the World Wide Web has led to a
number of research efforts on techiques to index, query and restructure WWW
sites contents. In this section we provide a brief overview of related work (see
also (Torlone 1996)). Our discussion of previous work is based on how the
various approaches deal with semantics representation. Figure 3 summarizes
the overview .

• Free text indexing - No semantics representation Early approaches to Web
indexing tried to collect and index title-like information about every reach­
able page of data on the WWW and then build Boolean keyword searches
into the resulting document. The JumpStation (Fletcher 1990), probably
the first well-known system designed to index WWW information, collected

Structuring and querying Web sites 27

only information marked by HTML <TITLE>-tags from pages it encoun­
tered. Many current Web search engines are still partially based on this
approach, where search results are flat lists of HTML pages, completely
unrelated to the hypertextual structure of the sites they come from. In the
past few years, as the amount of WWW data continued to increase, users
grew unsatisfied with pure keyword matching. Nowadays, one could hardly
find a Web search engine relying on terms indexing alone. Some keyword­
based indexes, like the World Wide Web Worm (WWWW) (McBryan et
al. 1994), the Web Crawler (Pinkerton 1997) and Lycos (Lycos 1997) try to
complement keyword indexing by taking into account the HTML document
structure in order to make educated guesses about semantics. For example,
Lycos summarizes the actual content of documents by taking advantage of
human-tagged information (HTML headings), of often-appearing keywords
and of the introductory text that generally is positioned at the beginning
of a file.

• Semantics representation via taxonomies
Several search engines do not use keyword indexing but exploit a taxonomy
representing sites' content. The popular Yahoo (Yahoo! 1997) search engine
relies on a broad hierarchical classification systems of subjects, much simi­
lar to those used by the Library of Congress or by the ACM Classification
of Computer Science Topics. Yahoo's success has spawned multiple similar
tools, all based on the idea of providing large, monolithic servers holding
indexes of site contents (Point (Lycos-2 1997), Magellan (McKinley 1997),
and others). Recently, evolvable taxonomies were proposed, such as the
one developed by the CommerceNet Consortium (Hamilton 1997). In or­
der to exploit taxonomy classification together with free text searching,
obtaining the power of a full- fledged text-retrieval system, Meta-search ser­
vices (MetaCrawler (Selberg et al. 1995), Web Compass (Quarterdeck 1997),
SavvySearch (Dreilinger 1997) and others) have been built that are able
to use powerful free-text indexes like Altavista (Altavista 1997) as subrou­
tines, querying all available services in parallel and then aggregating the
results. Although these search engines present a sophisticated query inter­
face, the results they deliver are currently perceived by the user community
as unsatisfactory.

• Structural representation of sites A considerable amount of research has
been made on how to complement keyword-based searching with database­
style support for querying the Web. Several projects addressed this prob­
lem, and three main WWW query languages have been proposed so far:
Web3QL (Konopnicki et al. 1995), WebSQL (Mendelzon et al. 1996) and
WebLog (Lakshmanan et al. 1996). The first two languages are modelled
after standard SQL used for RDBMS, while the third retains the flavour of
the Datalog language. However, all these three languages give only a small
fraction of the power of the original query languages they are based on, since
they explicitly refrain from semantics representation issues. Web3QL and

28 Part One Invited Talks

WebSQL offer a standard relational representation of Web pages, such as
Document (urI, title, text, type, length), which can be easily con­
structed from HTML tagging. The user can present SQL-like queries to
Web sites based on that relational representation. Content- related queries
(for instance: Document. text = Italy) are mapped in free-text searches
using a conventional search engine. In addition to similar query capabili­
ties, Web3QL offers an elementary graph pattern search facility, allowing
users to search for simple paths in the graph representing the navigational
structure of a Web site. Finally, WebLog (and its enhancements, (Giannotti
et al. 1997)) propose an 0-0 instance representation technique which leads
to a powerful deductive query language, fully equipped with recursion; but
again it lacks any representation of data semantics.

• Instance-based semantics representation Nowadays it is widely recognized
that to effectively build Web-based services, developers must be able to
impose impose some sort of semantic structure upon Web sites in order to
support efficient information capture (Hamilton 1997). In fact, the subject
of semantics representation for Web sites in currently actively investigated.
A well-known technique for instance-based semantics representation is se­
mantic tagging, i.e. the use of extended HTML tags to represent semantic
information. The basic idea underlying this approach is that a new kind
of HTML tags can be used to superimpose a representation of seman­
tics (based, for instance, on standard entity-relationship technique) on the
navigational structure of a Web site. Semantic tags can be used to refer
to an entity the data stored in a Web page and to denote relationships
as semantic links that are not meant to be followed in navigation only,
but used for querying purposes. Several variations of the semantic tagging
idea ((Kogan et al. 1997)) have been proposed by various researchers (a
logic-programming approach is presented in (Loke et al. 1997)). Moreover,
HTML standard committees (W3C 1997) seem to be considering its par­
tial endorsement. However, no effective query support based on semantic
tagging is yet available. Other approaches try to address the problem of
Web indexing and querying in the more general framework of dealing with
semi-structured data. For instance, the Tsimmis system (Garcia-Molina et
al. 1997) proposes an OEM object model to represent semistructured in­
formation together with a powerful query language, Laurel. For each Web
site, the user defines OEM classes to be used in its Tsimmis representation.
Then, an extraction technique based on a textual filter is applied, initializ­
ing objects from Web pages data. Indeed, Tsimmis additional DataGuide
facility allows to identify regularities in the extracted instance represen­
tation to prod~ce a full-fledged site schema. We are currently exploring
translation of DataGuide schemata into WG-Iog in order to add query ca­
pability to Tsimmis sites.

