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Abstract 
In order to pose effective queries to Web sites, some form of site data model 
must be implicitly or explicitly shared by users. Many approaches try to com­
pensate for the lack of such a common model by considering the hypertextual 
structure of Web sites; unfortunately, this structure has usually little to do 
with data semantics. In this paper a different technique is proposed that al­
lows for both navigational and logical/conceptual description of Web sites. 
The data model is based on WG-Iog, a query language based on the graph­
oriented database model of GOOD (Gyssens et al. 1997) and G-Iog (Paredaens 
et al. 1995), which allows the description of data manipulation primitives 
via (sets of) graph(s). The WG-Iog description of a Web site schema is lexi­
cally based on standard hypermedia design languages, thus allowing for easy 
schema generation by current hypermedia authoring environments. The use 
of WG-log for queries allows graphic query construction with respect to both 
the navigational and the logical parts of schemata. Site schemata are man­
aged by Schema Robots, which assist clients in the process of identification 
and retrieval of a set of candidate schemata. On the basis of the set of can­
didate schemata, the client may then query individual Web sites; extensive 
data caching is used to avoid flooding resulting from an excessive number 
of candidates. A remote Qu.ery Manager process, running side by side with 
standard Web servers, manages query execution and handles the presentation 
of the results to the client. Our schema is particularly suited for Intranets, 
while allowing for a smooth migration of Internet Web sites as more and 
more of them are produced on the basis of hypermedia design and generation 
methodologies. 
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1 INTRODUCTION 

The steady growth in the amount of data published via the World Wide 
Web (WWW) has led to a number of attempts to index Web's contents. 
Initially, these attempts only tried to collect and index title-like information 
about every reachable page of data on the WWW, and then build Boolean 
keyword searches into that database. Today, one could hardly find a Web 
search engine relying on term indexing alone. However, although many of the 
new search engines present a sophisticated query interface, the results they 
deliver are perceived by the user community as unsatisfactory. In our opinion, 
this situation is mainly due to the following three causes: 

• Noise effect 
In the current systems, query language interfaces suggest precise semantics 
while the underlying keyword search mechanism remains mainly syntactical 
in nature and therefore prone to the well-known noise and silence side­
effects. Sophisticated indexing techniques exploiting HTML tagging may 
relieve this problem, but by no means solve it completely. 

• Flatness of results 
Currently, query results are flat lists of pages that do not capture the 
underlying structure of the searched Web sites. As a consequence, retrieved 
information neither is easily presented to the user nor can be efficiently 
reorganized. 

• Non-HTML objects indexing The increasing presence of non-HTML 
objects (Hu et al. 1996) attached to Web pages (such as multimedia clips 
or Java applets) jeopardizes automatic index construction and update. 

The above considerations suggest to complement keyword-based searching 
with database-style support for querying the Web. Several research projects 
addressed this problem, and are reviewed in Section 2 

1.1 An outline of our approach 

Our approach, differently from the others, is based on the following two prin­
ciples: 

• The availability of a schema is a prerequisite for the development of an 
effective query mechanism, since the schema carries most of the semantic 
information needed for querying. 

• If a well specified methodology is used to design a Web site, some notion 
of schema is present during the site design process 



Structuring and querying Web sites 

Logical Description Languages 
(e.g. G-Log, GOOD) 

Mixed logicaVnavigational 
description languages 

(Automatic publishing tools 
e.g. MS FrontPage) 

Real Web Pages 
(static or dynamic) 

23 

Figure 1 Links between conceptual and hypermedia description languages 

So, this paper proposes to reuse site design artefacts to attain (semi)automatic 
construction of schemata for Web sites. As outlined in Fig. 1, many popular 
authoring environments for Web sites already hint at the idea of some sort 
of navigational schema to be chosen by the user as the basis of automatic 
site generation. Moreover, several research prototypes of Web site generators 
(Fraternali et al. 1997)) based on hypermedia design languages such as HDM 
(Garzotto et al. 1995) (Hypermedia Design Metholf), YOO (Balasubramanian 
et al. 1995), RMM (Isakowitz et al. 1995) and the like, are becoming available. 
This suggests the possibility of semi or fully automatic generation of schemata 
during the design process, allowing for smooth migration to a more organized 
Web as more and more sites are produced on the basis of standard design 
and generation methodologies. In our approach, Web site schemata form a 
distributed hierarchy, managed by server processes called Schema Robots. A 
Schema Robot is a server process which mantains and provides information 
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about Web sites schemata, stored and presented in WG-log form, to the clients 
in execution over the Net. Although in this paper we will not elaborate on 
site classification issues, it is worthwhile to remark that Schema Robots need 
not be all equal; for instance, a set of domain schema robots might form a 
distributed partitioned repository of all known schemata on the Net, while 
category schema robots might allow for a subject-related search. In this per­
spective, Robots can also be regarded as browsable similarity-based hypertexts 
of WG-Iog schemata, providing semantically rich information about Web sites. 
This hypertextual structure should not be regarded simply as "another tech­
nique" for schema identification; the availability of large, searchable schema 
repositories may prove a significant contribution to the much needed Web 
restructuring via resource indexing systems (Budi et al. 1996). All queries 

are formulated w.r.t. a site schema, supposed to be known in advance to the 
client formulating the query. In order to formulate and execute the query, the 
following steps are performed: 

1. Schema identification 
2. Schema retrieval and query formulation 
3. Instance retrieval 
4. Presentation of results 

In the following, we shall describe each step in some detail. 

• Schema identification 
To get the best results, queries to the Web must be formulated on the 
basis of a known schema. In order to help the user in identifying a suit­
able schema w.r.t. the planned query, facilities for schema browsing and 
keyword-searching, together with a Thesaurus are available at Robot sites. 
The Thesaurus is mainly intended to provide a browsable controlled vo­
cabulary to help the user in getting acquainted with the schema data dic­
tionary. Note that, as the number of stored schemata will grow, automatic 
Thesaurus inizialization and update (Damiani et al. 1995) will become cru­
cial for the Robots' performance. 

