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Abstract 
A fonnal theory for the development of a generic model of an autonomous sensor 
is proposed and implemented. An autonomous sensor is defined as an intelligent 
sensor that has machine learning capabilities. It not only interprets the acquired 
data in accordance with an embedded expert system knowledge base, but is also 
capable of using tllis data to modify and enhance thls knowledge base. Hence, the 
system is capable of learning and thereby improving its perfonnance over time. 
The main objective of the model is to combine the capabilities of the physical 
sensor and an expert operator monitoring the sensor in real-time. The system has 
been successfully tested using various simulated data sets as well as a real 
thermistor that has been developed as an autonomous sensor. Tllis work has 
significant impact on modem production systems since sensors form an integral 
part of all closed loop control systems, and modem manufacturing processes rely 
heavily on sensor based control systems. The long range aim of tllis work is to 
develop highly autonomous production systems that have self diagnostic, 
maintenance, self correction, and teaming capabilities embedded at tl1e local and 
global levels. This work builds upon work on a formalized theory for autonomous 
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sensing called Dynamic Across Time Autonomous - Sensing, Interpretation, 
Model learning and Maintenance Theory (DATA-SEIALAMT) that has been 
supported by the NSF and the SME Education Foundation. 
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1. INTRODUCTION 

Sensing has become increasingly important in the control of complex and 
sophisticated systems of today's technology. There is an increased interest in 
developing a general theory to treat intelligent sensor systems [1,2,3). Parallel 
work has been done in industry where sensors have been developed with built in 
expert systems and look-up tables [4,5]. These sensors, called smart sensors, are 
described as simple sensing devices with built-in intelligence. This intelligence 
includes decision making capabilities, data processing, conflict resolution, 
communications, or distribution of infonnation. Again, there is no generic model, 
and the sensors and their built-in-intelligence usually very specific towards their 
field of application. 

The autonomous sensor is defined as a sensor that has an expert system with 
extensive qualitative tools that allow it to evolve with time into a better and more 
efficient system [6]. It differs from the above mentioned models by having a 
dynamic knowledge base as well as embedded qualitative and analytical functions 
that give it a higher degree of operational independence, self-sufficiency and 
robustness. The underlying philosophy behind the autonomous sensor is probably 
closest to Henderson's [7,8]/ogica/ sensor models that also endeavor to give more 
problem solving capabilities to the sensor. 

Multisensor integration and fusion has always been an attractive method to 
reduce the ambiguity in the sensed data, and considerable work has been done in 
this area [9,10,11,12]. The autonomous sensor model can reduce the need for 
redundant sensors, and give more accurate infonnation for integration and fusion 
purposes. Recent work in qualitative reasoning regarding physical systems has 
been published in a special volume of Artificial Intelligence [13]. This volume 
focuses on the development and use of qualitative reasoning methods to cope with 
fundamental engineering tasks. A link has been forged between qualitative 
reasoning and the traditional numeric and analytic methods. 

DeCoste [14] describes a system, called DATMI, that dynamically maintains a 
concise representation of the space of local and global interpretations across time 
that are consistent with the observations. Each of the observations is obtained 
from a sensor, and therefore the number of observations is equal to the number of 
sensors in the control system. The tmth of the observations and the validity of the 
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sensors is obtained by cross-referencing with possible and impossible states of the 
system (envisionments). DA TMI is designed for a complete control system 
comprising of multiple sensors and actuators, and is the inspiration for the 
fonnalized theory developed by the authors [15]. This theory is called DATA­
SE\4LAMT (Dynamic Across Time Autonomous Sensing, Interpretation, Model 
Leaming and Maintenance Theory) and is designed for and is applicable to each 
sensor in the control system. 

Brooks [16,17] states that a truly intelligent system would perform its own 
abstraction of the problem and then solve it. He has also presented the 
subsumption architecture and used it successfully on various mobile robots 
developed at the MIT Laboratory of Artificial Intelligence. The central theme is 
that there is no central representation or an overall intelligent controller. This 
entire philosophy of perception and reaction without a specific intelligent 
controller is also in keeping with the philosophy underlying the autonomous 
sensor that allows more decision making and problem solving at the sensor level 
rather than at the controller level in a robotic, or other control system. 

The autonomous sensor model is really a combination of a sensor and an 
operator monitoring it in real time. The operator has a basic tmderstanding of the 
sensor and the measurand (entity being measured), and as time passes he learns 
more about the sensor and measurand behaviors and uses his knowledge to keep 
rum1ing the sensor in as perfect a condition as possible. It is the operator's part 
that has to be embedded in existing sensors to make them autonomous. 

