
15

Managing Constraint Violations
in Administrative Information
Systems

Isabelle BOYDENS
SMALS-MVM Research
102 Rue du Prince Royal
1050 Brussels, Belgium
isabelle. boydens@smals-mvm.be

Esteban ZIMANYI

Alain PIROTTE
UniversiU catholique de Louvain
lAG, 1 place des Doyens
1348 Louvain-la-Neuve, Belgium
pirotte@info.ucl.ac.be

Ecole Poly technique Federale de Lausanne
Laboratoire de Bases de Donnees, IN-Ecublens
1015 Lausanne, Switzerland
Esteban. Zimanyi@epfi.ch

Abstract
This paper motivates a comprehensive methodological framework for dealing
with some aspects of real-world complexity in information system analysis
and design. By complex application problem, we mean a problem that cannot
be solved by the current technology in the way that it is perceived and an­
alyzed by application domain specialists. The paper focuses on a motivating
case study, the analysis of constraint violations in database management at
the Belgian agency for social security. We then re-interpret practices and their
problems in terms of current information system technology. Recommenda­
tions are derived both for suitable developments of the technology, that would
allow a better treatment of complex real-world problems, and for methodolog­
ical improvements in data management practices in the application domain,
that would take better advantage of the current technology.

Keywords
Information systems, complex application domains, research methodology, in­
tegrity constraints, management of inconsistency, data quality

1 INTRODUCTION

In spite of the continuous and spectacular progresses of computer technology,
information systems, even moderately complex ones, often answer less than
perfectly the needs that they are supposed to satisfy. Often, computing tech-

Data Mining and Reverse Engineering S. Spaccapictra & F. Maryanski (Eds.)
© 1998 IFIP. Published by Chapman & Han

354 Part Six Constraints

nology gets the blame ("computers did it again") but, of course, in most cases,
the real problem comes from human errors or from methodological inadequa­
cies, as in the recent failure of the Ariane 5 rocket* or the growing worries
about the "Year 2000" problems, for example.

Software engineering is the discipline concerned with the practical problems
of developing large software systems through a collection of methodological
processes. The phrase "software engineering" was coined precisely to foster
more appropriate methodological research. The area has become one of the
most active in computer science and engineering.

Still, the complexity contemplated for modern information system applica­
tions has consistently kept pace with very real productivity gains, obtained
mostly from the ever-increasing performance of computer technology. Thus,
developers of complex real-world applications have kept being faced with prob­
lems whose solutions exceed the capabilities of current technology, when the
application requirements are analyzed with all the relevant detail.

Another source of inadequacy of computer solutions lies in the traditional
underestimation of the difficulties, hence of the cost, of application devel­
opment. Often, real-world complexity is insufficiently analyzed in the early
stages of system development. Problems only surface with the operational
systems, which then require costly adjustments. The abstraction process of
best selecting, in a complex real world, what is relevant to the needs of an
application will remain creative and difficult. The more carefully this model­
ing transition is performed, the more adequate and efficient the corresponding
computer solutions will be.

The idea for the methodological framework proposed in this paper origi­
nated from a study of information management practices at the Belgian so­
cial security agency (ONSS-RSZ) (Boydens 1992). Our subsequent analysis
revealed much more complexity than anticipated, to the point that we con­
cluded that that complexity could not be handled directly by current computer
technology.

The paper is structured as follows. Section 2 introduces data management
at the ONSS-RSZ. The pragmatic complexity in the application domain leads
to accept data that do not comply with the database schema. Violations of
database constraints are treated as "anomalies" by social security practition­
ers and handled in an adhoc manner. The basic idea of our work is that those
anomalies should be carefully analyzed in terms of the current information sys­
tem technology and of some of its plausible extensions. Section 3 re-analyzes
constraint violations as the introduction into the database of data complying
with a database schema weaker than the "ideal" schema implementing the
rules of operation of the agency. Then the process of "correcting the faulty
data" is presented as an update process through which data are progressively
led to comply with the "ideal" schema. Section 5 is a short survey of research

• See our reading of the official report at the URL
http://yeroos.qant.ucl.ac.be/dummies/ariane.html.

Constraint violations in administrative information systems 355

work about inconsistency management in knowledge-based systems. Finally,
Section 6 summarizes the paper and suggests avenues for further validating
our methodological proposals.

2 CONSTRAINT MANAGEMENT IN PRACTICE

2.1 Data Management at the ONSS-RSZ

The ONSS-RSZ (Office National de Securite Sociale - Rijksdienst voor Sociale
Zekerheid) is the Belgian social security agency. The ONSS-RSZ collects,
stores, processes, and redistributes social security contributions (more than
a thousand billion Belgian francs each year from about three million workers
and two hundred thousand employers) as, e.g., unemployment and retirement
benefits (Boydens 1992, Boydens 1995).

The social security agency wishes to collect contributions and redistribute
benefits as quickly as possible. Practically, the agency cannot compel two hun­
dred thousand employers to supply correct information only. Thus, to operate
within a reasonable time frame, it must tolerate imperfect (Le., missing or
erroneous) data in the database.

If anomalies in an entry document do not exceed a specified level and if no
prohibited violation of constraint is detected (like, e.g., an erroneous amount
of social security tax), then the document is integrated into the database,
with the idea that it will be corrected later.

Still, it may be very difficult to detect, and a fortiori to correct, erroneous
administrative data. Some anomalies are detected by control programs, while
others are communicated informally by the individuals whose data are faulty.
Some data cannot be corrected automatically, even if they are clearly erro­
neous, because of their juridical "evidential value". For instance, erroneous
data contained in an original document signed by an employer may be in­
tegrated in the database and only corrected when a new original is received.
Section 2.4 further analyzes types of constraint violations at the social security
agency.

2.2 Database Constraints

A database stores information about some part of an application domain in
the real world. A model of that part of the real world is represented as the
database schema through the database design process. The better the schema
agrees with the features of the real world relevant to application needs, the
more adequate and efficient the resulting information system will be. However,
the popular data models (typically, relational and entity-relationship), which
can be viewed as languages for expressing database schemas, were defined as a

356 Part Six Constraints

compromise, among very different stakeholders, between power of expression,
ease of use, and facility of implementation. Weighed against the complexity
of applications like social security management, the modeling power of those
popular data models is clearly insufficient.