• Schema-based semantics representation

Structuring and querying Web sites 29

With the partial exception of Tsimmis, all the approaches described above
lack an explicit notion of schema. This may be due to the fact that, while
the advantages of schema-aware query formulation are widely recognized in
the database context, this technique has been considered unfeasible on the
WWW because no schema information is normally associated to Web sites.
However, this situation is evolving as an increasing number of sites, partic­
ularly on Intranets, are being designed using well specified design method­
ologies such as HDM (Garzotto et al. 1995), RMM (Isakowitz et al. 1995)
YOO (Balasubramanian et at. 1995) and the like. When a methodology is
used to design a Web site, some notion of site schema is present during the
site design process. Indeed, many commercial authoring environments for
Web sites already hint to the idea of some sort of navigational schema to
be choosen by the user as the basis of automatic site generation. Moreover,
several research prototypes of Web site generators based on hypermedia de­
sign languages, are becoming available Some of these tools even translate
the site schema into a relational representation (Fraternali et al. 1997). A
representation of semantics based on a standard relational schema is also
used in the Araneus project (Atzeni et al. 1997) where Web site crawling
is employed to induce schemata of Web pages. These fine grained page
schemata are later to be combined into a site-wide schema, and a special­
purpose language, Ulixes is used to build relational views over it. Rsulting
relational views can be queried using standard SQL language, or trasformed
in autonomous Web sites using a second special-purpose language, Pene­
lope. It is worth observing that the Araneus approach to schema induction
requires semi-structured Web site data to be converted in relational tables
to allow database-style querying. In WG-Iog, graph-based instance and
schema representations are used for query, while Web site data remain in
their original, semi-structured form.

3 A GRAPH DESCRIPTION LANGUAGE FOR WEB SITES:
THE DATA MODEL

The use of design methodologies for hypermedia applications is currently well
estabilished and widely employed to develop multimedia hypertextual applica­
tions. Besides allowing conventional or object-oriented design elements, such
as E/R-like entities or OMT-like classes, nearly all modern hypermedia spec­
ification languages are associated to a presentation and navigation semantics,
clearly indicating how entities are to be presented to the user. This approach
is justified by the fact that no query support is generally offered to hypermedia
products, whose fruition is based on free user navigation. In our opinion, an
effective Description and Manipulation Language for Web sites should be able
to complement the hypermedia model with database-like querying capabili­
ties. In this Section we describe WG-log, a graph-oriented language support-

30 Part One Invited Talks

ing representation of both data model and structural entities. Graphs have
indeed been an integral part of the database design process, and ever more
so after the introdnction of object-oriented data models; moreover they are
naturally connected to graphical interfaces. WG-Iog has its formal basis in the
graph-oriented language G-Iog (Paredaens et al. 1995). G-Iog, being designed
as an object database language, only includes two node types (representing
abstract and concrete objects) and one link type (representing logical rela­
tionships, generally aggregations); WG-Iog extends G-Iog by including some
standard hypermedia design notations that allow for linking conceptual en­
tities and relationships to navigational concepts such as WWW pages and
links. As a result, WG-Iog schemata cleanly denote both logical and struc­
tural concepts. In addition, there is the possibility to specify some hypertext
features like index pages or entry points, which are essentially related to the
hypertext presentation style. In this section we informally present the data

model and the language of WG-Log; more formal definitions and examples of
G-Log can be found in (Paredaens et al. 1995, Paredaens et al. 1997). Refer­
ences can also be found in (Garzotto et al. 1995), where the HDM hypermedia
design language is presented. In WG-Log, directed labeled graphs are used as
the formalism to specify and represent Web site schemata, instances, views
(also called access structures) , and queries. The nodes of the graphs stand
for objects and the edges indicate relationships between objects. In WG-Iog
schemata, instances and queries we distinguish four kinds of nodes:

• slots (also called concrete nodes), depicted as ellipses, indicate objects with
a representable value; instances of slots are strings, texts, pictures, sound
tracks, numbers, movies or movie frames (depending on the desired gran­
ularity of representation);

• entities, depicted as rectangles, indicate abstract objects such as monu­
ments, professors, or cities; note that an abstract object can be chosen to
correspond to one or more Web pages, possibly linked to each other in dif­
ferent ways: it is for the designer to decide which level of granularity the
schema is meant to convey;

• collections, represented by a rectangle containing a set of horizontal lines,
indicate collections or aggregates of objects, generally of the two types
above; an instance of such a node is the index of all painters in a certain
gallery (in this case we say that the collection is homogeneous) ;

• entry points, depicted as triangles, represent the unique page that gives
access to a portion of the site (or to an alternative view of the site), for
instance the site home page. To each entry point type corresponds only
one node in the site instance. It is worth noticing that entry points and
collection nodes can be used in queries for creating new access structures
for providing alternative presentations of Web portions.

We also distinguish four kinds of graph edges:

Structuring and querying Web sites 31

• structural edges, representing navigational links between pages; such an
edge may stand for the link between a collection node representing the
painter index and the entity of type painter;

• logical edges, representing logical relationships between objects; such an
edge might connect painters to their paintings. The presence of a logical
relationship does not necessarily imply the presence of a navigational link
between the two entities at the instance level;

• double edges, representing a navigational link coupled with a logical link;
such an edge might connect a painter to his/her paintings, also indicating
that there is a navigational link that allows paintings to be reached from
their author;

• Is_a edges, representing the inheritance relationship between objects; such
an edge might connect painters and artists (as their generalization). Note
that Is_a edges are only allowed in a WG-Iog schema, while do not make
any sense at the instance and query level.