The autonomous sensor finds applications in any physical system that uses 
sensors since the sensors themselves become more robust and reliable. It is 
particularly suited for applications where the installed sensors can not be accessed 
for long periods of time, e.g. nuclear power plants, space structures, etc. In such 
applications the autonomous sensor could function for long periods of time fairly 
well without going through hard calibrations at short intervals of time. It would 
also be able to better handle itself in adverse conditions. Autonomous sensors are 
also useful in situations where the system has a large number of sensors, since 
installation, calibration and monitoring done by the sensor itself can greatly 
decrease the complexity of the system's operation. Examples are automated 
systems in industry, ships, airplanes, shuttles, etc. 

2. DATA-SIMLAMT (Fonnalized Theory) 

DATA-SAMT is a philosophy that has been inspired by the need for autonomous 
sensors, and these in turn were inspired by the need for autonomous systems. 
DATA-SEQLAMT, as presented in this paper, is a fonnalized theory to create 
autonomous agents, and the autonomous sensor is an application of this theory. 
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2.1 The Different Types of Databases 

DATA-SIMLAMr defines two types of databases for the autonomous sensor. 
These databases keep a running history of the sensed value in the quantitative and 
qualitative domain. 
a) Quantitative Database: This consists of a history of the actual numerical 

values sensed by the sensing element, and some pertinent statistical 
parameters and their numerical values, e.g. mean, std. dev., etc. 

b) Qualitative Database: This database consists of qualitative symbols that 
represent some situation of a relevant aspect of the system at that particular 
instant. These symbols are defined based on limiting quantitative 
parameters. These relevant aspects are called properties, and the symbolic 
representations are called state values. 

Some of the terms that will be used in this paper are defined as follows: 
PropertY - is a parameter, e.g. amplitude check. 
Concept - is a set of same properties, e.g. amplitude is high for a duration of time. 
Behavior - is a set of concepts, e.g. a normal operation followed by a very high 
amplitude may be a spike. 
Envisionment - is a known, hence pre-defined, concept or behavior similar to a 
known pattern in the pattern recognition problem. 

2.2 Windowing 

DATA-SIMLAMr uses three types of windows to determine the number of 
samples that must be used to define the properties, concepts and behaviors. These 
windows operate on the various databases described in the previous sections. 
Windowing is an important feature of DATASIMLAMT, and provides 
observation histories of appropriate length to identify the different 

behaviors in the sensor and measurand domain. These are dynamic windows, i.e., 
they can change size under various circumstances. 

Measurand Identification Window: This window is used to obtain the 
instantaneous model of the behavior of the measurand. This is essential for the 
sensor to identify problems in its own operation. DATA-SE\4LAMT attempts to 
give the sensor with various analytical modeling and tracking routines so that it 
can·use the one that best captures the instantaneous behavior of the measurand. 

Quantitative Database Window: The main function of this window is to 
capture transitions. This window operates on the raw data as is sensed by the 
physical sensing device, and carries out pre-defined statistical and identification 
functions so as to supply enough infonnation for the creation of the qualitative 
database. This window sets the number of points to be used in functions such as 
standard deviations, moving averages, etc. 
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Qualitative Database Window (QLW): This window acts upon the 
qualitative data base which has been created based upon the properties and their 
state values. This is the most important window as it matches the real-time 
qualitative data to the envisionments in the knowledge bases to come up with 
interpretations and identify sensor and measurand behaviors. Essentially, each 
behavior bas a window which is dictated by the combination and sequence of its 
associated concepts. 

2.3 DATA-SIMLAMT knowledge bases 

DATA-SFMLAMT bas two types of knowledge bases that are described below. 

Internal knowledge base: This consists of the basic knowledge that is required to 
distinguish between the nonnal behavior of the sensor and any other behavior that 
differs from the pre-defined nonnal behavior. This knowledge base also has 
knowledge such as the time response of the sensor, the time required for a change 
in the measurand, appropriate metl10dologies for changing the size of the 
windows, analytical tools such as statistical routines, fast fourier transfonn 
routines, curve fitting routines, least-mean-square adaptive algorithm, etc. The 
internal knowledge base is a generic part of the model that can only be changed at 
the software level, i.e., it requires some programming effort on the source code. 