Thus, to better model application domains, the data structure part of
database schemas (e.g., relations in the relational model, entities and rela­
tionships in the entity-relationship model) has to be supplemented with in­
tegrity constraints, also called consistency constraints, that are prescriptions
(or assertions) that tighten the semantics of those data structures. Like data
structures, constraints express general (Le., type-level) semantics of the ap­
plication domain and they constrain the allowed extensions of a database.
Operationally, constraints control updates to the database so that the up­
dated database conforms to the schema. Operational versions of constraints
must thus be produced either manually, as part of the application programs,
or automatically, as a function of database management systems.

Thus, constraints have a declarative version, as part of or supplementing the
database schema, and an operational version, controling database updates.
Still, constraints are fundamentally properties of the data, rather than of
application programs.

A distinction is sometimes made between inherent, implicit, and explicit
constraints. Inherent constraints are tightly linked to the data structures
themselves: they express properties of the data structures and they need not
be specified explicitly in the schema. In fact, they can also be viewed as part
of the data structures. For example, in the entity-relationship model, it is
inherent, that is, it holds without explicitly saying, that every relationship
instance associates entities of specific entity types.

Implicit constraints are implied by the various specifications that accom­
pany the data structure definition in the schema. For example, the mention,
in a relational schema, that an attribute is a key in a relation implies the
constraint that there will never be two distinct tuples in that relation with
different values for that attribute. Another example of implicit constraint is
the cardinality of relationships in the entity-relationship model.

Database management systems provide automatic support for some of the
inherent and implicit constraints. For example, automatic support of the im­
plicit constraints associated with relational referential integrity (an inherent
constraint in entity-relationship models) was incorporated into the major com­
mercial relational systems a few years ago. But many constraints are not au­
tomatically supported and they must be coded in the application programs.

Explicit or adhoc constraints, sometimes called business rules, are adhoc in
the sense that they are application-dependent pieces of data semantics, that
cannot be captured in the data structures and that are necessary for a faithful
model of the application domain. Depending on their complexity, they are
expressed declaratively in some specification language or procedurally, when
they tightly affect some database transactions.

Constraint violations in administrative information systems 357

It is not always clear in the literature whether constraints are part of the
schema or whether they supplement the schema, which, in that case, con­
sists of just data structure definitions. We prefer the former presentation, as
there is no difference in nature, from the point of view of the application do­
main, between information conveyed by the data structure part of the schema
and information conveyed by constraints. In particular, constraints, like data
structures, may be queried (Pirotte, Roelants and Zimanyi 1991). From now
on, unless otherwise specified, "schema" will be taken to mean data structures
plus constraints.

Thus, in orthodox database management, updates violating constraints are
prohibited as a matter of principle, just like updates not complying with the
data structure definition are prohibited. A major goal of this paper was to
try to reconcile database management principles with the frequent practice of
tolerating errors and inconsistencies in administrative information systems.

2.3 A Simple Example

Worker
workerCategory
contributionRate

Person
sociaJSecurityNumber

firstName
lastName
quarterYear

L((t,o)

(I,n)

I
I

worksFor
#daysPerWeek
#daysPerQuarter
salary
socialSecurityTax

(I,n)
Employer

categoryOfActivity
contributionRate

Figure 1 Simplified administrative information system.

The idealized example shown in Figure 1 will be used for illustrating some
aspects of data management at the social security agency. A Person has at­
tributes socialSecurityNumber (the identifier of Person), firstName, and last­
Name. The is-a generalization, total and overlapping, says that a Person is a
Worker, an Employer, or both. A Worker has a workerCategory (e.g., workman,
secretary) and a corresponding contribution Rate. Similarly, an Employer has

358 Part Six Constraints

a categoryOfActivity (e.g., building industry, retail distribution) and a corre­
sponding contributionRate.

Data about the work of a Worker for an Employer during a quarter (quar­
terYear) are kept in an instance of the works For relationship. Attributes of
works For comprise: #daysPerWeek (a multivalued attribute with the number
of days worked by the Worker for the Employer for some or all weeks of the
quarter), #daysPerQuarter (the number of days worked by the Worker for the
Employer during the quarter, that is, the sum of the values in #daysPerWeek),
salary (the accumulated salary paid by the Employer to the Worker for the
quarter), and socialSecurity Tax (the social security contribution due for that
salary).

The data structures in Figure 1 are supplemented with the following con­
straints:

• IGl : firstName and lastName of a Person must match the corresponding
data in the national register (see later) for the same socialSecurityNumber

• IG2 : the contribution Rate of an Employer cannot be null
• IG3 : the contribution Rate of an Employer is determined by the category­

Of Activity (functional dependency)
• IG4 : the contribution Rate of a Worker cannot be null
• IGs: the contribution Rate of a Worker is determined by the workerCategory

(functional dependency)
• IG6 : for an instance of works For relating a Worker and an Employer, the

number of days worked for the weeks in a quarter (the values in the mul­
tivalued attribute #daysPerWeek) must add up to #daysPerQuarter, the
number of days worked during the quarter for the Employer

• IGr: the number of days worked by a Worker during a quarter (the sum of
the values of #daysPerQuarter for all the Employers for whom the Worker
has done some work) must be less than or equal to 70

• IGs: the socialSecurityTax is equal to the salary of the worker multiplied
by the contribution Rate of the Employer and by the contribution Rate of the
Worker

2.4 A Typology of Constraint Violations

In the simple example of Figure 1, constraints are of three types: some con­
straints (like IG2 , IG4 , IG6 , and IGs) are meant to test correctness and
consistency of data supplied to the agency by the employers; others (like IG3

and IG5) impose consistency between data supplied by the employers and
data known by the agency; still others (like I Gr) express business rules from
the application domain. This section proposes a broad classification of various

Constraint violations in administrative information systems 359

types of constraint violations that occur in the practice of social security data
management.

Internal Inconsistencies. Data may be internally inconsistent, that is,
inconsistent within the agency, in a single database or across several databases
managed by the agency. When testing some data A for correctness against
other data B, it may be difficult to determine which of A or B is safer, and
the only sure conclusion may turn out to be the agreement or disagreement
of A and B.

For example, if the category of activity declared by an employer does not
match the category of activity already known by the agency for the same
employer, then two contribution rates may be considered (a violation of IC3).

Correcting the violation requires further investigation, like a contact with the
employer or more extensive . comparisons with older data.

External Inconsistencies. Some data may be internally (that is, within
the agency) consistent, but externally inconsistent in the scope of a federation
of databases.

For example, data about a particular person may be consistent in the agency
databases, but the internal data (i.e., social security number, first name, last
name) may not match data in the national register, thus violating I C 1.

The national register is a repository for data on all people registered in
Belgium. All government agencies refer to that information. Therefore, the
national register plays the role of "master file" for the agency databases and
other databases in the federation. This dependency bears some resemblance
with referential integrity in relational databases.