• Schema retrieval 
With the help of the keyword-based information provided by the user, the 
Schema Robot's search engine identifies candidate schemata to be proposed 
to the user. With the help of a graphical editor, the user constructs ap­
propriate queries for the schemata identified by the Robot; therewith, on 
reception of the 'schema-based user queries, the Robot consults an instance 
cache to discard sites that surely do not contain the desired information. 
This cache holds, for each schema, the values of selected attributes of some 
entities; aging mechanisms are required to ensure its consistency. The result 
of this second step is a list of Web sites together with valid references to 
them, i.e. the network addresses of the associated query manager processes. 
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The query is now broadcast to all query managers running on candidate 
Web sites. If the candidate Web site is based on an underlying database, 
the Query Manager process can provide an interface to the existing DBMS. 
In general, however, the Query Manager will maintain a copy of the WG­
log schema and some indexing information linking navigational entities to 
(a list of) URLs. The resulting instance is computed at the target site; 
efficiency is critical at this moment, both in terms of time of computation 
of the resulting instance and of amount of gathered data that has to be 
trasmitted to the originating site. 

• Presentation of Results 
This last step performs gathering and presentation of the result pages, on 
the basis of the data structures mapping HTML pages and the navigational 
part of the schema. This is a very interesting problem, since the amount of 
information contained in the resulting instance may be huge and the user 
must be presented with a synthesis of the available information, organized 
in such a way that he/she can choose to browse the resulting instance 
according to different perspectives. The synthetical result submitted to the 
user must enable him/her to formulate one or more appropriate goals that 
select exactly the needed information from the computed instance, to be 
transported to the originating site. 

Fig.2 summarizes the system architecture. This paper is organized as follows: 
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Figure 3 A semantics-based classification of research approaches to WWW 
querying 

Section 2 presents a survey of existing techniques, Sections 3 and 4 describe the 
data model and language of WG-Iog; Section 5 presents the naive computation 
of WG-Iog queries, while Section 6 draws the conclusions and outlines future 
research on the same subject. 

2 RELATED WORK 

The huge amount of data published via the World Wide Web has led to a 
number of research efforts on techiques to index, query and restructure WWW 
sites contents. In this section we provide a brief overview of related work (see 
also (Torlone 1996)). Our discussion of previous work is based on how the 
various approaches deal with semantics representation. Figure 3 summarizes 
the overview . 

• Free text indexing - No semantics representation Early approaches to Web 
indexing tried to collect and index title-like information about every reach­
able page of data on the WWW and then build Boolean keyword searches 
into the resulting document. The JumpStation (Fletcher 1990), probably 
the first well-known system designed to index WWW information, collected 
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only information marked by HTML <TITLE>-tags from pages it encoun­
tered. Many current Web search engines are still partially based on this 
approach, where search results are flat lists of HTML pages, completely 
unrelated to the hypertextual structure of the sites they come from. In the 
past few years, as the amount of WWW data continued to increase, users 
grew unsatisfied with pure keyword matching. Nowadays, one could hardly 
find a Web search engine relying on terms indexing alone. Some keyword­
based indexes, like the World Wide Web Worm (WWWW) (McBryan et 
al. 1994), the Web Crawler (Pinkerton 1997) and Lycos (Lycos 1997) try to 
complement keyword indexing by taking into account the HTML document 
structure in order to make educated guesses about semantics. For example, 
Lycos summarizes the actual content of documents by taking advantage of 
human-tagged information (HTML headings), of often-appearing keywords 
and of the introductory text that generally is positioned at the beginning 
of a file. 

• Semantics representation via taxonomies 
Several search engines do not use keyword indexing but exploit a taxonomy 
representing sites' content. The popular Yahoo (Yahoo! 1997) search engine 
relies on a broad hierarchical classification systems of subjects, much simi­
lar to those used by the Library of Congress or by the ACM Classification 
of Computer Science Topics. Yahoo's success has spawned multiple similar 
tools, all based on the idea of providing large, monolithic servers holding 
indexes of site contents (Point (Lycos-2 1997), Magellan (McKinley 1997), 
and others). Recently, evolvable taxonomies were proposed, such as the 
one developed by the CommerceNet Consortium (Hamilton 1997). In or­
der to exploit taxonomy classification together with free text searching, 
obtaining the power of a full- fledged text-retrieval system, Meta-search ser­
vices (MetaCrawler (Selberg et al. 1995), Web Compass (Quarterdeck 1997), 
SavvySearch (Dreilinger 1997) and others) have been built that are able 
to use powerful free-text indexes like Altavista (Altavista 1997) as subrou­
tines, querying all available services in parallel and then aggregating the 
results. Although these search engines present a sophisticated query inter­
face, the results they deliver are currently perceived by the user community 
as unsatisfactory. 

• Structural representation of sites A considerable amount of research has 
been made on how to complement keyword-based searching with database­
style support for querying the Web. Several projects addressed this prob­
lem, and three main WWW query languages have been proposed so far: 
Web3QL (Konopnicki et al. 1995), WebSQL (Mendelzon et al. 1996) and 
WebLog (Lakshmanan et al. 1996). The first two languages are modelled 
after standard SQL used for RDBMS, while the third retains the flavour of 
the Datalog language. However, all these three languages give only a small 
fraction of the power of the original query languages they are based on, since 
they explicitly refrain from semantics representation issues. Web3QL and 
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WebSQL offer a standard relational representation of Web pages, such as 
Document (urI, title, text, type, length), which can be easily con­
structed from HTML tagging. The user can present SQL-like queries to 
Web sites based on that relational representation. Content- related queries 
(for instance: Document. text = Italy) are mapped in free-text searches 
using a conventional search engine. In addition to similar query capabili­
ties, Web3QL offers an elementary graph pattern search facility, allowing 
users to search for simple paths in the graph representing the navigational 
structure of a Web site. Finally, WebLog (and its enhancements, (Giannotti 
et al. 1997)) propose an 0-0 instance representation technique which leads 
to a powerful deductive query language, fully equipped with recursion; but 
again it lacks any representation of data semantics. 