As an example of use of these lexical elements, Fig. 5 shows the WG-Iog
schema while Fig. 6 contains an istance, namely the experimental WWW site
whose URL is http://romeo.sci.univr.it/vrtour . This WG-Iog descrip­
tion was easily obtained as a part of the design process of the site; an HTML
page is shown in Fig. 7. It should be also noted that all entities in a schema
are marked by a unique code that will be exploited during query execution.

3.1 WG-Iog schemata

A (site) schema contains information about the structure of the Web site.
This includes the (types of) objects that are allowed in the Web site, how
they can be related and what values they can take. Logical as well as naviga­
tional (structural) elements can be included into a site schema, thus allowing
for flexibility in the choice of the level of detail. In fact, index and entry point
nodes, mainly related to the hypertext presentation style, may be used by
designers who want to emphasize the hypertextual aspects of their design,
while such elements can be dispensed with by those designers who are more
interested in the conceptual contents of the site schema. As far as node gran­
ularity is concerned, an entity can be chosen to represent one or more site
pages. For instance in a University site an entity Professor in the schema
might be mapped in the instance to one page or several pages for each profes­
sor; in the latter case, pages referring to the same professor may be differently
linked to each other, the only constraint on different implementations being
the availability at query time of the information about instance references to
their schema entities. Formally, a schema contains the following elements:

• a set of Entry Point labels EP,

32 Part One Invited Talks

D
o
L:l

Relation Name

Relation Name

Isa

Entity

Slot (attribute)

Index

Entry-Point

Logical Link

Navigational Link

Coupled
Logical-Navigational

Link

Figure 4 WG-Iog lexicon

• a set SL of concrete object (or Slot) Labels,
• a set EN L of ENtity Labels, containing the special label dummy,
• a set COL of COllection Labels,
• a set LEL of Logical Edge Labels,
• one Structural Edge Label SEL (which in practice is omitted),
• a set DEL of Double Edge Labels,
• one Is_a edge label ISA,
• and a set P of productions· .

'We require that the productions form a set because we do not allow duplicate productions
in a schema.

Structuring and querying Web sites 33

Figure 5 The WG-Iog schema

The productions dictate the structure of WG-Log instances (which are the
actual sites); the productions are triples representing the types of the edges
in the instance graph. The first component of a production always belongs
to ENL - {dummy} U COL U EP, since only non-concrete objects can be
related to other objects. The second component is an edge label and the third
component is an object label of any type. If the edge label is [SA, the two
node labels must both belong to EN L. A Web site schema can be represented
as a directed labelled graph, by taking all the objects as nodes and all the
productions as edges. Note that two nodes might be connected by more than
one edge. If multiple logical edges connect two nodes, they represent different
relationships between those objects; the presence of a structural edge between
two nodes represents the (possible) presence of a navigational direct link be­
tween the corresponding pages in the site instance: no two nodes, however,
can be connected by more than one structural edge or by more than one ISA
edge, since this would be meaningless. Finally, we assume a function 11" asso­
ciating to each slot label a set of constants, which is its domain; for instance,
the domain of a slot of type image might be the set of all jpeg files.

34 Part One Invited Talks

Home

__ N ~aroque

~Neoclassical
___ N_ _~

Figure 6 The site instance

3.2 WG-Iog instances

Palazzo
Barbieri

A (Web site) instance over a schema S contains the actual information that
is stored in the Web site pages. It is a directed labeled graph I = (N, E). N is
a set of labeled nodes. Each node represents an object whose type is specified
by its label. The label ..\(n) of a node n of N belongs to EP U SL U EN L­
{dummy} U COL". If ..\(n) is in EP, then n is an entry point node, and it
is the only one with label ..\(n); if ..\(n) is in SL, then n is a concrete node
(or a slot); if ..\(n) is in ENL, then n is an abstract object, that can coincide
with one or more or a part of site page; otherwise n is a collection node,
which means that it contains an aggregation of homogeneous or eterogeneous
objects. If n is concrete, it has an additional label print{n), called the print
label, which must be a constant in 7r{..\{n)). E is a set of directed labeled edges.
An edge e of E going from node n to n' is denoted (n,a,n'). a is the label
of e and belongs to LEL U {SEL} U DEL". The edges must also conform to
the productions of the schema, so (..\{n) , a, ..\(n')) must belong to P. Besides
these edges, we also assume an implicit equality edge (a logical edge with an

-Note that no dummy node is allowed in schemata and instances
-Note that no [SA edge is allowed in instances.

Structuring and querying Web sites

Palazzo Barbieri

AuII:Hu::

Period:

Oeseri ption

Adem defArena.lUllato SUO ci pIIzu Bra. ~ .. Liston torge i
palazzo MwIIc:ip .. gtW1d6 edifido con c:oIonnIto • proMO carinzi.
Costnito nee 1.,. IU diagno ci GIuseppe 8IIbferi. GmemeI
denneoallto net ~orto deltultlme ~ .·ttato mtIurIto •• -"..ttno
posterfOrmtnte con ragglunta cI un corpo cI fIbbrIcIlbIidato
NeI'lntemo hInno tromo potto 1 ami quIdri Iummti epIsodIdeh
storie veronete che gil' omaYII10 a .. 1one della GrIn Guardia.

Figure 7 A page of our trial site

35

36 Part One Invited Talks

NAME ~~~BIBIENA
Monument Index

AUTHOR I-------i~ MONUMENT

Results

Figure 8 A WG-Log solid rule.

equality sign as label) going from each node of the instance to itself. Figure 6
contains an instance over the schema of Figure 5.