Propagation of External Corrections. The national register itself also
contains errors. But, while the social security agency is of course responsible
for the data in its databases, it has no means of directly modifying the national
register.

Each person is supposed to appear exactly once in the register, but some
people appear two or more times, for example under their maiden name and
under their married person name. In addition, some people do not appear at
all in the register, for example, because they were not residents of Belgium
when it was first established.

Errors are corrected little by little, when they are discovered by the people
whose data are faulty or by the agency personnel. As the national register acts
as master file, corrections must be propagated to all other databases referring
to its information, a complex process that may uncover inconsistencies. Re­
ferring again to relational databases, this propagation resembles the updating
of a relation key that appears as foreign key in other relations.

360 Part Six Constraints

Semantic Ambiguities. Other errors result from erroneous interpretations
of administrative policies, because of their complexity and their frequent
changes. In their operational context, information systems perform two map­
pings, or transformations, of information: a representation or modeling trans­
formation, that interprets information in the real world through a model of
relevant aspects in the application domain, and an interpretation transforma­
tion, that supplies data back into the application domain, after processing in
the information system. Thus data follow a path from outside or upstream of
the information system, then they are processed within the information sys­
tem, to be exploited outside or downstream of the system. A basic condition
for the adequacy of the information system, or, in short, for data quality, is
that these mappings ensure that the user view of the application domain be
faithfully captured by the information system (Wand and Wang 1996).

• Upstream of the information system (that is, before going through the
representation mapping), decisions made by legislators are translated into
laws by lawyers. But there are sometimes semantic ambiguities in legislative
definitions. For instance, in the Belgian social security law, the concept of
"day of work" does not have a single meaning. From 1987 to 1990, for
agen<;ies in charge of tax collection, every day at work counted as one "day
of work" as long as it was started, whatever the number of hours worked
that day. On the contrary, for agencies handling the distribution of social
benefits, a "day of work" necessarily had to comprise at least three hours
worked for the same employer. Thus, people who worked fewer than three
hours in a day for the same employer paid taxes that did not contribute to
their benefits entitlement ...

• Within the information system (or, rather, systems), the concept of day
of work is represented differently in the various administrative databases.
Thus, different administrative data will correspond to the same reality.

• Downstream of the information system (that is, when data have gone
through the interpretation mapping to be used in the application domain),
for example for statistical processing, data from different databases are
merged but, since a single concept, namely day of work, does not have a
single meaning across different databases, such mergings may be inconsis­
tent.

• Finally, statistical results (forecasts and previsions, for instance) serve as
inputs to the preparation of new laws, which in turn will be reflected into
the information system. Thus, a circular relationship has been created be­
tween output quality and input quality of the information.

Semantic Gaps. Some errors originate from contextual knowledge which
would be very hard to formulate completely in the database schema.

For example, the official juridical nomenclatures for categories of activity
described in legislative policies are not always complete. Then IC2 is violated

Constraint violations in administrative information systems 361

for all employers whose category of activity is missing. One approach to this
problem goes through creating fictitious codes for those employers.

Accuracy of Constraints. Constraints do not always adequately capture
the semantics of the application domain, which leads to several problems.

• Exceptional but correct data may be treated as incorrect. For example, a
worker may work weekdays and weekends in a quarter, so that the number
of days worked during that quarter exceeds the number set by 1C7 . Here,
it is the constraint that is incorrect. The error results from the difficulty of
delimiting exceptional situations during database design.

• Conversely, an erroneous data item may satisfy the constraints and still be
accepted at input. For example, if an employer sends incorrect information
about wages, all data derived from that information (e.g., social security
tax) will be incorrect too, although this will go undetected as none of the
constraints is violated.

The latter problem illustrates a fundamental limitation of the modeling
process (Demolombe and Jones 1993). Constraints cannot be tight enough
to catch all possible errors. More knowledge about the real world would be
needed, as well as knowledge about the correspondence between the database
and the reahvorld. But the necessary amount of such knowledge is arbitrary
large in general.

Incomplete Information. Anomalies commonly arise from missing data.
If, for example, the attribute categoryOfActivity comes in with a null value,
then 1C3 cannot be checked and it is impossible to compute the contribu­
tion for the employer. Further investigation (like a direct contact with the
employer) is necessary for full information. A more drastic example of incom­
plete information is when an employer did not return tax forms for the due
date.

Incompleteness can be difficult to detect on the database only. For example,
if an employer did not register a worker for a particular quarter, while having
registered the same worker for previous and subsequent quarters, this can
either be an anomaly due to an omission or express the reality, namely that
the worker did not work for the employer during that quarter. Here again, the
problems are linked to fundamental limitations of the modeling process.

Correlation of Errors. Anomalies can be correlated for the same data, as
one constraint violation (say, of [C7) may entail a fictitious violation of other
constraints (for instance, [C6).

Federated databases, especially when some data are replicated in several
databases, also contribute their share of complexity to the management of
constraint violations. Logically interdependent data can be updated, syn-

362 Part Six Constraints

chronously or asynchronously, by several agencies, each of them correcting
data according to their specific competence. The management of transaction
concurrency is a substantial problem.

For instance, the correctness of IC2 may be managed by agency A, while
IC3 is treated by agency B, and IC5 by agency C. But the correction of an
IC3 violation by agency B may entail new IC2 violations to be corrected
by agency A, while agency A may not know when the correction process by
agency B has been completed.

In summary, data correction is a long and complex process, that takes place
concurrently with the introduction of new data in the database. Data of dif­
ferent quality levels naturally coexist in administrative information systems.
The correction process is diachronic, dynamic, and discontinuous. The data
exploitation process, on the contrary, is synchronous and static. The quality
of the output data, through the interpretation mapping, is therefore difficult
to assess precisely.