• Instance-based semantics representation Nowadays it is widely recognized 
that to effectively build Web-based services, developers must be able to 
impose impose some sort of semantic structure upon Web sites in order to 
support efficient information capture (Hamilton 1997). In fact, the subject 
of semantics representation for Web sites in currently actively investigated. 
A well-known technique for instance-based semantics representation is se­
mantic tagging, i.e. the use of extended HTML tags to represent semantic 
information. The basic idea underlying this approach is that a new kind 
of HTML tags can be used to superimpose a representation of seman­
tics (based, for instance, on standard entity-relationship technique) on the 
navigational structure of a Web site. Semantic tags can be used to refer 
to an entity the data stored in a Web page and to denote relationships 
as semantic links that are not meant to be followed in navigation only, 
but used for querying purposes. Several variations of the semantic tagging 
idea ((Kogan et al. 1997)) have been proposed by various researchers (a 
logic-programming approach is presented in (Loke et al. 1997)). Moreover, 
HTML standard committees (W3C 1997) seem to be considering its par­
tial endorsement. However, no effective query support based on semantic 
tagging is yet available. Other approaches try to address the problem of 
Web indexing and querying in the more general framework of dealing with 
semi-structured data. For instance, the Tsimmis system (Garcia-Molina et 
al. 1997) proposes an OEM object model to represent semistructured in­
formation together with a powerful query language, Laurel. For each Web 
site, the user defines OEM classes to be used in its Tsimmis representation. 
Then, an extraction technique based on a textual filter is applied, initializ­
ing objects from Web pages data. Indeed, Tsimmis additional DataGuide 
facility allows to identify regularities in the extracted instance represen­
tation to prod~ce a full-fledged site schema. We are currently exploring 
translation of DataGuide schemata into WG-Iog in order to add query ca­
pability to Tsimmis sites. 

• Schema-based semantics representation 
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With the partial exception of Tsimmis, all the approaches described above 
lack an explicit notion of schema. This may be due to the fact that, while 
the advantages of schema-aware query formulation are widely recognized in 
the database context, this technique has been considered unfeasible on the 
WWW because no schema information is normally associated to Web sites. 
However, this situation is evolving as an increasing number of sites, partic­
ularly on Intranets, are being designed using well specified design method­
ologies such as HDM (Garzotto et al. 1995), RMM (Isakowitz et al. 1995) 
YOO (Balasubramanian et at. 1995) and the like. When a methodology is 
used to design a Web site, some notion of site schema is present during the 
site design process. Indeed, many commercial authoring environments for 
Web sites already hint to the idea of some sort of navigational schema to 
be choosen by the user as the basis of automatic site generation. Moreover, 
several research prototypes of Web site generators based on hypermedia de­
sign languages, are becoming available Some of these tools even translate 
the site schema into a relational representation (Fraternali et al. 1997). A 
representation of semantics based on a standard relational schema is also 
used in the Araneus project (Atzeni et al. 1997) where Web site crawling 
is employed to induce schemata of Web pages. These fine grained page 
schemata are later to be combined into a site-wide schema, and a special­
purpose language, Ulixes is used to build relational views over it. Rsulting 
relational views can be queried using standard SQL language, or trasformed 
in autonomous Web sites using a second special-purpose language, Pene­
lope. It is worth observing that the Araneus approach to schema induction 
requires semi-structured Web site data to be converted in relational tables 
to allow database-style querying. In WG-Iog, graph-based instance and 
schema representations are used for query, while Web site data remain in 
their original, semi-structured form. 

3 A GRAPH DESCRIPTION LANGUAGE FOR WEB SITES: 
THE DATA MODEL 

The use of design methodologies for hypermedia applications is currently well 
estabilished and widely employed to develop multimedia hypertextual applica­
tions. Besides allowing conventional or object-oriented design elements, such 
as E/R-like entities or OMT-like classes, nearly all modern hypermedia spec­
ification languages are associated to a presentation and navigation semantics, 
clearly indicating how entities are to be presented to the user. This approach 
is justified by the fact that no query support is generally offered to hypermedia 
products, whose fruition is based on free user navigation. In our opinion, an 
effective Description and Manipulation Language for Web sites should be able 
to complement the hypermedia model with database-like querying capabili­
ties. In this Section we describe WG-log, a graph-oriented language support-
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ing representation of both data model and structural entities. Graphs have 
indeed been an integral part of the database design process, and ever more 
so after the introdnction of object-oriented data models; moreover they are 
naturally connected to graphical interfaces. WG-Iog has its formal basis in the 
graph-oriented language G-Iog (Paredaens et al. 1995). G-Iog, being designed 
as an object database language, only includes two node types ( representing 
abstract and concrete objects) and one link type (representing logical rela­
tionships, generally aggregations); WG-Iog extends G-Iog by including some 
standard hypermedia design notations that allow for linking conceptual en­
tities and relationships to navigational concepts such as WWW pages and 
links. As a result, WG-Iog schemata cleanly denote both logical and struc­
tural concepts. In addition, there is the possibility to specify some hypertext 
features like index pages or entry points, which are essentially related to the 
hypertext presentation style. In this section we informally present the data 

model and the language of WG-Log; more formal definitions and examples of 
G-Log can be found in (Paredaens et al. 1995, Paredaens et al. 1997). Refer­
ences can also be found in (Garzotto et al. 1995), where the HDM hypermedia 
design language is presented. In WG-Log, directed labeled graphs are used as 
the formalism to specify and represent Web site schemata, instances, views 
(also called access structures) , and queries. The nodes of the graphs stand 
for objects and the edges indicate relationships between objects. In WG-Iog 
schemata, instances and queries we distinguish four kinds of nodes: 