4 WG-LOG RULES AND PROGRAMS

A WG-Log query is a (set of) graph(s) whose nodes can belong to all four node
types used in schemata, and whose edges can be logical, double or structural.
This allows for pure database-like and pure navigational queries; w.r.t. our
experimental site, a query could select all the monuments which are the work
of a given author as opposed to another listing all the pages in the site linked to
more than five distincts nodes. It is interesting to remark that this technique
also opens the interesting possibility of mixed queries, e.g. listing the works
index page of all authors. In all three cases, in fact, the query results in a
transformation performed on the instance. WG-Log rules, programs and goals
can be used to deduce, query and restructure information from the information
contained in the Web site pages. Rules are themselves graphs, which can be
arranged in programs in such a way that new views (or perspectives) of (parts
of) the Web site be available for the user. Like Horn clauses, rules in WG-Log
represent implications. To distinguish the body of the rule from the head in
the graph P representing the rule, the part of P that corresponds to the body
is colored red, and the part that corresponds to the head is green. Since this
paper is in black and white, we use thin lines for red nodes and edges and thick
lines for green ones. Figure 8 contains a WG-Log rule over the Web site schema
of Figure 5. It expresses the query: Find all the monuments whose author is
Bibiena. Note the use of the Result collection node in the rule: it will build
an access structure in the resulting instance. The application of a rule r to a
site instance I produces a minimal superinstance of I that satisfies r. We say
that an instance satisfies a rule if every matching of the red part of the rule in
the instance can be extended to a matching of whole rule in the instance. The
matchings of (parts of) rules in instances are called embeddings. For example,
the instance I of Figure 6 does not satisfy the rule r of Figure 8. In fact, there

Structuring and querying Web sites 37

Name~
I---_~~

Bibiena
Result

Venetian

~~V

Figure 9 A WG-Log rule involving negation.

is one possible embedding i of the red part of r in I, hence, the monument
-nodes pertaining to Bibiena of I must be connected to a Result-node and
this is not the case. Because I does not satisfy r, I is extended in a minimal
way such that it satisfies r. In this case, the effect of rule application is that
a Result-node is created and is linked to all the appropriate monument­
nodes by an SEL -edge. Now the instance satisfies the rule, and no smaller
superinstance of I does, so this is the result of the query specified by the rule.
Note that the new instance, obtained from the query, contains a new access
structure (the node RESULT and its links to all Bibiena's monuments), which
allows the retrieval of the nodes in an alternative way, that was not possible in
the initial instance. We will also see in the sequel that WG-Iog also allows the
expression of goals, in order to filter out non-interesting information from the
instance obtained from the query. Rules in WG-Log can also contain negation
in the body; we use solid lines to represent positive information and dashed
lines to represent negative information. So a WG-Log rule can contain three
colors: red solid (RS), red dashed (RD), and green solid (GS). The rule of
Figure 9 expresses the query find all monuments of the venetian period whose
author is not Bibiena. The instance I of Figure 6 also does not satisfy this
rule. The two possible embeddings of the RS part of r in I are applicable since
they cannot be extended to embeddings of the RS and the RD part of r in
I. Hence, the monument-nodes of I should be connected to a Result-node
(to extend the found embeddings to embedding also of the GS part of r in 1),
and this is not the case in I.

4.1 WG-Log Rules and Goals

We now formally define what WG-Log rules are and when an instance satisfies
such a rule, or a set of such rules. As in G-Iog, WG-Log rules are constructed
from patterns. A pattern over a Web site schema is similar to an instance over
that schema. There are three differences: 1) in a pattern equality edges may
occur between different nodes, having the same label, 2) in a pattern concrete
nodes may have no print label, and 3) a pattern may contain entity nodes

38 Part One Invited Talks

with the dummy label, used to refer to a generic instance node. A pattern
denotes a graph that has to be embedded in an instance, i.e. matched to a
part of that instance. An equality edge between two different nodes indicates
that they must be mapped to the same node of an instance. A colored pattern
over a schema is a pattern of which every node and edge is assigned one of
the colors RS, RD, or GS. If P is a colored pattern, we indicate by PRS the
red solid part of P, by PRS,RD the whole red part of P, and by PRs,as the
solid part of P. In a generic colored pattern, these parts will not be patterns
themselves, since they can contain dangling edges. However, for P to be a
WG-Log rule, we require that these subparts of P be patterns. Formally, a
WG-Log rule r consists of two schemata 81 and 82, and a graph P. 81 is
called the source (schema) of r. 82 is a superschema* of 81, and is referred
to as the target (schema) of r. P must be a colored pattern over 82 such
that PRS, PRS,RD and PRs,as are patterns over 8 2 • Figure 8 contains the
colored pattern P of a rule, that has as source the schema of Figure 5, and as
target the same schema, to which a Result-node and an in-edge are added.
To define when an instance satisfies a rule, we need the notion of embedding.
An embedding i of a pattern P = (Np,Ep) in an instance I = (NI,EI) is a
total mapping i : Np --t NI , such that for every node n in Np holds that

• either >.(i(n)) = >'(n) or
• There is a production (>.(n),ISA,>.(i(n») in the target scheme;

moreover, if n has a print label, then print(i(n» = print(n). Also, if (n, 0:, n')
is an edge in Ep, then (i(n), 0:, i(n'» must be an edge in EI . Let P = (N,E)
be a subpattern of the pattern pI and let I be an instance. An embedding j of
pI in I is an extension of an embedding i of P in I if i = jiN. An embedding i
of P in I is constrained by pI if pI equals P or if there is no possible extension
of i to an embedding of pI in I. We use the notion of "constrained" to express
negation: an embedding is constrained by a pattern if it cannot be extended
to an embedding of that pattern. Let r be a WG-Log rule with colored pattern
P and target 82. An instance lover 82 satisfies r if every embedding PRS in
I that is constrained by PRS,RD, can be extended to an embedding PRs,as
in I. As we informally mentioned before, the instance of Figure 6 does not
satisfy the rule of Figure 9. The only embedding i of PRS in I is constrained
by PRS,RD (because it cannot be extended to an embedding of PRS,RD in 1),
and cannot be extended to an embedding of PRs,as in I. To express complex
queries in WG-Log, we can combine several rules that have the same source
S1 and target S2 in one WG-Log set. So, a WG-Log set A is a finite set ofWG­
Log rules that work on the same schemata. 8 1 is called the source (schema) of
A and 82 is its target (schema). The generalization of satisfaction to the case
of WG-Log rule sets is straightforward. Let A be a WG-Log set with target

• Sub- and superschema, sub- and superinstance, and sub- and superpattern are defined
with respect to set inclusion.