2.5 Handling Inconsistency in Practice

In administrative information systems, inconsistent and incomplete informa­
tion is typically managed (Le., detected, then corrected and validated) through
a process that schematically comprises the following steps (DOS 1992):

1. a distinction is made between constraints allowed to be violated (e.g., an
inconsistency between a total amount of days worked and a total amount
of hours worked) and those that are not (e.g., a faulty amount of social
security tax); also, some constraint violations are tolerated only to a certain
degree (e.g., a rate of allowed anomalies per record is set);

2. types of constraint violations are defined:

• an "anomaly code" specifies that a constraint violation results from the
absence of a data value (incomplete information) or from the incompat­
ibility of two data values (inconsistent information);

• a "treatment process code" specifies delays of correction: some anomalies
have to be corrected within 48 hours while others may be corrected only
after days or weeks, depending on the complexity of the investigations
needed;

3. a prohibited violation or an excess rate of allowed anomalies cause the
rejection of the information: the employer will have to resubmit corrected
data;

4. upon detection of an allowed constraint violation linked to a data value A:

Constraint violations in administrative information systems 363

• A is time-stamped, and tagged with anomaly code(s) and treatment
process code(s);

• a record is created in an "anomaly file" (which is part of the database)
with the following information: date and time when A entered the database,
date and time when the violation was detected, anomaly code(s) and
treatment process code(s), date and time of correction, identification of
the correcting agency;

5. whenever a data value A is corrected or validated:

• a time-stamped record is created in the anomaly file to remember the
history of the correction process (in view of possible juridical contest or
lawsuit);

• consistency of the new value of A is checked against the relevant con­
straints and any new inconsistency is reported.

Despite this quite elaborated organization, problems subsist, because of the
complexity of the application domain. Programming is complex and expensive,
since laws and regulations, and thus constraints that reflect them, frequently
change. In our analysis, a more comprehensive methodology, supported by
CASE tools, at a suitably high conceptual level, would allow an easier and
more rational management of constraint violations. Such a methology could
guide and simplify the correction process as follows:

• decide on an order for correcting a set of constraint violations;
• identify possibly equivalent correction paths;
• select and evaluate the best paths, according to technical, semantic, and

pragmatic organizational constraints.

These points are elaborated upon in the next sections.

3 REVISITING THE NOTION OF CONSTRAINT VIOLATION

Our initial formulation of the problem kept revolving around the question:
"How do we deal with an inconsistent database in practice?"

This is practically hopeless, as Section 5 will conclude, within the bounds
of current technology, as consistency is a basic hypothesis of mainstream data
modeling (see, e.g, (Hulin, Pirotte, Roelants and Vauclair 1989)). So, in a way,
the story (or, at least, the scientific story) ended there and we were left with
the only possibility of adhoc solutions for correcting inconsistencies.

At the same time, we felt that more principled work could be applied to the
reconstruction of consistent data. A revealing fact was that domain specialists

364 Part Six Constraints

are unwilling to call "errors" these violations of consistency and call them
"anomalies" instead.

Another approach turned out to be more fruitful. In fact, as soon as a
constraint is violated, in a sense, it loses its status of constraint. As recalled
in Section 2.2, information expressed by constraints is of the same nature as
data structure information and violating a constraint is thus equivalent to
violating the database schema.

The central idea of our approach is to reinterpret constraint violations as
follows. Consider a database schema 8 composed of a data structure definition
D 8 and a set of constraints Ie. If some data D in a database of schema 8
violate some prescription of 8, then D can be viewed as being in agreement
with another schema 8w weaker than 8. We will call 8 the "ideal" schema and
8w the "weak" schema. Correcting the violations of D with respect to schema
8 then amounts to updating the data (all or part of D and/or other data) of
schema 8w so that the modified data comply with 8. Thus the unpalatable
problem of dealing with data that are inconsistent with their schema has
been transformed into a problem of updates, which seems more comfortable
to tackle.

The transformed problem is further simplified if the consistency violations
of data D with respect to schema 8 are further analyzed as several simpler
violations. The update process then has to go through a sequence 8w , 81, ... ,
8n , 8 of schemas, where each schema in the sequence is tighter (i.e., more
constraining) than its predecessor.

The problem has become one of building a sequence of schemas, certainly
not unique in general, of defining the correctness of a sequence, of study­
ing the convergence of sequences, of identifying correct sequences, etc. These
questions bear some resemblance with properties of sets of rules in active
databases. They are elaborated upon in the next section.

4 DATABASE DESIGN AND INCONSISTENCIES

If constraint violations must be accepted, then the process of database design
should be expanded for managing inconsistency, to include the following tasks:

1. determine which constraint violations will be accepted and which ones will
not;

2. analyze dependencies among the constraints that may be violated;
3. organize the necessary (meta)information for managing violations.

Constraint violations in administrative information systems 365

4.1 Deciding on Acceptable Constraint Violations

The constraints C in a schema B are partitioned into two disjoint subsets
Cent and Cviol, where Cent are the constraints actually enforced and Cviol
are those for which violations are accepted.

Constraints Cent are enforced in two ways. A few of them (typically some
of the implicit constraints like key and relational referential integrity) are
automatically enforced by the database management system. However, most
constraints have to be reexpressed operationally in application programs to
check that database consistency is preserved upon data entry and update.

Thus, if DB defines the structural part of a database schema B, then DB +
Cent constitutes the weak schema, while DB +Cent+Cviol is the ideal schema.

In the scenario where the management of constraint violations is added
to an operational database, deciding which violations are allowed is akin to
a reverse engineering activity. Inputs for that activity are provided by the
programs that are currently run against the database to detect and correct
erroneous data. In practice, the decision is made according to business policies
that vary from one application to another.

4.2 Precedence Among Constraint Violations

The second step in our strategy of inconsistency management consists in ana­
lyzing dependencies among constraint violations. For the example of Section 2,
suppose that null values are accepted for the contribution Rate of employers,
a violation of IG2 • Checking the violation of, say, IG3 or IGs for the corre­
sponding employers becomes meaningless.

To exploit such relationships among constraints in Cviol, a precedence rela­
tionship Pic, noted C1 "'-+ C2 , is defined between two constraints C1 and C2 ,

as follows: for a test of whether some data D satisfies C2 to be meaningful,
then D must satisfy C1 • In other words, the precondition· for being able to
test C2 on D is that C1 be satisfied by D.

Pic is clearly non reflexive (C1 -fo Cd and transitive (if C1 "'-+ C2 and
G2 "'-+ C3, then C1 "'-+ C3). Therefore, Pic defines a partial order among
constraints.

The precedence graph of Figure 2 corresponds to the constraints about
the schema of Figure 1. For example, if some data D violate constraint lC4 ,

checking the violation of successors lCs and lCs of lC4 is pointless.
The precedence graph permits a sharper localization of faulty data. Without

the precedence graph, an investigation of which data violate a constraint C
will return data violating constraints C' such that C "'-+ C', in addition to data
actually violating C. The precedence graph allows to tune the investigation
process and distinguish G from C', and thus obtain a finer perception of data
quality levels.

366 Part Six Constraints

IC2 IC3

ICI

>~IC8
IC5

~--------~~-------------~>~

IC6 IC7

Figure 2 Precedence graph for constraints of Figure 1.