External knowledge base: This knowledge base is the key feature ofDATA­
SIMLAMT, and hence, of the autonomous sensor. This knowledge base resides 
in external data tiles that may be created by the operator, and includes the 
specification sheet of the sensor and tiles containing the concepts and behaviors. 
These may be modified and updated by the operator as new behaviors are 
discovered, or the process may be automated, i.e., the knowledge base may be 
updated by the sensor as it discovers new behaviors that do not match the nonnal 
behavior of the sensor. The sensor memorizes new behaviors, identities 
appropriate countenneasures for them, and categorizes them such that it may use 
them the next time they appear. This constitutes the learning mechanism of 
DATA-SIMLAMT, and will be discussed in a later section. 

2.4 The Generic Model for an Autonomous sensor 

This section gives the operational model of an autonomous sensor. The model has 
sensing, interpretation, tmth maintenance and model teaming capabilities 
embedded in it as can be seen in Figure 1. Data travels from the physical sensing 
element to the interpretation module, and then the maintenance and learning 
modules. These modules obtain knowledge to act upon the sensor data from the 
various knowledge bases in the sensor as well as the measurand domains. 
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Figure 1 Tile Autonomous Sensor Model 

3. ENVISIONINIENTS (or Patterns) 

The envisionments are Ute most important feature of DATA-SIMLAMT, and 
were introduced before as part of the external knowledge base. These 
envisionments describe measurand behaviors such as step changes, etc., and 
abnormal sensor problems such as spikes, disturbances, dead sensors, etc. The 
sensor must distinguish between the behaviors that encompass the two different 
domains (measurand and sensor), since the sensor needs to take appropriate 
countermeasures if there is a sensor problem, but simply follow faithfully a valid 
change in the measurand behavior. These envisionments reside in external ASCII 
data files and can be created by the operator or by the sensor itself with the help of 
specialized machine learning algorithms. The sensor can use these precompiled 
envisionments, or it can start with a blank external knowledge base and create the 
very same envisionments during its operation when the learning mechanism is 
switched on. 

Let us investigate a sudden jump in the signal from a nonnal value to a very 
high value. When there is a sudden jump in the signal it could have been caused 
by one of the following three occurrences: 

a) It could be caused due to a problem in the internal circuitry of the sensor due 
to a surge of current, or a short circuit. It must be noted here that there are 
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sometimes two distinct circuits, one associated with the sensor, and the other 
associated with the data-acquisition system. For simplicity, the effect of both 
will be grouped together under sensor behaviors. 

b) It could be a start of a valid step change in the measurand. 
c) It could be due to an external disturbance. 

How does one quantify the term sudden? The sensor and the measurand time 
constants should always be checked against the actual time taken for the 
measurand to change from one value to another. A step change is the "most 
sudden" possible change in the measurand behavior. Hence, the following four 
possibilities can arise out of the comparison of the actual time (AT) with sensor 
time constant (STC) and the measurand time constant (MTC). Remember, the 
sensor time constant is always less than the measurand time constant (STC < 
MTC). 
i) If the actual time elapsed during a change in the sensed signal is faster 

than the sensor time constant (AT < STC), then it has definitely been 
caused by a problem in the internal circuitry of the sensor due to a problem 
such as a surge of current, or a short circuit. This behavior can confidently 
be interpreted as a Spike. If this continues for more than one or two 
samples then the behavior is an internal disturbance due to a sensor 
problem, and will be denoted by the following behavior and state value -
Disturbance(Sensor). 

ii) If the time elapsed during a change in the sensed signal is greater than the 
sensor time constant but less than t11e measurand time constant (STC < AT 
< MTC), then it is definitely an external disturbance due to foreign body. 
This is because the sensor is responding to a valid change in a measurand 
behavior and hence does not violate the sensor time constant condition, but 
does violate the measurand time constant condition. Tllis will be denoted 
by the following behavior and state value - Disturbance(Measurand). 

iii) If the time elapsed during a change in the sensed signal is equal to the 
measurand time constant (AT = MTC), then it can be presumed that t11e 
measurand has gone through a valid Step Change, and the sensor is 
operating normally. 

iv) If the time elapsed during a change in the sensed signal is greater tlmn the 
measurand time constant (AT > MTC), then it can be assumed t11at the 
sensor is operating normally and is following the measurand behavior. It 
could also be disturbance from a foreign body whose time constant is 
greater than the measurand, but there is little one can do in tl1is case except 
follow t11e change. 
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4, DATA-SIMLAMT AT WORK 