Structuring and querying Web sites 39

S. An instance lover S satisfies A if I satisfies every rule of A. In WG-Log
is also possible to use goals. A goal over a schema S is a subschema of S, and
is used to select information of the Web site. Normally, a goal is combined
with a query to remove uninteresting information from the resulting instance.
The effect of applying a goal G over a schema S to an instance lover S is
called I restricted to G (notation: IIG) and is the maximal subinstance of I
that is an instance over G. The definition of satisfaction of a WG-Log set is
easily extended to sets with goals. If A is a WG-Log set with target S2, then
an instance lover G satisfies A with goal G if there exists an instance l' over
S2 such that I' satisfies A and I'IG = I.

4.2 WG-Log Programs and Semantics

There is a strong connection between G-Log and first order predicate calculus.
In (Paredaens et al. 1995) it is shown that for every formula on a binary many
sorted first order language there is an effective procedure that transforms it
into an "equivalent" set of G-Log rules and a goal; the converse is trivially
true. Hence, G-Log can be seen as a graphical counterpart of logic. WG-Iog is
only a syntactic variant of G-Iog, whose semantics we want to retain in order
to keep its expressive power and representation capability; thus the same
correspondence holds for WG-Iog. Consider for instance the rule of Figure 9.
This may be expressed in First Order Logic as follows:

VmVpVa3result : {created_in(m,p) /\period(p, "Venetian")/\

/\name(a, "Bibiena") /\ -,created_by(m, a)} => SEL(result, m)

Note that simpler languages like Datalog do not capture the whole expressive
power of G-Iog: a Datalog rule is expressed in G-Iog by a simple rule containing
red solid nodes and edges, and only one green edge. Thus, it is not possible to
express the semantics of WG-Iog by translating it in Datalog. In the previous

section we defined when an instance satisfies a WG-Log rule set; by examining
the logical counterpart of WG-Iog, we get an intuition of the meaning of a
WG-Iog rule; however, in order to use WG-Log as a query language we need
to define its effect, i.e. the way it acts on instances to produce other instances;
only in this way we will be able to isolate, among the infinity of instances that
satisfy a certain rule, the one we choose as the rule's result. The semantics of
a WG-Log set A with source SI and target S2 is thus a binary relation over
instances defined by:

Sem(A) = {(I, J) 11. I is an instance over SI and J is an instance over S2,
2. J satisfies A,
3. JISI = I,
4. No sub instance of J satisfies conditions 1. to 3.

40 Part One Invited Talks

Item 3 expresses the requirement that in WG-Log we only allow queries, and
no updates. H a WG-Log rule contains a red dashed and a green solid part,
then it can be satisfied either by adding the red dashed part to an instance
or by adding the green solid part. Because of item 3, the source schema can
be chosen is such a way that only one (or even none) of the two extensions
is allowed. In this way the semantics of the rule also depends on its source
schema. Item 4 expresses minimality. In general there will be more than one
minimal result of applying a WG-Log set to an instance, which corresponds
to the fact that WG-Log is non-deterministic and Sern is a relation and not
a function. In WG-Log, it is allowed to sequence sets of rules. A WG-Log
program P is a finite list of WG-Log sets such that the target schema of each
set of P equals the source schema of the next set in the program. The source
schema of the first set is the source (schema) of P, and the target schema of
the last set is the target (schema) of P. The semantics Sern(P) of a WG-Log
program P = (AI, ... , An) is the set of pairs of instances (II ,!n+1), such that
there is a chain of instances h ... , In for which (1j,Ij+1) belongs to Sem(Aj),
for all j. H a number of WG-Log rules are put in sequence instead of in one set,
then, because minimization is applied after each rule, fewer minimal models
are allowed. In fact, sequencing can be used to make a non-deterministic set of
rules deterministic. Finally, a goal can be used in conjunction with a program.
H 82 is the target of P and G is a goal over 82, then the semantics of P with
goal Gis: Sem(P,G) = { (I,J) 13(I,J') E Sem(P) such that J'IG = J}.
There are 3 complexity levels of constructions to express queries in WG-Log:
rules, sets and programs, which all three can be used in conjunction with a
goal. This results in the six cases stated in the table of Figure 10. The use
of all the three complexity levels guarantees that WG-Iog is computationally
complete (Paredaens et al. 1995), i.e., it can produce any desired superinstance
of a given instance. Normally, one or two rules, together with a goal, are

without goal

rule WG-Log rule
set of rules WG-Log set

sequence of sets of rules WG-Log program

with goal

WG-Log rule + goal
WG-Log set + goal

WG-Log program + goal

Figure 10 The complexity levels of WG-Log queries.

sufficient to express most of the interesting queries we can pose to a Web site;
however, some important queries do require the full language complexity. As
an example, suppose we want to find all the pairs of nodes that are unreachable
from each other by navigation; in other words, we want all the pairs that are
not in the transitive closure of the relationship expressed by label SEL. An
easy and natural way to solve this query is to compute the transitive closure

Structuring and querying Web sites

SEL-lab: 0
stc

---------------------------1

SEL-label

~ ctc

Figure 11 The complement of the navigational transitive closure.