The precedence graph is used to correct an inconsistent database: the cor­
rection process can be viewed as evolving data down the precedence graph.
Consider a database schema S = DS + Cenf + Cviol and let C1, ... ,Ck be a
total order of constraints in Cviol, compatible with the partial order defined by
the precedence relationship Pic. The sequence C1, ... ,Ck defines a sequence
So, ... , Sk of schemas between the weak schema So = DS + Cenf and the
ideal schema Sk = DS + Cenf + Cviol, where Si = Si-1 + Ci for i = 1, ... , k.

Thus, if some data D violate some constraints in Cviol, the transition from
Si-1 to Si corresponds to correcting the violations of constraint Ci. Of course,
in general, several total orders for constraints Cviol can be derived by topolog­
ical sorting from the precedence graph. Each one corresponds to a sequence
of schemas, that is, to a sequencing for the correction process.

Choosing a sequence of schemas for the correction process depends on many
factors. The most crucial one may be the availibility of information. For exam­
ple, in a federation of databases, data to be corrected may reside in a database
over which the correcting agency does not have control. As another example,
when data that were missing are received or when data are corrected, and the
violation of some constraint C is thereby suppressed, constraints C' that are
successors of C in the precedence graph can be tested.

Another factor that influences the choice of a sequence of corrections of
some data D is the cost of testing constraints and correcting the data. Cost
comprises computational resources (e.g., the time needed to run programs
against the database to locate the data violating a constraint C) as well as
business processes (e.g., correcting violations of C may involve requesting
information from thousands of employers).

In practice, a large number of constraints may be allowed to be violated.
Thus, computer support is needed to assist database designers in defining the
precedence relationship Pic between constraints. A CASE tool could provide
the following functions:

• management of a set of constraints partitioned as Cenf and Cviol , with the
possibility of constraints migrating from Cenf to Cviol and vice-versa;

• checks of consistency, redundancy, minimality, etc. of a set of constraints
(if they are expressed formally in some specification language);

Constraint violations in administrative information systems 367

• support for the specification of the precedence relationship Pic; for example,
the tool could eliminate redundant links (e.g., those that can be deduced
by transitivity) and test whether the precedence graph is acyclic.

Our analysis suggests several research avenues. For example, how are vio­
lated constraints identified for an inconsistent database? How can a sequence
of updates be characterized precisely in terms of the schemas satisfied by the
data? These questions are complex in their general form.

4.3 Building a Meta-Database

In an ideal world, the main recommendation to domain specialists and people
managing a database would be: "Don't do it, keep your data consistent."
But, as we have seen, this goal can often not be achieved in practice. Thus,
in the real world, the recommendation becomes: "If you are compelled to
accept some inconsistency, characterize it as fully as you can, so that enough
information is provided for subsequent data correction."

As mentioned in Section 2.5, administrative agencies have done and are
doing work in that direction, by means of elaborate application programs.
However, this implies a programming task which is intensive, tedious, costly,
and risky.

We advocate a more principled approach, through a comprehensive meta­
database to store and manage data needed for the detection of errors and
their correction.

In addition to the information needed for identifying errors, the meta­
database could also record additional information useful for their manage­
ment, like date and time of error detection, actions undertaken upon error
detection (e.g., phone calls, letters sent, forms returned to the sender), per­
sonnel in the agency responsible for managing the inconsistency, date and
time of error correction, and so on.

The creation of such a meta-database goes through the classical steps of
database design, namely: (1) conceptual design, to identify the required infor­
mation from an application domain perspective; (2) logical design translating
the conceptual schema resulting from the previous step into a schema in the
data model of a database management system (e.g., the relational model), and
(3) physical design producing a schema for the target platform (e.g., Oracle).

Conceptual design of the meta-database involves determining the allowed
violations (i.e., constraints Guio/), as well as the information necessary for
adequately managing violations.

Figure 3 shows parts of a relational schema of a meta-database for the
example of Figure 1. The relations store information about violations as fol­
lows*:

'Not all information is shown in Figure 3.

368 Part Six Constraints

M issingEmployers(employerSSN ,quarter,year)
MissingWorkers(workerSSN,quarter,year)
FictitiousCategories(categoryCode,categoryOfActivity,contribRate)
M issi ngCategory(em ployerSS N)
IClViolations(SSN,firstName,lastName,firstNameNR,lastNameNR)
IC6Violations(workerSSN,employerSSN,quarter,year, ...

sum#daysPerWeek, #daysPerQuarter)
IC8Violations(workerSSN ,salary, workContribRate, ...

empIContribRate,taxComputed,taxDeciared)

Figure 3 A sketch of schema for the meta-database.

• MissingEmployers records the employers who did not file forms for a given
quarter;

• MissingWorkers records the workers for whom no declaration was filed;
• FictitiousCategories records the categories of activities with no special code

in the categorization, and for which the agency creates a fictitious code;
• MissingCategory stores employers with a null value for their category of

activity;
• ICIViolations keeps track of people whose identification data in the agency

database does not match the identification data in the national register;
• 1C6Vioiations keeps track of the workers for whom the sum of values in

the multivalued attribute #daysPerWeek do not match the number of days
work during the quarter;

• IC8Vioiations keeps track of the workers for whom the amount of tax, as
computed by the agency, does not match the amount of tax declared in the
entry forms.

Some information for the meta-database can be extracted from current data
in the database through queries and views. Also, programs run against the
database to detect and correct erroneous data produce information useful
for the detection/correction process that should be integrated into the meta­
database.

Still, implementing a large meta-database involves technical issues for which
tools are not available off the shelf, and also elaborate (and costly) conceptual
and organizational activities (Boydens 1996). Domain-specific cost/benefit
analyses must be conducted to determine the breadth of metadata manage­
ment that is appropriate for achieving the main objectives of the information
system.

5 RELATED WORK

One area relevant to our work is that of exception handling. An in-depth
study of an operating information process in a Fortune 100 organization is

Constraint violations in administrative information systems 369

reported in (Strong and Miller 1995). The goal of the study was to develop
understanding about exceptions and derive managerial recommendations for
treating them. Their definition of exceptions covers those generated by incom­
plete and erroneous information in inputs and outputs, requests to deviate
from standard procedures and situations that computer-based systems were
never designed to handle. They present several perspectives on considering
exceptions: as infrequent random events, as errors to be eliminated, and as a
normal part of organizational process.