• slots (also called concrete nodes), depicted as ellipses, indicate objects with 
a representable value; instances of slots are strings, texts, pictures, sound 
tracks, numbers, movies or movie frames (depending on the desired gran­
ularity of representation); 

• entities, depicted as rectangles, indicate abstract objects such as monu­
ments, professors, or cities; note that an abstract object can be chosen to 
correspond to one or more Web pages, possibly linked to each other in dif­
ferent ways: it is for the designer to decide which level of granularity the 
schema is meant to convey; 

• collections, represented by a rectangle containing a set of horizontal lines, 
indicate collections or aggregates of objects, generally of the two types 
above; an instance of such a node is the index of all painters in a certain 
gallery (in this case we say that the collection is homogeneous) ; 

• entry points, depicted as triangles, represent the unique page that gives 
access to a portion of the site (or to an alternative view of the site), for 
instance the site home page. To each entry point type corresponds only 
one node in the site instance. It is worth noticing that entry points and 
collection nodes can be used in queries for creating new access structures 
for providing alternative presentations of Web portions. 

We also distinguish four kinds of graph edges: 
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• structural edges, representing navigational links between pages; such an 
edge may stand for the link between a collection node representing the 
painter index and the entity of type painter; 

• logical edges, representing logical relationships between objects; such an 
edge might connect painters to their paintings. The presence of a logical 
relationship does not necessarily imply the presence of a navigational link 
between the two entities at the instance level; 

• double edges, representing a navigational link coupled with a logical link; 
such an edge might connect a painter to his/her paintings, also indicating 
that there is a navigational link that allows paintings to be reached from 
their author; 

• Is_a edges, representing the inheritance relationship between objects; such 
an edge might connect painters and artists (as their generalization). Note 
that Is_a edges are only allowed in a WG-Iog schema, while do not make 
any sense at the instance and query level. 

As an example of use of these lexical elements, Fig. 5 shows the WG-Iog 
schema while Fig. 6 contains an istance, namely the experimental WWW site 
whose URL is http://romeo.sci.univr.it/vrtour . This WG-Iog descrip­
tion was easily obtained as a part of the design process of the site; an HTML 
page is shown in Fig. 7. It should be also noted that all entities in a schema 
are marked by a unique code that will be exploited during query execution. 

3.1 WG-Iog schemata 

A (site) schema contains information about the structure of the Web site. 
This includes the (types of) objects that are allowed in the Web site, how 
they can be related and what values they can take. Logical as well as naviga­
tional (structural) elements can be included into a site schema, thus allowing 
for flexibility in the choice of the level of detail. In fact, index and entry point 
nodes, mainly related to the hypertext presentation style, may be used by 
designers who want to emphasize the hypertextual aspects of their design, 
while such elements can be dispensed with by those designers who are more 
interested in the conceptual contents of the site schema. As far as node gran­
ularity is concerned, an entity can be chosen to represent one or more site 
pages. For instance in a University site an entity Professor in the schema 
might be mapped in the instance to one page or several pages for each profes­
sor; in the latter case, pages referring to the same professor may be differently 
linked to each other, the only constraint on different implementations being 
the availability at query time of the information about instance references to 
their schema entities. Formally, a schema contains the following elements: 

• a set of Entry Point labels EP, 
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Figure 4 WG-Iog lexicon 

• a set SL of concrete object (or Slot) Labels, 
• a set EN L of ENtity Labels, containing the special label dummy, 
• a set COL of COllection Labels, 
• a set LEL of Logical Edge Labels, 
• one Structural Edge Label SEL (which in practice is omitted), 
• a set DEL of Double Edge Labels, 
• one Is_a edge label ISA, 
• and a set P of productions· . 

'We require that the productions form a set because we do not allow duplicate productions 
in a schema. 
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Figure 5 The WG-Iog schema 

The productions dictate the structure of WG-Log instances (which are the 
actual sites); the productions are triples representing the types of the edges 
in the instance graph. The first component of a production always belongs 
to ENL - {dummy} U COL U EP, since only non-concrete objects can be 
related to other objects. The second component is an edge label and the third 
component is an object label of any type. If the edge label is [SA, the two 
node labels must both belong to EN L. A Web site schema can be represented 
as a directed labelled graph, by taking all the objects as nodes and all the 
productions as edges. Note that two nodes might be connected by more than 
one edge. If multiple logical edges connect two nodes, they represent different 
relationships between those objects; the presence of a structural edge between 
two nodes represents the (possible) presence of a navigational direct link be­
tween the corresponding pages in the site instance: no two nodes, however, 
can be connected by more than one structural edge or by more than one ISA 
edge, since this would be meaningless. Finally, we assume a function 11" asso­
ciating to each slot label a set of constants, which is its domain; for instance, 
the domain of a slot of type image might be the set of all jpeg files. 
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3.2 WG-Iog instances 