G~-c-tc---l·~G

41

Figure 12 A Goal on the complement of the navigational transitive closure.

stc of SEL, and then take the complement ctc of that relation. The WG-Log
program of Figure 11 solves this problem. It is a sequence of two sets of rules.
The first set, which consists of two rules, adds stc-edges (logical) between all
nodes that are linked by a SEL-path. The second set has only one rule and
takes the complement of the transitive closure by adding a ctc-edge if there
is no stc-edge. Eventually, a goal can be added to select only the node pairs
that are linked by the ctc (logical) relationship.

Another interesting query might ask all the nodes that are not reachable
from a specific one, for instance the page of the artist Bibiena; in this case,
the program must be complemented by the goal of Figure 12. Note typically,
such goals can be used to optimize computation; however, this is outside the
scope of this paper.

5 EVALUATION OF WG-LOG PROGRAMS

In order to be able to express a rich set of queries, we have conceived WG­
log as a language with a complex semantics; this gives rise to a computation
algorithm that, in the general case, is very inefficient. However, in most cases
the queries are expressed by only one or two rules, and possibly a goal which
contributes to improving the efficiency of program computation. In the first
subsection we present the computation algorithm in its most general form;
later, we present an example of query computation, based on very simple

42 Part One Invited Talks

data structures, which gives the flavour of the real complexity the system
will have to tolerate without any improvements. In future work we will study
appropriate data structures, and optimizations based on the goal structure,
which will offer the possibility of increasing the efficiency of the naive approach
presented here.

5.1 A general Computation Algorithm

We now present the FastComp algorithm, that computes the result of a generic
WG-Log set by using a kind of backtracking fixpoint technique. Suppose we
are given a set of rules A = { Tl, ... , Tk } with source SI and target S2, and
a finite instance lover SI. The procedure FastComp will try to extend I to
an instance J, in such a way that J is finite and (I, J) E Sem(A). If this
is impossible, it will print the message: "No solution". FastComp calls the
function Extend, which recursively adds elements to J until J satisfies A, or
until J cannot be extended anymore to satisfy A. In this last case, the function
backtracks to points where it made a choice among a number of minimal
extensions and continues with the next possible minimal choice. If the function
backtracks to its first call, then there is no solution. In this sense, FastComp
reminds the "backtracking fixpoint" procedure that computes stable models
(Sacca et al. 1990).

Procedure FastComp(I,A,SI,S2)
J=Ij
if (Extend(J, A,S!, S2»
{

}

minimize(J)j
output(J)j

else
output("No solution");

Function Extend(var J, A, SI, S2»
for (l = 1, ... , k) (* the rules are Tl, •.• Tk *)

for (every embedding i of ~.RS in J)
if (J does not satisfy Tl due to i)
{

SetExt = 4>;
if (P,.RD i- 4»

for (every legal, minimal RD extension Ext of J)
SetExt = SetExtU {Ext}j

for (every legal, minimal GS extension Ext of J)
SetExt = SetExtU {Ext}j

}

Structuring and querying Web sites

while (SetExt =f r/J)
{

}

select Ext from SetExt;
add Ext to J;
if (Extend(J, A,S1,S2»

return (True);
else

remove Ext from J;
SetExt = SetExt\ { Ext};

return (False);

return (True);

43

The algorithm uses the notion of "legal, minimal extension" of an instance.
By legal, we mean that the extension may only contain nodes and edges not
belonging to S1. Minimal indicates that no subpart of the extension is already
sufficient to make the embedding under consideration extendible. We denote
by FastComp(A) the set of all the pairs of instances (1, J), such that J is
an output of the FastComp algorithm, for inputs I and A. In (Paredaens et
al. 1997) we proved that the FastComp algorithm is sound and finitely com­
plete:
FastComp(A) = FSem(A), for every WG-Log set A. Note that the complex-

ity of FastComp is accounted for by the high expressive power of the language.
The algorithm reduces to the standard fixpoint computation for those WG­
Log programs that are the graphical counterpart of Datalog, i.e. sets of rules
that consist of a red solid part and one green solid edge. Thus, efficiency of
computation can easily be achieved for such programs, while optimization
becomes more and more needed (and difficult) if more expressive queries are
posed.

5.2 An example of Rule Evaluation

We shall now briefly comment on how FastComp can be used, at least in
principle, to execute a WG-log query. Our sample query execution is based
on three data structures:

• the (Typed) Adiacency Matrix TAM of the instance graph.
• the Instance Table IT linking schema entities and their instances
• the URL list UL linking instances to HTML pages or other network objects.

The role of the instance table is in many respects similar to that of the ontology
introduced in (Luke et al. 1997). Each entry of the adiacency matrix lists the

44 Part One Invited Talks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
3 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 1
5 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
6 1 0 0 0 1 0 0 0 0 0 "1 0 0 0 0 0 0 0 0
7 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
8 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
9 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

10 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0
11 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
12 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0
13 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0
14 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
15 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1
16 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
17 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
18 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0

Figure 13 A simplified version of the adjacency matrix

typed links (navigational, logical or coupled) connecting a pair of nodes. For
the sake of conciseness, Fig. 13 does not show such a matrix, but a simpler,
binary matrix where each entry i, j is 1 whenever instances i and j are linked
by a navigational step, a logical relationships or both. Moreover, rows and
columns pertaining to slots are not listed. Actually, we do not need to store
slots in the TAM matrix; it is sufficient and surely less space-consuming to
store them in auxiliary data structures pertaining to each single entity, in
order to allow fast label matching. IT (Fig.14) associates the unique code of
each schema entity to a list of unique numbers called instance identifiers; this
allows the Query Manager to trace instances of schema-defined entities in the
instance graph. Finally, the URL list associates each instance identifier to one
or more HTTP URLs. This means that in our approach an istance of an entity
is not necessarily a single page, though this will probably be the most frequent
case. With respect to the sample query in Fig. 9, asking for the monuments of
the Venetian period whose author is not Francesco Bibiena, we remark that
the initial values of FastComp parameters are as follows: the whole instance
of Fig. 6, the single rule of Fig. 9 and the source schema of Fig. 5. The target
schema for this query can be easily deduced from the rule and will therefore
be omitted.