There are some basic assumptions that must be made for the smooth and 
valid operation of the autonomous sensor, and these are: 
a) The measurand behavior must be continuous in time, and if not, should be 

modeled as such. A thermistor measuring the room temperature 
continuously for some control system can easily be instantiated as an 
autonomous sensor. But, if this thermistor is used to measure the 
temperature for intermittent periods of time then the time intervals when the 
thermistor is not being used should be treated as zero-time gaps. 

b) Since the measurand is itself usually a controlled variable it bas its own 
response time to a step change. The sensor time constant, defined as the 
time for it to change 63.2 percent of the total difference between its initial 
and final value when subjected to a step change, should be less than the 
measurand time constant. 

c) The sampling time of the data acquisition system should be less than the 
sensor time constant. 
This is essential in capturing transitions in the measurand behavior, and is a 
necessary design criterion. 

d) The sensor should have some idea about the frequency content of a harmonic 
signal. This is essential to extract and identify the principle frequencies of 
the signal and to be able to isolate it from a possible high frequency noise in 
the signal. In a non-harmonic signal this is not necessary, since the high 
frequency components can be assumed to be the noise contents. 

DATA-SIMLAMT bas four main tasks associated with it, these being sensing, 
interpretation, maintenance and learning (Figure 1 shows the different modules as 
well as. the flow of information). The autonomous sensor model will be 
demonstrated using a specific sensor, i.e., a thermistor. This thermistor may be 
part of a control system that needs to know the room temperature for control 
purposes, and is using the thermistor to measure it. 

Sensing includes two stages based on the traditional model of a sensor that 
consists of a physical sensing device that senses the measurand in some manner, 
and an analytical model that converts the sensed quantity into a digital value 
representative of the measurand. 

Interpretation is the process which includes the creation of the quantitative 
database, then the qualitative database, and then the final matching of the real­
time qualitative database with the envisionments to come up with the final 
interpreted behaviors in the sensor and measurand domain. This is similar to the 
pattern recognition problem as mentioned earlier. The matching is done by 
incrementing a Matching Function (MF) every time a property and its state value 
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is matched. A perfect match means that MF=lOO%. A behavior can only be 
interpreted if the associated W has a value of 100. This process can also be 
termed as the diagnostic component of DAT A-SE\4LAMT. This is the process 
very similar to a typical pattern recognition process. 

Maintenance is the process of correcting the sensed value in some manner if a 
sensor problem has been interpreted, filling gaps in the quantitative database, and 
resolving conflicts by consulting possible and impossible states of the system and 
the recent history of the sensor and measurand behavior. The main hindrance to 
the autonomous sensor is that it does not have a model of the measurand behavior 
so it infers a reliable instantaneous model of the measurand behavior at all times, 
and only then can it identify its own problems as they occur. This instantaneous 
model is obtained by using various modeling tools available to the autonomous 
sensor, and is done within the Measurand Identification Window. The various 
analytical tools available to the autonomous sensor are FFT analysis routines, FIR 
filter design routines, curve fitting routines, LMS adaptive predicting routines, 
etc. The maintenance process uses knowledge from the, envisionments and the 
specification sheet that includes the quantitative parameters, tables for drift, and 
other data. 

Machine learning is an important capability for any autonomous system, but 
one needs to know what constitutes learning before one can call it learning. The 
following definition of learning is proposed by the authors: 

Learning, as applied to physical systems, may be defined as a process in 
which the system modifies its existing model (the structure itse6C or simply the 
parameters ofthe existing structure) based on the information extracted from the 
input data according to pre-defined guidelines or principles (performance 
measure/critic}, memorizes the change, and has the ability to use this acquired 
knowledge in the future. 7he system should be able to adapt in some manner 
while it is operating even when there is no human involved in the closed loop 
system. 

The autonomous sensor has two levels of learning. The first is the teaming of 
quantitative parameters, and the second is the learning of qualitative behaviors 
that comprise the extemal knowledge base. 

Learning of Quantitative parameters: This is a lower level of leaming in 
which the sensor parameters are fine tuned against an assumed measurand 
behavior. This is similar to system identification, except that the sensor does not 
have an exact model of the input, but has an assumed instantaneous model of the 
measurand behavior. Usually, the analytical model of the sensor should only be 
changed during a hard calibration done against known input signals. However, 
there are cases where some of the sensor constants can be changed with a fair 
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degree of confidence. For example, whenever the sensor is certain that a step 
change bas occurred, then the currently recorded measurand response time can be 
used in the future rather titan the initially recorded one. 