Palazzo 
Barbieri 

A (Web site) instance over a schema S contains the actual information that 
is stored in the Web site pages. It is a directed labeled graph I = (N, E). N is 
a set of labeled nodes. Each node represents an object whose type is specified 
by its label. The label ..\(n) of a node n of N belongs to EP U SL U EN L­
{dummy} U COL". If ..\(n) is in EP, then n is an entry point node, and it 
is the only one with label ..\(n); if ..\(n) is in SL, then n is a concrete node 
(or a slot); if ..\(n) is in ENL, then n is an abstract object, that can coincide 
with one or more or a part of site page; otherwise n is a collection node, 
which means that it contains an aggregation of homogeneous or eterogeneous 
objects. If n is concrete, it has an additional label print{n), called the print 
label, which must be a constant in 7r{..\{n)). E is a set of directed labeled edges. 
An edge e of E going from node n to n' is denoted (n,a,n'). a is the label 
of e and belongs to LEL U {SEL} U DEL". The edges must also conform to 
the productions of the schema, so (..\{n) , a, ..\(n')) must belong to P. Besides 
these edges, we also assume an implicit equality edge (a logical edge with an 

-Note that no dummy node is allowed in schemata and instances 
-Note that no [SA edge is allowed in instances. 
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Figure 8 A WG-Log solid rule. 

equality sign as label) going from each node of the instance to itself. Figure 6 
contains an instance over the schema of Figure 5. 

4 WG-LOG RULES AND PROGRAMS 

A WG-Log query is a (set of) graph(s) whose nodes can belong to all four node 
types used in schemata, and whose edges can be logical, double or structural. 
This allows for pure database-like and pure navigational queries; w.r.t. our 
experimental site, a query could select all the monuments which are the work 
of a given author as opposed to another listing all the pages in the site linked to 
more than five distincts nodes. It is interesting to remark that this technique 
also opens the interesting possibility of mixed queries, e.g. listing the works 
index page of all authors. In all three cases, in fact, the query results in a 
transformation performed on the instance. WG-Log rules, programs and goals 
can be used to deduce, query and restructure information from the information 
contained in the Web site pages. Rules are themselves graphs, which can be 
arranged in programs in such a way that new views (or perspectives) of (parts 
of) the Web site be available for the user. Like Horn clauses, rules in WG-Log 
represent implications. To distinguish the body of the rule from the head in 
the graph P representing the rule, the part of P that corresponds to the body 
is colored red, and the part that corresponds to the head is green. Since this 
paper is in black and white, we use thin lines for red nodes and edges and thick 
lines for green ones. Figure 8 contains a WG-Log rule over the Web site schema 
of Figure 5. It expresses the query: Find all the monuments whose author is 
Bibiena. Note the use of the Result collection node in the rule: it will build 
an access structure in the resulting instance. The application of a rule r to a 
site instance I produces a minimal superinstance of I that satisfies r. We say 
that an instance satisfies a rule if every matching of the red part of the rule in 
the instance can be extended to a matching of whole rule in the instance. The 
matchings of (parts of) rules in instances are called embeddings. For example, 
the instance I of Figure 6 does not satisfy the rule r of Figure 8. In fact, there 
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Name~ 
I---_~~ 

Bibiena 
Result 

Venetian 

~~V 

Figure 9 A WG-Log rule involving negation. 

is one possible embedding i of the red part of r in I, hence, the monument 
-nodes pertaining to Bibiena of I must be connected to a Result-node and 
this is not the case. Because I does not satisfy r, I is extended in a minimal 
way such that it satisfies r. In this case, the effect of rule application is that 
a Result-node is created and is linked to all the appropriate monument­
nodes by an SEL -edge. Now the instance satisfies the rule, and no smaller 
superinstance of I does, so this is the result of the query specified by the rule. 
Note that the new instance, obtained from the query, contains a new access 
structure (the node RESULT and its links to all Bibiena's monuments), which 
allows the retrieval of the nodes in an alternative way, that was not possible in 
the initial instance. We will also see in the sequel that WG-Iog also allows the 
expression of goals, in order to filter out non-interesting information from the 
instance obtained from the query. Rules in WG-Log can also contain negation 
in the body; we use solid lines to represent positive information and dashed 
lines to represent negative information. So a WG-Log rule can contain three 
colors: red solid (RS), red dashed (RD), and green solid (GS). The rule of 
Figure 9 expresses the query find all monuments of the venetian period whose 
author is not Bibiena. The instance I of Figure 6 also does not satisfy this 
rule. The two possible embeddings of the RS part of r in I are applicable since 
they cannot be extended to embeddings of the RS and the RD part of r in 
I. Hence, the monument-nodes of I should be connected to a Result-node 
(to extend the found embeddings to embedding also of the GS part of r in 1), 
and this is not the case in I. 

4.1 WG-Log Rules and Goals 

We now formally define what WG-Log rules are and when an instance satisfies 
such a rule, or a set of such rules. As in G-Iog, WG-Log rules are constructed 
from patterns. A pattern over a Web site schema is similar to an instance over 
that schema. There are three differences: 1) in a pattern equality edges may 
occur between different nodes, having the same label, 2) in a pattern concrete 
nodes may have no print label, and 3) a pattern may contain entity nodes 
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with the dummy label, used to refer to a generic instance node. A pattern 
denotes a graph that has to be embedded in an instance, i.e. matched to a 
part of that instance. An equality edge between two different nodes indicates 
that they must be mapped to the same node of an instance. A colored pattern 
over a schema is a pattern of which every node and edge is assigned one of 
the colors RS, RD, or GS. If P is a colored pattern, we indicate by PRS the 
red solid part of P, by PRS,RD the whole red part of P, and by PRs,as the 
solid part of P. In a generic colored pattern, these parts will not be patterns 
themselves, since they can contain dangling edges. However, for P to be a 
WG-Log rule, we require that these subparts of P be patterns. Formally, a 
WG-Log rule r consists of two schemata 81 and 82, and a graph P. 81 is 
called the source (schema) of r. 82 is a superschema* of 81, and is referred 
to as the target (schema) of r. P must be a colored pattern over 82 such 
that PRS, PRS,RD and PRs,as are patterns over 8 2 • Figure 8 contains the 
colored pattern P of a rule, that has as source the schema of Figure 5, and as 
target the same schema, to which a Result-node and an in-edge are added. 
To define when an instance satisfies a rule, we need the notion of embedding. 
An embedding i of a pattern P = (Np,Ep) in an instance I = (NI,EI) is a 
total mapping i : Np --t NI , such that for every node n in Np holds that 