To start with, IT is consulted to obtain the identifiers of the instance en­
tities that match the rule entities. The following lists are obtained: Period
= {1,2,3,4}, Monument = {8,lO,13,16,17,18}. These lists are then used to

Structuring and querying Web sites

Entiy Instance
A 0

B 1,2,3,4
C 5,6,7
D E,F,G
E 8,lO,13,16,17,lB

F 9,11,12
G 14,15

Figure 14 A sample instance table

extract from the TAM the following possible adiacency information:

1 17 14
2 16
3 18
4 8 10

45

An equality test on the labels leaves only two possible embeddings for the
red solid part of the rule: 4,8 and 4, 10. Now, we are ready to follow the tree
of recursive calls of Extend for our sample FastComp execution. Luckily, the
recursion depth turns out to be only four in this case.
first call of Extend
1st for iteration; embedding 4,8 does not satisfy rule
Red dashed valid extensions: 5 (from TAM: the only instance of Venetian
monument not related to Bibiena)
Green solid valid extensions: Result
SetExt = {5, Result}
1st while iteration
J = JU {5}

second call of Extend
1st for iteration; embedding 4,8 does not satisfy rule
Red dashed valid extensions: none
Green solid valid extensions: Result
SetExt = {Result}
1st while iteration
J = J U {Result}

3rd call of Extend
1st for iteration; embedding: 4,8 does satisfy rule
2nd for iteration; embedding: 4,10 does not satisfy rule

46 Part One Invited Talks

Red dashed valid extensions: none
Green solid valid extensions: Result
SetExt = {Result}
1st while iteration
J = J U {Result}

4th call of Extend
1st for iteration; embedding: 4,8 satisfies rule
2nd for iteration; embedding: 4,10 satisfies rule
Returns True (ends 4th call)

Returns True (ends 3rd call)
Returns True (ends 2nd call)

Returns True (ends 1st call)
The instance thus obtained is minimal, thus it is a solution to the query.

6 CONCLUDING REMARKS AND FUTURE WORK

Experience with current WWW search engines has shown that the availability
of a database-like schema is a prerequisite for any effective Web query mech­
anism. Though we are fully aware that the system described in this paper
is only a preliminary step towards a satisfactory solution of the Web struc­
turing and querying problem, we believe that its conceptual basis is sound
and that its development may offer several interesting subjects for future re­
search. For instance, a most important and promising issue is query execution
itself, which must be both made more efficient and specialized to take into
account the goal structure, schema information possibly available from a re­
lational database underlying the site, and semantic properties of G-Iog, which
enable the schema Robot to refuse a priori trivial or unsatisfiable queries.
This is most needed since, as we have seen, WG-Iog retains the expressive
power of the original G-log language: a carefully tuned execution mechanism
is thus required to keep complexity in check (and to avoid "result explosion")
when dealing with those queries that involve some kind of transitive closure.
Another critical topic is the presentation of results: here not only efficiency
considerations are involved, but also problems concerning the heterogeneous
quality of the information stored: where text, images, sound tracks and sim­
ilar pieces of information must be arranged to be shown to the user in a
coherent and understandable way, architect's skills are needed, besides those
of a Software designer. We plan to deal in the near future with querying fed­
erate Web sites. Namely, we plan to allow Web users to formulate queries
on the basis of several site schemata at once, extending our query execution
mechanism to take into account links between distinct Web sites. Finally, we
plan to address at a later time more difficult problems like (semiautomatic)
schema deduction on the basis of instance inspection; schema integration over
unrelated sites; schema update at instance evolution; effective treatment of
instance and schema graphs when these assume huge proportions.

Structuring and querying Web sites 47

Acknowledgments
The authors wish to thank Riccardo Torlone for putting forward the idea

that gave rise to the present research. Thanks are also due to Franca Garzotto
for many useful discussions on the subject. We also like to thank the students
Michele Baldi and Fabio Insaccanebbia, from the University of Verona, for
their contribution to the design and development of the Schema Robot as a
part of their Master's Thesis, and the anonymous referees of this paper for
their careful reading and useful comments on an earlier version.

REFERENCES

Altavista, Inc. (1997) AltaVista Search Index
http://www.altavista.digital.com.

Atzeni P., Mecca G. and Merialdo P. (1997) Semistructured and Structured
Data in the Web: Going Back and Forth http://www.research.att.com/
suciu/workshop-papers. html.

Balasubramanian V., Bang Min M. and Joonhee (1995) M.Yoo: A Systematic
Approach to Designing a WWW Application Communications of the
ACM 38(8), 47-48.

Budi Y. and Dik Lun L. (1996) WISE: A World Wide Web Resource Database
System IEEE 'lhmsanctions on Knowledge and Data Engineering 8(4),
548-554.

Damiani E. and Fugini M.G. (1995) Automatic Thesaurus Construction Sup­
porting Fuzzy Retrieval of Reusable Software in Proceedings of ACM­
SAC'9S, Nashville.

