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Abstract 
In developing a secondary-school mathematics curriculum. it is important to 
consider the kinds of experiences children should have to help underpin the 
development of the more abstract notions they are likely to encounter in later 
years of schooling. Many sophisticated ideas from modem mathematics and 
computer science are accessible to children and adults with very little 
mathematical background. The ideas are made more accessible by experiential 
projects with links to such topics as finite state automata, fractals, graph theory 
and cryptography. Scientists and mathematicians can bring their knowledge to 
the schools though clubs and demonstrations which will eventually infiltrate the 
classroom. 
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BEFORE SECONDARY EDUCATION 

In developing a secondary school mathematics curriculum. it is important for us to 
consider the kinds of exposure children may or should have before they reach high 
school. We must start early if we are to enable students to reach the high of levels 
mathematical sophistication they will need to survive in and contribute to our 
increasingly technological society. I present here a series of projects that invite 
students to study mathematics with their heads and hands. The goal of these 
projects is to get young students involved in discovering and discussing 
mathematics. The projects allow students to study many examples, formulate 
conjectures, find counter-examples, and sometimes find impossibilities. In some 
cases the projects have direct applications to technology, in others technology 
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helps in presenting or exploring a mathematical idea, yet others are just to foster 
independent mathematical thought, with or without technology. 

From Math Club to Classroom 
We cannot expect elementary school teachers to keep up, on their own, with the 
rapid scientific advances in today's world. Parents with training in math and 
science can partake in their own children's education and contribute to their 
school's programs by running science, math, and computer clubs within their 
children's schools. The examples, presented in this paper, are from an elementary 
school math club that I ran for two years. Yes, that means the children involved 
were bright kids from a privileged neighbourhood, kids who already knew that 
they liked math. It is my hope that projects, like those I describe here, can be 
integrated into ordinary classrooms. Our projects did not stop at our Monday 
morning math club. Enthused children showed their work to classroom teachers 
and many of our projects were adopted and adapted for classroom use. Several 
teachers started making appearances at our meetings. 

Math Oub to Home 
Several parents came to help out at our club, some regularly and others 
occasionally. The youngest children (6 years old) were expected to bring a parent 
along. The students often elaborated on their work at home and brought the 
results in to share. Three years have passed since my youngest child finished 
elementary school, the club is still alive, run by parents who helped out when I 
was there. The projects I contributed are about to be reused with a new group of 
students. 

SAMPLE PROJECTS 

Some of these projects started in college computer science classes and were then 
presented to six- to twelve-year-old children at my local elementary school math 
club. Other materials were designed for the math club but could easily serve as 
projects for high school groups. 

Modelling clay mathematics- spatial perception 
It may seem that this project has little to do with technology but actually it is a 
result of thoughts on computer-aided machining. Modelling clay is a great 
material for exploring surfaces and solids. We first used clay to study ways of 
describing 3-dimensional objects in 2-dimensions. Though there is wonderful 
software available for visualising three-dimensional objects, I think it is important 
for children to have the experience of visualising and manipulating three­
dimensional objects in three-space to fully understand the two-dimensional 
projections they see. 
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Students were asked to build 
convex solids given the top, side, and 
front views (see figure 1). Evety child 
quickly made a sphere for the fust 
problem and a cube for the second. 
Could they find any other solutions? 
... Yes. This means that the three 
projections do not supply enough 
information for a computer to direct a 
machine to construct the object, even 
with the convexity condition. 

Many came up with a short 
cylinder for the third set of 
projections. The fourth problem 
stumped them all but they kept trying 
and were able to see and discuss why 
their models didn't solve the problem. 

The (only?) solution is a solid that 
commonly appears as a calculus 
volume problem, the intersection of 
two cylinders. I showed them one. 

Front Side Top 

••• 
• •• • • 

For each row, make a solid with no holes 
or dents that has the front, side and top 
views shown. 

made of brass, that I machined when I Figure 1 Front, side and top views 
was in postgraduate school. 