• either >.(i(n)) = >'(n) or 
• There is a production (>.(n),ISA,>.(i(n») in the target scheme; 

moreover, if n has a print label, then print(i(n» = print(n). Also, if (n, 0:, n') 
is an edge in Ep, then (i(n), 0:, i(n'» must be an edge in EI . Let P = (N,E) 
be a subpattern of the pattern pI and let I be an instance. An embedding j of 
pI in I is an extension of an embedding i of P in I if i = jiN. An embedding i 
of P in I is constrained by pI if pI equals P or if there is no possible extension 
of i to an embedding of pI in I. We use the notion of "constrained" to express 
negation: an embedding is constrained by a pattern if it cannot be extended 
to an embedding of that pattern. Let r be a WG-Log rule with colored pattern 
P and target 82. An instance lover 82 satisfies r if every embedding PRS in 
I that is constrained by PRS,RD, can be extended to an embedding PRs,as 
in I. As we informally mentioned before, the instance of Figure 6 does not 
satisfy the rule of Figure 9. The only embedding i of PRS in I is constrained 
by PRS,RD (because it cannot be extended to an embedding of PRS,RD in 1), 
and cannot be extended to an embedding of PRs,as in I. To express complex 
queries in WG-Log, we can combine several rules that have the same source 
S1 and target S2 in one WG-Log set. So, a WG-Log set A is a finite set ofWG­
Log rules that work on the same schemata. 8 1 is called the source (schema) of 
A and 82 is its target (schema). The generalization of satisfaction to the case 
of WG-Log rule sets is straightforward. Let A be a WG-Log set with target 

• Sub- and superschema, sub- and superinstance, and sub- and superpattern are defined 
with respect to set inclusion. 
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S. An instance lover S satisfies A if I satisfies every rule of A. In WG-Log 
is also possible to use goals. A goal over a schema S is a subschema of S, and 
is used to select information of the Web site. Normally, a goal is combined 
with a query to remove uninteresting information from the resulting instance. 
The effect of applying a goal G over a schema S to an instance lover S is 
called I restricted to G (notation: IIG) and is the maximal subinstance of I 
that is an instance over G. The definition of satisfaction of a WG-Log set is 
easily extended to sets with goals. If A is a WG-Log set with target S2, then 
an instance lover G satisfies A with goal G if there exists an instance l' over 
S2 such that I' satisfies A and I'IG = I. 

4.2 WG-Log Programs and Semantics 

There is a strong connection between G-Log and first order predicate calculus. 
In (Paredaens et al. 1995) it is shown that for every formula on a binary many 
sorted first order language there is an effective procedure that transforms it 
into an "equivalent" set of G-Log rules and a goal; the converse is trivially 
true. Hence, G-Log can be seen as a graphical counterpart of logic. WG-Iog is 
only a syntactic variant of G-Iog, whose semantics we want to retain in order 
to keep its expressive power and representation capability; thus the same 
correspondence holds for WG-Iog. Consider for instance the rule of Figure 9. 
This may be expressed in First Order Logic as follows: 

VmVpVa3result : {created_in(m,p) /\period(p, "Venetian")/\ 

/\name(a, "Bibiena") /\ -,created_by(m, a)} => SEL(result, m) 

Note that simpler languages like Datalog do not capture the whole expressive 
power of G-Iog: a Datalog rule is expressed in G-Iog by a simple rule containing 
red solid nodes and edges, and only one green edge. Thus, it is not possible to 
express the semantics of WG-Iog by translating it in Datalog. In the previous 

section we defined when an instance satisfies a WG-Log rule set; by examining 
the logical counterpart of WG-Iog, we get an intuition of the meaning of a 
WG-Iog rule; however, in order to use WG-Log as a query language we need 
to define its effect, i.e. the way it acts on instances to produce other instances; 
only in this way we will be able to isolate, among the infinity of instances that 
satisfy a certain rule, the one we choose as the rule's result. The semantics of 
a WG-Log set A with source SI and target S2 is thus a binary relation over 
instances defined by: 

Sem(A) = {(I, J) 11. I is an instance over SI and J is an instance over S2, 
2. J satisfies A, 
3. JISI = I, 
4. No sub instance of J satisfies conditions 1. to 3. 
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Item 3 expresses the requirement that in WG-Log we only allow queries, and 
no updates. H a WG-Log rule contains a red dashed and a green solid part, 
then it can be satisfied either by adding the red dashed part to an instance 
or by adding the green solid part. Because of item 3, the source schema can 
be chosen is such a way that only one (or even none) of the two extensions 
is allowed. In this way the semantics of the rule also depends on its source 
schema. Item 4 expresses minimality. In general there will be more than one 
minimal result of applying a WG-Log set to an instance, which corresponds 
to the fact that WG-Log is non-deterministic and Sern is a relation and not 
a function. In WG-Log, it is allowed to sequence sets of rules. A WG-Log 
program P is a finite list of WG-Log sets such that the target schema of each 
set of P equals the source schema of the next set in the program. The source 
schema of the first set is the source (schema) of P, and the target schema of 
the last set is the target (schema) of P. The semantics Sern(P) of a WG-Log 
program P = (AI, ... , An) is the set of pairs of instances (II ,!n+1), such that 
there is a chain of instances h ... , In for which (1j,Ij+1) belongs to Sem(Aj), 
for all j. H a number of WG-Log rules are put in sequence instead of in one set, 
then, because minimization is applied after each rule, fewer minimal models 
are allowed. In fact, sequencing can be used to make a non-deterministic set of 
rules deterministic. Finally, a goal can be used in conjunction with a program. 
H 82 is the target of P and G is a goal over 82, then the semantics of P with 
goal Gis: Sem(P,G) = { (I,J) 13(I,J') E Sem(P) such that J'IG = J}. 
There are 3 complexity levels of constructions to express queries in WG-Log: 
rules, sets and programs, which all three can be used in conjunction with a 
goal. This results in the six cases stated in the table of Figure 10. The use 
of all the three complexity levels guarantees that WG-Iog is computationally 
complete (Paredaens et al. 1995), i.e., it can produce any desired superinstance 
of a given instance. Normally, one or two rules, together with a goal, are 