In (Borgida 1985) integrity constraints are considered as normalcy con­
ditions - ones that may occasionally conflict with the actual state of the
world. Violations of constraints are allowed to accommodate exceptional facts
and occurrences. The paper develops an exception-handling mechanism for
a programming language allowing the definition of information systems at
a conceptual level. It also investigates a first-order logic of constraints with
exceptions.

There are some similarities between our treatment of database integrity and
the work on reactive integrity maintenance (e.g., (Karadimce and Urban 1991,
Urban and Delcambre 1990, Urban and Lim 1993, Fraternali and Paraboschi
1993, Fraternali and Paraboschi 1997)). In this context, constraints are re­
paired by active rules which can be sequenced to obtain the flexible be­
haviour needed for real-world informations systems. In (Baralis, Ceri and
Paraboschi 1996) are given several ways to modularize/control active rules
to obtain a better enforcement of integrity. Also, the use of rules for bet­
ter conceptual modelling of informations systems is treated in (Ceri and
Fraternali 1997, Ross 1994).

Traditional business data management handles simple fact databases only,
typically ordinary relational databases. An early extension has consisted in
adding deductive or active rules, that express general information (or knowl­
edge). Rules allow to reduce redundancy in the fact database. The resulting
systems have been known as knowledge-based systems, deductive database
systems, or expert systems. With a simple form of rules (called definite rules),
modeling the information content as a theory of classical first-order logic is
now well understood (see, e.g., (Hulin et al. 1989) for a tutorial presentation).
Data modeling obeys the closed world assumption, that is, all the data in the
database are certain and consistent, and facts not present in the database are
interpreted as false.

Things complicate considerably with the introduction of imperfect infor­
mation (missing, disjunctive, uncertain data) (Zimanyi and Pirotte 1997),
negative information or inconsistency. Standard logic cannot deal with con­
tradictory information: a single contradiction destroys the entire theory (ex
contmdictione sequitur quodlibet).

Query answering has been approached with logics generalizing standard
first-order logic. The inference system that constructs query answers must
be sound (Le., produce only correct answers) in some well-defined logic and

370 Part Six Constraints

complete (i.e., produce all correct answers) with respect to some intuitively
acceptable notion of completeness. Inference in knowledge-based systems, un­
like first-order logic, is nonmonotonic (i.e., not all consequences are preserved
when a knowledge base is updated), which substantially complicates the se­
mantic mechanisms of the extended logics.

Update operations (i.e., insert, modify, delete) can create conflicts between
new information and information already present in the knowledge base. Sev­
eral problems arise when assimilating new knowledge in knowledge bases. One
of them is maintaining the consistency of the data, another is that the changes
required are not necessarily unique.

Update and inference both have to be able to deal with inconsistent informa­
tion according to certain rationality principles. Several inconsistency-tolerant
logics have been proposed in the literature, including the four-valued logic
of Belnap (Belnap 1977), the nonmonotonic logic of minimal inconsistency
of Priest (Priest 1989), and the paraconsistent constructive logic of Nelson
(Almukdad and Nelson 1984). Other systems discussed in the philosophical
literature are presented, e.g., in (Priest 1979, Rescher and Brandom 1989).
An interesting collection of papers can be found in (Wagner 1997) and in the
references mentioned there.

A crucial question in inconsistency-tolerant logics is whether they enforce
consistent inference or, rather, whether they allow for inconsistent conclu­
sions. Traditional paraconsistent logics yield both p and its negation ,p as
valid conclusions whenever p is contradictory with the premise set, which is
undesirable from an information processing point of view.

A solution is to isolate contradictory pieces of information so that they
are not used as valid premises in further inferences (ex contradictione nihil
sequitur) (Wagner 1991). Ordered theories with an explicit ordering of rules
allow to define the priorities among competing rules. If two arguments are
in conflict with each other, but both have the same conclusive force, they
neutralize (or block) each other. If an argument has a stronger conclusive
force than all other conflicting ones, it defeats them, and qualifies as a justified
argument.

Another approach, when handling conflicts, is to modify existing informa­
tion, while obeying some principle of minimal change or "minimal mutilation"
of the knowledge base. To comply with this requirement, a knowledge-based
system needs a measure of change for comparing different candidates for the
result of an update. Such a measure depends on a notion of information con­
tent for a knowledge base.

For example, a deductive database can be updated by changing facts but
not rules, so that all constraints remain satisfied (Lobo and Trajcevski 1997).
Users may be involved in this process to choose the appropriate change from a
set of alternatives whenever there is more than one possibility to perform the
update. A common notion of minimal change involves a preference of positive

Constraint violations in administrative information systems 371

information over negative one: a possible change is preferred over another one
if it deletes fewer facts.

In another approach (Demolombe and Jones 1993), the management of
constraint violations is expressed in terms of updates that remove situations
where the database contains wrong beliefs about the real world (validity viola­
tion) or where some beliefs that logically derive from the database are missing
(completeness violation).

Finally, the connection between belief revision and nonmonotonic reason­
ing was formally clarified, thus throwing light on the connection between
consistency-restoring and reasoning-from-inconsistency approaches discussed
in (Benferhat, Dubois and Prade 1995).

Most work in logic traditionally was done on the study of reasoning on
the basis of a fixed theory. It is only recently that research has addressed
the assimilation of new information into a changing theory, in particular in
philosophical logic. A large body of theoretical results in this field has be­
come known under the name of AGM theory, after its originators Alchouron,
Giirdenfors, and Makinson (Alchurron, Giirdenfors and Makinson 1984). In
particular, it has been adapted as a theoretical basis for modeling knowledge
assimilation.

The main criterion in deciding whether to preserve certain beliefs in the face
of revision is whether they can be held consistently after the new information is
incorporated. Thus, revision can be seen as a two-step process (del Val 1997).
In the first step, the new information is checked for consistency with existing
beliefs. In the case of inconsistency, as few beliefs as possible are withdrawn
to restore consistency. In the second step, the beliefs kept in the first stage
are merged with the new information.

However, as stated in (Tennant 1997), the AGM theory is rooted on the
view that a classical logic theory is the paradigm of knowledge-based systems.
The AGM theory does not take into account that knowledge assimilation, un­
like theory change, is concerned with non-classical, nonmonotonic knowledge­
based systems. The inadequacy of the AGM recovery postulate, which cap­
tures the minimal mutilation principle, is discussed in (Tennant 1997). The
conclusions are that the AGM contraction and revision operations based on
the postulate of recovery are inadequate, and that the remaining AGM pos­
tulates are too weak to capture any interesting property.