Learning of Qualitative behaviors: This is a higher level of learning in 
which the sensor can recognize new behaviors that differ from tlte normal 
behavior, classify them according to predefined principles and guidelines, 
memorize them, and use this acquired knowledge in the future. The aim, of 
course, is that the sensor continuously improves with time. This is manifested in 
a reduced amount of time spent on interpreting previously learned behaviors, and 
in an improved perfonnance in countering problems. 

The autonomous sensor model is based on the philosophy of making the 
sensor self-sufficient One can make the sensor self-sufficient by defining a perfect 
model for it under all circumstances, incorporating all the possible problems that 
it could encounter in its operation, and all tlte possible measurand models that it 
could encounter. But, this assumes tlte fact tltat tlte knowledge about sensor and 
the measurand is absolutely complete and can be coded in without mistakes and 
missing pieces. If for any reason tltis assumption does not bold, tlten one has to 
assume that the sensor is not self-sufficient, and needs expert human support. 

The envisionment of tlte normal behavior of tlle sensor is used as a critic, 
called the Normal Behavior Segment. All real-time segments in tlte qualitative 
data base are compared to this envisionment, and if the matching function (MF) 
bas a value of 100%, then the segment is said to have passed the Normal Behavior 
Interpretation Test. This algorit.hm to distinguish between a valid change in tlle 
measurand behavior and an abnormal sensor behavior is based on the assumption 
that if there is a sensor problem tlten there bas to be a recovery some time in tlte 
future. 

Formalizing a methodology to distinguish between a sensor problem caused 
due to the internal circuitry and one caused due to the actual physical sensing 
element is a difficult task. DATASIMLAMT provides an initial attempt to do so 
by watching trends in the quantitative corrected raw data base to capture a 
possible problem in the physical sensing device. This problem occurs over a long 
period of time and usually manifests itself as a drift in tlte sensed values. It is 
usually compounded by high temperature violations and repeated harmonic 
cycles. If pre-compiled tables for drift are not available tllen tlle sensor can, under 
certain circumstances, compile its own tables. 

Since drift is compounded by harmonic cycles, D AT A-SEMLAMT keeps track 
of tlte harmonic cycles and an average value obtained by recording successive 
local maximas and minimas, and then finding a correlation between tltem. Tllis 
high level approach is only valid for a periodic signal. The advantage of this 
algorithm is that the signal need not be a perfect sinusoid, but can be any periodic 
signal with various frequencies and noise components. 
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5. SIMULATIONS AND EXPERIMENTS 

This section presents the performance results of the autonomous sensor 
implementation. The following three figures show the raw data (dotted lines) and 
the corrected data (solid lines). 
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Fipre 2. Simul~tion of a Non-Harmonic Signal 

Figure 21hows the raw aignal with numerous faulty data points due to problems such u spikes, 
:tc. Notice, the sensor is able to follow a step chanp. and learns about spikes and dead sensors the 
6rst time, and uses the knowledge later on to correct the original data. 
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Figure 3 Simulation of a harmonic signal with drift 

Figure 3 shows a harmonic signal that has drifted with time, and has spikes. The 
sensor recognizes the spikes and the drift, and compensates for the faulty raw 
data. 
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Figure 4 An Actual Experiment witb a Thermistor 

Figure 4 shows the results of an experiment in which the autonomous sensor 
model was used in conjunction with an actual thermistor measuring room 
temperature. The sensor was deliberately switched off twice and the temperature 
changed. Notice, the sensor follows the first problem, but then learns about it and 
compensates for the problem the second time around. It also recognizes the 
changes in the room temperature, and follows them faithfully. 

6. CONCLUSIONS AND RECOMMENDATIONS 

A formal theory for the development of a generic model for an autonomous 
sensor has been proposed and implemented. Tltis theory, called DA TA­
SJMLAMT, attempts to formalize knowledge that had formerly remained in the 
domain of the human operator. The autonomous sensor model is an advanced 
version · of the existing smart or expert sensors that only include an embedded 
expert system. The improvement is in the form of learning capabilities that allow 
the model to evolve with time for improved performance. Future work entails 
increasing the number of analytical tools 'table to the sensor in modeling the 
measurand behavior as well as using optimization techniques for the 
interpretation process. The autonomous sensor model will be used to improve the 
accuracy of an ultrasonic 3D position sensing system being currently developed at 
LSSU. 
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