without goal 

rule WG-Log rule 
set of rules WG-Log set 

sequence of sets of rules WG-Log program 

with goal 

WG-Log rule + goal 
WG-Log set + goal 

WG-Log program + goal 

Figure 10 The complexity levels of WG-Log queries. 

sufficient to express most of the interesting queries we can pose to a Web site; 
however, some important queries do require the full language complexity. As 
an example, suppose we want to find all the pairs of nodes that are unreachable 
from each other by navigation; in other words, we want all the pairs that are 
not in the transitive closure of the relationship expressed by label SEL. An 
easy and natural way to solve this query is to compute the transitive closure 
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SEL-lab: 0 
stc 

---------------------------1 

SEL-label 

~ ctc 

Figure 11 The complement of the navigational transitive closure. 

G~-c-tc---l·~G 
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Figure 12 A Goal on the complement of the navigational transitive closure. 

stc of SEL, and then take the complement ctc of that relation. The WG-Log 
program of Figure 11 solves this problem. It is a sequence of two sets of rules. 
The first set, which consists of two rules, adds stc-edges (logical) between all 
nodes that are linked by a SEL-path. The second set has only one rule and 
takes the complement of the transitive closure by adding a ctc-edge if there 
is no stc-edge. Eventually, a goal can be added to select only the node pairs 
that are linked by the ctc (logical) relationship. 

Another interesting query might ask all the nodes that are not reachable 
from a specific one, for instance the page of the artist Bibiena; in this case, 
the program must be complemented by the goal of Figure 12. Note typically, 
such goals can be used to optimize computation; however, this is outside the 
scope of this paper. 

5 EVALUATION OF WG-LOG PROGRAMS 

In order to be able to express a rich set of queries, we have conceived WG­
log as a language with a complex semantics; this gives rise to a computation 
algorithm that, in the general case, is very inefficient. However, in most cases 
the queries are expressed by only one or two rules, and possibly a goal which 
contributes to improving the efficiency of program computation. In the first 
subsection we present the computation algorithm in its most general form; 
later, we present an example of query computation, based on very simple 
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data structures, which gives the flavour of the real complexity the system 
will have to tolerate without any improvements. In future work we will study 
appropriate data structures, and optimizations based on the goal structure, 
which will offer the possibility of increasing the efficiency of the naive approach 
presented here. 

5.1 A general Computation Algorithm 

We now present the FastComp algorithm, that computes the result of a generic 
WG-Log set by using a kind of backtracking fixpoint technique. Suppose we 
are given a set of rules A = { Tl, ... , Tk } with source SI and target S2, and 
a finite instance lover SI. The procedure FastComp will try to extend I to 
an instance J, in such a way that J is finite and (I, J) E Sem(A). If this 
is impossible, it will print the message: "No solution". FastComp calls the 
function Extend, which recursively adds elements to J until J satisfies A, or 
until J cannot be extended anymore to satisfy A. In this last case, the function 
backtracks to points where it made a choice among a number of minimal 
extensions and continues with the next possible minimal choice. If the function 
backtracks to its first call, then there is no solution. In this sense, FastComp 
reminds the "backtracking fixpoint" procedure that computes stable models 
(Sacca et al. 1990). 

Procedure FastComp(I,A,SI,S2) 
J=Ij 
if (Extend(J, A,S!, S2» 
{ 

} 

minimize(J)j 
output(J)j 

else 
output("No solution"); 

Function Extend( var J, A, SI, S2» 
for (l = 1, ... , k) (* the rules are Tl, •.• Tk *) 

for (every embedding i of ~.RS in J) 
if (J does not satisfy Tl due to i) 
{ 

SetExt = 4>; 
if (P,.RD i- 4» 

for (every legal, minimal RD extension Ext of J) 
SetExt = SetExtU {Ext}j 

for (every legal, minimal GS extension Ext of J) 
SetExt = SetExtU {Ext}j 
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while (SetExt =f r/J) 
{ 

} 

select Ext from SetExt; 
add Ext to J; 
if (Extend(J, A,S1,S2» 

return (True); 
else 

remove Ext from J; 
SetExt = SetExt\ { Ext}; 

return (False); 

return (True); 
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The algorithm uses the notion of "legal, minimal extension" of an instance. 
By legal, we mean that the extension may only contain nodes and edges not 
belonging to S1. Minimal indicates that no subpart of the extension is already 
sufficient to make the embedding under consideration extendible. We denote 
by FastComp(A) the set of all the pairs of instances (1, J), such that J is 
an output of the FastComp algorithm, for inputs I and A. In (Paredaens et 
al. 1997) we proved that the FastComp algorithm is sound and finitely com­
plete: 
FastComp(A) = FSem(A), for every WG-Log set A. Note that the complex-

ity of FastComp is accounted for by the high expressive power of the language. 
The algorithm reduces to the standard fixpoint computation for those WG­
Log programs that are the graphical counterpart of Datalog, i.e. sets of rules 
that consist of a red solid part and one green solid edge. Thus, efficiency of 
computation can easily be achieved for such programs, while optimization 
becomes more and more needed (and difficult) if more expressive queries are 
posed. 