As follows from the above discussion, operational solutions for handling
inconsistency in logical theories and knowledge-based systems exist neither
for inconsistency-tolerant inference, nor for theory change and knowledge as­
similation. Results obtained for idealized settings (e.g., a set of sentences
in classical propositional logic) do not extend to realistic knowledge-based
systems with non-classical inference operations. Many theoretical questions
remain open and the current research results have little direct relevance for
the practical management of inconsistency.

372 Part Six Constraints

6 METHODOLOGICAL SUMMARY AND FURTHER WORK

6.1 Summary

Business policies and real-world requirements often make erroneous data in­
escapable in realistic information system applications.

An analysis of constraint violations in the databases of the Belgian social
security agency (ONSS-RSZ) was performed in the light of current prac­
tices for coping with and resolving the resulting inconsistencies. The manage­
ment of inconsistent information was then re-interpreted in terms of current
database technology, as (1) introducing the erroneous data in a less constrain­
ing database (Le., with a weaker schema) than the intended database (with
the ideal schema); (2) progressively updating the data from the weaker schema
to make it comply with the ideal schema.

Since data of different quality coexist in the database, many possible in­
termediate schemas may exist between the weaker schema and the ideal one.
Then, the solution was described as determining a sequence of schemas, each
more constraining than its predecessor in the sequence, as defining the cor­
rectness of a sequence, as studying the convergence of sequences, as identifying
correct sequences, etc.

It is our tenet that the only practical way to cope with inconsistent data,
given the current state database technology, is to systematically keep track of
which data are inconsistent in the database as well as of all the information
needed for its management. We argued that this should be done explicitly as
a step of database design or reengineered on the operational database. We
recommended the following activities:

• decide on constraints that are allowed to be violated;
• build a precedence relationship among those constraints to help construct

"semantically meaningful" sequences of corrections of erroneous data;
• design a meta-database for keeping track of all necessary information needed

for the management of inconsistency.

Finally, we reviewed how inconsistency has been managed in knowledge­
based systems, and we concluded that more work is needed, from both a
theoretical and a practical perspective.

6.2 Methodology

The paper motivates a methodological framework for information system re­
search, that aims at improving the quality of solutions provided by application
programs. The methodology addresses complex problems, that is, problems

Constraint violations in administrative information systems 373

that are not easily solved by the current technology in the form that they
arise in the application domain.

Clearly, more fundamental research on the theory of information systems is
needed to be able to handle more satifactorily applications like social security
data management. A contribution of our analysis is the identification of de­
sirable technological advances. For constraint violations studied in this paper,
flexible ways to deal with inconsistency would clearly improve the situation,
if database technology aims at dealing more adequately with a real world,
where inconsistency manifests itself in several ways.

This paper suggests a general methodological approach to managing com­
plex problems that cannot be directly handled by the current technology.
Complexity should be addressed in four, not strictly sequential, stages:

• a thorough analysis of actual requirements (both those satisfied and those
not satisfied by the existing system) through a partnership between special­
ists in information system development and specialists of the application
domain;

• a precise formulation that carefully identifies, in terms of the functions
offered by current technology, those requirements that cannot be addressed
by a direct application of the technology and how those requirements are
currently being addressed;

• the identification of realistic requirements on suitable evolutions of the
technology to better address the complex problems;

• the formulation of recommendations to specialists of the application do­
main to modify or adapt their practices in order to take the best advantage
of current technology and its foreseeable evolutions.

In order to be effective, our methodological framework for dealing with
inconsistency should be integrated into the database management process
and supported by CASE tools coupled with it.

6.3 Further Work

Our methodological approach lends itself to the analysis of other aspects of
social security database management. The basic rules of the game for collect­
ing employers' contributions and distributing social security benefits change
with time, this is real life.

Thus, reinterpreted in terms of current technology, the task of the ad­
ministrative information system is to manage a collection of time-stamped
databases, i.e., a collection of schemas with their associated data. This can
be modeled as a collection of versions of databases, where each version has a
fixed schema (i.e., a schema that does not vary with time) and one database
is the current database. As time passes, rules will evolve and a new schema

374 Part Six Constraints

will be defined from the schema of the current database, which will become a
past database.

Current technology does not deal well with versions of schemas. Relevant re­
search on sequences of versions has been conducted in the computer-aided de­
sign area (see, e.g., (Katz 1990)). The concept of "workspace models" provides
a mechanism through which new versions are made visible to a community
of designers. The idea is that "private workspaces" can contain incomplete
work in progress: before being validated and made available, new versions are
checked until no more errors are detected. A first important difference with
our approach is that, in administrative data management, there is no clear
private workspace and information has to be made available for public use as
quickly as possible, and often before being completely checked and corrected.
Another difference with design problems is that, in our case, it is often difficult
to know when the correction process has been completed.

Another outcome of our methodological approach is the identification of
suggestions for improving the practices of actors in the application domain.
To improve data management of administrative databases, the actors in the
application domain who define the new rules of operation should be required to
accompany the definition of new rules with enough information to enable the
applications that operate on the data to correctly relate the various databases
(the past ones and the current one) that coexist and cooperate for obtaining
useful output.

The problem is compounded with retroactive rules. Here database tech­
nology cannot help if the new rules are not supplemented with enough in­
formation to convert the data in the first past database (the most recent
one except for the current one) into data that complies with the new rules.
Database technology can help in converting declarative rule information into
operational programs that transform the data.

We are currently studying other similarly complex problems and revisiting,
with that methodological framework in mind, a number of case studies that
were conducted in our YEROOS* research group.

REFERENCES

Alchurr6n, C., Gardenfors, P. and Makinson, D.: 1984, On the logic of theory
change: Partial meet functions for contraction and revision, Journal
Symbolic Logic 50, 51D-530.

Almukdad, A. and Nelson, D.: 1984, Constructible falsity and inexact predi­
cates, Journal Symbolic Logic 49(1), 231-233.

Baralis, E., Ceri, S. and Paraboschi, S.: 1996, Modularization techniques for
active rules design, ACM 7rans. on Database Systems 21(1).

*YEROOS (Yet another project on Evaluation and Research on Object-Oriented Strate­
gies). http://yeroos.qant.ucl.ac.be

Constraint violations in administrative information systems 375

Belnap, N.: 1977, A useful four-valued logic, in G. Epstein and J. Dunn (eds),
Modern Uses of Many-valued Logic, Reidel, pp. 8-37.

Benferhat, S., Dubois, D. and Prade, H.: 1995, How to infer from inconsistent
beliefs without revising, in C. Mellish (ed.), Proc. of the 14th Int. Joint
Conf. on Artificial Intelligence, Morgan Kaufmann, Montreal, Canada,
pp. 1449-1455.