Dreilinger D. (1997) SavySearch Home Page http://www.lycos.com.
Fletcher J. (1990) Jumpstation FrontPage http://www.stir.ac.uk/js.
Fraternali P. and Paolini P. (1997) Autoweb: Automatic Gener-

ation of Web Applications from Declarative Specifications
http://www.ing.unico.it/A utoweb.

Garcia-Molina H. and Hammer J. (1997) Integrating and Accessing Hetero­
geneous Information Sources in Tsimmis in Proceedings of ADBIS 97,
St. Petersburg.

Garzotto F., Mainetti and L. Paolini P. (1995) Hypermedia Design Languages
Evaluation Issues Communications of the ACM bf 38(8), 74-86.

Giannotti F., Manco G. and Pedreschi D. (1997) A Deductive Data Model for
Representing and Querying Semistructured Data in Proceedings of the
fLCP 97 Post-Conference Workshop on Logic Programming Tools for
Internet Applications, Leuwen.

Gyssens M., Paredaens J., Van der Bussche J. and Van Gucht D. (1994) A
Graph-oriented Object Database Model IEEE Transactions on Knowl­
edge and Data Engineering, 6(4), 572-586.

S. Hamilton (1997) E-Commerce for the 21st Century IEEE Computer, 30(5),
44-47.

48 Part One Invited Talks

Hu J., Nicholson D., Mungall C., Hillyard A. and Archibald A. (1996) We­
binTool: A Generic Web to Database Interface Building Tool in Pro­
ceedings of the 1996 DEXA Workshop.

Isakowitz T., Stohr Edward A. D. and Balasubramanian, P. (1995) RMM: a
Language for Structured Hypermedia Design Communications of the
ACM, bf 38(8).

Kogan Y., Michaeli D., Sagiv Y. and Shmueli O. (1997)Utilizing the Multiple
Facets of WWW Contents in Proceedings of the 1997 NGITS Work­
shop.

Konopnicki D. and Shmueli O. (1995) W3QL: A Query System for the World
Wide Web in Proceedings of the 21th International Conference on Very
Large Databases, Zurich.

Lakshmanan L., Sadri F. and Subramanian I. (1996) A Declarative Language
for Querying and Restructuring the Web in Proceedings of the 1996
IEEE RIDE-NDS Workshop.

Loke S.W. and Davison A. (1997) LogicWeb: Enhancing the Web with Logic
Programming
http://www.cs.mu.oz.auFswloke/papers/lw.ps.gz.

Lucarella D. and Zanzi A. (1996) A Visual Retrieval Environment for Hyper­
media Information Systems ACM 'Iransactions on Information Sys­
tems, 14(1).

Luke S., Spector L., Rager D. and Hendler J. (1997) Ontology-based Web
Agents http://www. cs. umd. edu/projects/plus/SHOE.

Lycos, Inc. (1997) The Lycos Catalog of the Internet http://www.lycos.com.
Lycos, Inc. (1997) Point http://www.pointcom.com.
McBryan, O. A. (1994) WWWW and GENVL: Tools for Taming the Web, in

Proceedings of the First Annual WWW Conference, Geneva.
The McKinley Group, Inc. (1997) Magellan Internet Guide

http://www.cs.colostate.edu/dreiling/smartform.html/
Mendelzon A., Mihaila G. and Milo T. (1996) Querying the World Wide Web,

in Proceedings of the Conference on Parallel and Distributed Informa­
tion Systems, Toronto.

Paredaens J., Peelman P. and Tanca L. (1995) G-Iog: A Graph-based Query
Language IEEE Transactions on Knowledge and Data Engineering,
(7), 436-453.

Paredaens J., Peelman P. and Tanca L. (1997) Merging Graph-Based and
Rule-Based Computation, Data and Knowledge Engineering, to ap­
pear.

Pinkerton B. (1997) Finding What people Want: Experiences with We­
bCrawler, in Proceedings of the Second Annual WWW/Mosaic Con­
ference, Geneva.

Quarterdeck Inc. (1997) Web Compass Fact Sheet
http://www.arachnid.qdeck.com/qdeck/products/webcompass/

Sacca D., Zaniolo C. (1990) Stable Models and Non-Determinism in Logic

Structuring and querying Web sites 49

Programs with Negation in Proceedings of the 1990 PODS Conference.
Selberg E. and Etzioni O. (1995) Multiservice Search and Comparison Using

MetaCrawler in Proceedings of the Fourth International WWW Con­
ference.

Torlone R. (1996) Linguaggi di Interrogazione per il World Wide Web in
Proceedings of SEBD '96, S. Miniato.

Yahoo, Inc.(1997) Yahoo! http://www.yahoo.com.
World Wide Web Consortium {1997} HTML 4.0 Specification Working Draft

http://www. w3. org/TR/WD-html.

7 BIOGRAPHIES

Ernesto Damiani is an Assistant Professor at the University of Milan Re­
search Centre located in Crema, Italy. He received the Laurea degree in Engi­
neering from the University of Pavia and a Ph.D. in Computer Science from
the University of Milan. His current research interests include semi-structured
and structured information processing, soft computing, software reuse and
object-oriented distributed computing, and has published a number of papers
on these subjects. He is a member of the Steering Committee of the ACM
Symposium on Applied Computing.

Letizia Tanca is currently a Full Professor at the University of Verona,
and cooperates with Politecnico di Milano. She received her Laurea degree
in Mathematics from the University of Naples, and her Ph.D. from the Po­
litecnico di Milano. Her current research interests include advanced database
systems, logic programming, and new paradigms for querying semistructured
data. She is the author of several journal and conference papers on these sub­
jects; she is also an author of the book "Logic Programming and Databases" ,
published by Springer Verlag.