5.2 An example of Rule Evaluation 

We shall now briefly comment on how FastComp can be used, at least in 
principle, to execute a WG-log query. Our sample query execution is based 
on three data structures: 

• the (Typed) Adiacency Matrix TAM of the instance graph. 
• the Instance Table IT linking schema entities and their instances 
• the URL list UL linking instances to HTML pages or other network objects. 

The role of the instance table is in many respects similar to that of the ontology 
introduced in (Luke et al. 1997). Each entry of the adiacency matrix lists the 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
3 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
4 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 
5 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
6 1 0 0 0 1 0 0 0 0 0 "1 0 0 0 0 0 0 0 0 
7 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
8 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
9 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 

10 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 
11 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 
12 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0 
13 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 
14 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
15 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 
16 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 
17 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
18 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 

Figure 13 A simplified version of the adjacency matrix 

typed links (navigational, logical or coupled) connecting a pair of nodes. For 
the sake of conciseness, Fig. 13 does not show such a matrix, but a simpler, 
binary matrix where each entry i, j is 1 whenever instances i and j are linked 
by a navigational step, a logical relationships or both. Moreover, rows and 
columns pertaining to slots are not listed. Actually, we do not need to store 
slots in the TAM matrix; it is sufficient and surely less space-consuming to 
store them in auxiliary data structures pertaining to each single entity, in 
order to allow fast label matching. IT (Fig.14) associates the unique code of 
each schema entity to a list of unique numbers called instance identifiers; this 
allows the Query Manager to trace instances of schema-defined entities in the 
instance graph. Finally, the URL list associates each instance identifier to one 
or more HTTP URLs. This means that in our approach an istance of an entity 
is not necessarily a single page, though this will probably be the most frequent 
case. With respect to the sample query in Fig. 9, asking for the monuments of 
the Venetian period whose author is not Francesco Bibiena, we remark that 
the initial values of FastComp parameters are as follows: the whole instance 
of Fig. 6, the single rule of Fig. 9 and the source schema of Fig. 5. The target 
schema for this query can be easily deduced from the rule and will therefore 
be omitted. 

To start with, IT is consulted to obtain the identifiers of the instance en­
tities that match the rule entities. The following lists are obtained: Period 
= {1,2,3,4}, Monument = {8,lO,13,16,17,18}. These lists are then used to 
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Entiy Instance 
A 0 

B 1,2,3,4 
C 5,6,7 
D E,F,G 
E 8,lO,13,16,17,lB 

F 9,11,12 
G 14,15 

Figure 14 A sample instance table 

extract from the TAM the following possible adiacency information: 

1 17 14 
2 16 
3 18 
4 8 10 
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An equality test on the labels leaves only two possible embeddings for the 
red solid part of the rule: 4,8 and 4, 10. Now, we are ready to follow the tree 
of recursive calls of Extend for our sample FastComp execution. Luckily, the 
recursion depth turns out to be only four in this case. 
first call of Extend 
1st for iteration; embedding 4,8 does not satisfy rule 
Red dashed valid extensions: 5 (from TAM: the only instance of Venetian 
monument not related to Bibiena) 
Green solid valid extensions: Result 
SetExt = {5, Result} 
1st while iteration 
J = JU {5} 

second call of Extend 
1st for iteration; embedding 4,8 does not satisfy rule 
Red dashed valid extensions: none 
Green solid valid extensions: Result 
SetExt = {Result} 
1st while iteration 
J = J U {Result} 

3rd call of Extend 
1st for iteration; embedding: 4,8 does satisfy rule 
2nd for iteration; embedding: 4,10 does not satisfy rule 



46 Part One Invited Talks 

Red dashed valid extensions: none 
Green solid valid extensions: Result 
SetExt = {Result} 
1st while iteration 
J = J U {Result} 

4th call of Extend 
1st for iteration; embedding: 4,8 satisfies rule 
2nd for iteration; embedding: 4,10 satisfies rule 
Returns True (ends 4th call) 

Returns True (ends 3rd call) 
Returns True (ends 2nd call) 

Returns True (ends 1st call) 
The instance thus obtained is minimal, thus it is a solution to the query. 

6 CONCLUDING REMARKS AND FUTURE WORK 

Experience with current WWW search engines has shown that the availability 
of a database-like schema is a prerequisite for any effective Web query mech­
anism. Though we are fully aware that the system described in this paper 
is only a preliminary step towards a satisfactory solution of the Web struc­
turing and querying problem, we believe that its conceptual basis is sound 
and that its development may offer several interesting subjects for future re­
search. For instance, a most important and promising issue is query execution 
itself, which must be both made more efficient and specialized to take into 
account the goal structure, schema information possibly available from a re­
lational database underlying the site, and semantic properties of G-Iog, which 
enable the schema Robot to refuse a priori trivial or unsatisfiable queries. 
This is most needed since, as we have seen, WG-Iog retains the expressive 
power of the original G-log language: a carefully tuned execution mechanism 
is thus required to keep complexity in check (and to avoid "result explosion") 
when dealing with those queries that involve some kind of transitive closure. 
Another critical topic is the presentation of results: here not only efficiency 
considerations are involved, but also problems concerning the heterogeneous 
quality of the information stored: where text, images, sound tracks and sim­
ilar pieces of information must be arranged to be shown to the user in a 
coherent and understandable way, architect's skills are needed, besides those 
of a Software designer. We plan to deal in the near future with querying fed­
erate Web sites. Namely, we plan to allow Web users to formulate queries 
on the basis of several site schemata at once, extending our query execution 
mechanism to take into account links between distinct Web sites. Finally, we 
plan to address at a later time more difficult problems like (semiautomatic) 
schema deduction on the basis of instance inspection; schema integration over 
unrelated sites; schema update at instance evolution; effective treatment of 
instance and schema graphs when these assume huge proportions. 
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