Borgida, A.: 1985, Language features for flexible handling of exceptions in
information systems, ACM 'Ihlns. on Database Systems 10(4), 565-
603.

Boydens, I.: 1992, La banque de donnees LATG de l'ONSS. Les flux de
l'information traitee a partir d'une banque de donnees: etude cri­
tique. Memoire de Licence Speciale en Sciences de l'Information et de
la Documentation, INFODOC, Universite Libre de Bruxelles. Laureat
du Concours des Bourses de Voyage de la Communaute Franc;aise de
Belgique.

Boydens, 1.: 1995, Statistical exploitation method for administrative
databases, Proc. of the Int. Coni. on New Techniques and Technologies
and Statistics, Bonn, Germany, pp. 63-70.

Boydens, 1.: 1996, Meta-information systems, critical interpretation tools for
computer sources, History and Computing 8(1), 11-23. In French.

Ceri, S. and Fraternali, P.: 1997, Designing Database Applications with Object
and Rules: The IDEA Methodology, Addison Wesley Longman.

del Val, A.: 1997, Nonmonotonic reasoning and belief revision: Syntactic, se­
mantic, foundational, and coherence approaches, Journal of Applied
Non-Classical Logics 1(1-2), 213-240. Special issue on Handling In­
consistency in Knowledge Systems.

Demolombe, R. and Jones, A.: 1993, Integrity constraints revisited, in A. Olive
(ed.), Proc. of the 4th Int. Workshop on the Deductive Approach to
Information Systems and Databases, Barcelona, Spain, pp. 309-333.

DOS: 1992, Utilization of administrative databanks as a mean to produce sta­
tistical information. DOSES-EUROSTAT (action A4), Final report.
Torino, Richerche e progretti.

Fraternali, P. and Paraboschi, S.: 1993, A review of repairing techniques for
integrity maintenance, in N. Paton and M. Williams (eds) , Proc. of
1st Workshop on Rules in Database Systems, WICS, Springer-Verlag,
Edinburgh, Scotland, pp. 333-346.

Fraternali, P. and Paraboschi, S.: 1997, Selecting production rules for con­
straint maintenance: Complexity and heuristic solution, IEEE Trans.
on Knowledge and Data Engineering 9(1).

Hulin, G., Pirotte, A., Roelants, D. and Vauclair, M.: 1989, Logic and
databases, in A. Thayse (ed.), From Modal Logic to Deductive
Databases, John Wiley & Sons, pp. 279-350. In French: Logique et
bases de donnees, In: Approche logique de l'intelligence artificielle, vol.
2, Dunod, 1989, pp. 311-294.

376 Part Six Constraints

Karadimce, A. and Urban, S.: 1991, Diagnosing anomalous rule behavior in
databases with integrity maintenance production rules, Proc. of the
3rd Int. Workshop on Foundations of Models and Languages for Data
and Objects, Aigen, Austria, pp. 77-102.

Katz, R.: 1990, Towards a unified framework for version modeling in engi­
neering databases, ACM Computing Surveys 22(4), 375-408.

Lobo, J. and Trajcevski, G.: 1997, Minimal and consistent evolution of knowl­
edge bases, Journal of Applied Non-Classical Logics 7(1-2),117-146.
Special issue on Handling Inconsistency in Knowledge Systems.

Pirotte, A., Roelants, D. and Zimanyi, E.: 1991, Controled generation of in­
tensional answers, IEEE 1rans. on Knowledge and Data Engineering
3(2), 221-236. Short version in P-91/02.

Priest, G.: 1979, Logic of paradox, Journal of Philosophical Logic 8, 219-241.
Priest, G.: 1989, Reasoning about truth, Artificial Intelligence 39, 231-244.
Rescher, N. and Brandom, R.: 1989, The Logic of Inconsistency, Blackwell.
Ross, R.: 1994, The Business Rule Book: Classifying, Defining and Modeling

Rules, Database Research Group, Inc.
Strong, D. and Miller, S.: 1995, Exceptions and exception handling in com­

puterized information processes, ACM 1rans. on Office Information
Systems 13(2), 206-233.

Tennant, N.: 1997, On having bad contractions, or: No room for recovery,
Journal of Applied Non-Classical Logics 7(1-2), 241-266. Special issue
on Handling Inconsistency in Knowledge Systems.

Urban, S. and Delcambre, L.: 1990, Constraint analysis: A design process for
specifying operations on objects, IEEE 1rans. on Knowledge and Data
Engineering 2(4),391-400.

Urban, S. and Lim, B.: 1993, An intelligent framework for active support of
database semantics, International Journal of Expert Systems 6(1), 1-
37.

Wagner, G.: 1991, Ex contradictione nihil sequitur, in R. Reiter and J. My­
lopoulos (eds), Proc. of the 12th Int. Joint Conf. on Artificial Intelli­
gence, Morgan Kaufmann, Sydney, Australia, pp. 538-546.

Wagner, G. (ed.): 1997, Handling Inconsistency in Knowledge Systems, Edi­
tions Hermes. Special issue of the Journal of Applied Non-Classical
Logics, 7(1-2).

Wand, Y. and Wang, R.: 1996, Anchoring data quality dimensions in onto­
logical foundations, Comm. of the Assoc. for Computing Machinery
39,86-95.

Zimanyi, E. and Pirotte, A.: 1997, Imperfect knowledge in databases, in
A. Motro and P. Smets (eds), Uncertainty Management in Information
Systems: from Needs to Solutions, Kluwer, pp. 35-87.

Constraint violations in administrative information systems 377

7 BIOGRAPHY

Isabelle Boydens has been consultant at the research department of the SmalS­
MvM in Belgium since 1996. From 1991 to 1996, she was researcher at the
Universite de Liege in Belgium. Her scientific interests include conceptual
modeling, data quality analysis, and improvement methods for large admin­

'istrative information systems.

Alain Pirotte has been a professor in computer science at the Universite
catholique de Louvain in Belgium since 1991. From 1969 to 1991, he was a
researcher at the Philips Research Laboratory in Brussels. His scientific in­
terests include database management, analysis methodology for informatioll
systems, and advanced applications of those technologies.

Esteban Zimanyi has been lecturer in computer science at the Universite
Libre de Bruxelles in Belgium since 1992. He was visiting researcher at the
Ecole Poly technique Federale de Lausanne in Switzerland during 1997. His
research interests include conceptual modeling, geographical information sys­
tems, temporal databases, and analysis methods for system development.