The fifth problem has no solution and even young students could articulate 
why it couldn't be done. 

In a second exercise, we built elaborate terrains from contour maps. Finally, 
the contour maps were replaced with series of level curves of a surface, the result 
being a Klein bottle. imbedded in tbree-space. 

Point, line, square, cube, tesseract- spatial perception, discrete mathematics 
This is another project that doesn't directly relate to computers but as the students 
carry out the combinatorial analysis of the objects they build, they are getting a 
taste of empirical analysis, deduction, and induction that play a part in discrete 
mathematics. 

Using small Styrofoam balls for the vertices (I realised later that gumdrops are 
cheaper and work better) and wires for edges, students build a line, square. cube, 
and projection of a tesseract. This is really a study in counting, finding patterns, 

and expn:ssing the results by formula. As they build each object, the students 
record the number of vertices, edges, faces, volumes it contains. They realise that 
they join two squares to form a cube and two cubes to form a tesseract. They see 
that the number of vertices keeps doubling. Several saw that a cube came from 
two squares plus four new edges, one for each vertex in a square; a tesseract came 
from two cubes plus eight new edges, one for each vertex in a cube and .thus 
predicted the number of vertices and edges in a 5-dimensional hypercube. 
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Finite state automata - symbolic manipulation systems 
Automata theory and formal languages provide a way of thinking mathematically 
about computers and are deeply related to specific fields of computer science, e.g. 
lexical analysis in compilers. Though these subjects are commonly taught to 
upper level computer science majors, many aspects of them are accessible with no 
special mathematical background (Papadimitriou, 1981). They offer an excellent 
opportunity for mathematical description, discussion, and informal proof 

In our study of finite-state automata, children acted out the machine. Each 
actor played a state. A simple costume showed the state's name and whether it 
was an accepting state. Each state actor had a script telling them what to do 
(where to pass the tape) for each alphabet symbol (see figure 2). An input string 
was written out on adding machine tape and placed in a paper coffee cup with a 
slit in the lid. The cup was handed to the start state who read the first symbol and 
handed the cup to the appropriate state actor who read the next symbol and so on. 
When the tape ran out, the string was deemed good if the last state was accepting 
and bad otherwise. The good strings were taped on one side of the blackboard, 
the bad ones opposite. The audience had standard schematics of the automaton 
and together with the actors tried to describe the pattern of the accepted strings. 
Everybody wanted a chance to be an actor. Everyone participated in proposing 
descriptions of the accepted language, and coming up with counter examples of 
proofs that the description was correct. 

Figure 2 A Machine that accepts 20¢; Alphabet= {5¢, 10¢, 25¢}. The 15¢ state 
(Tova, on the right) is reading the tape. 

The children are wearing signs that tell their states. In this case, you can see the 
'5' and '10' states. The girl on the right is holding a coffee cup with a tape and 
reading her script that tells what to do depending on what she reads. She is either 
the '15' or '20' state and the boy, second from the left, is the other. Off the right 
side of the picture, is another child/state, the accepting state '20'. Any amount 
greater that 20 is also accepted. 
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After three weeks of play-acting we switched to: "Try to design automata to 
do the jobs described below." 

Ml alphabet = { m, n, o } accepts only the string mom. 
M2 alphabet= {a, b} accepts any string that doesn't end with bb. 
M3 alphabet = {a, b} accepts any string of length greater than 4. 
M4 alphabet = {0, 1} accepts any string that has 000 in it. 

About a quarter of my thirty six- to twelve-year-olds were able to solve these 
problems (e.g., see figure 3)---not all of my senior computer science uugors are 
able to do this. The other students still loved the exercise. They all made 
reasonable starts at the problems and then found counterexamples of mishandled 
strings for each other's designs. 

Figure 3: A solution for M4 designed by an elementary school student. 

Fractals - geometry, discrete mathematics, direct manipulation 
Fractals, popularised by Benoit Mandelbrot in the mid 70s, now play an important 
role in modelling natural phenomena and in generating realistic computer 
graphics (Mandelbrot, 1977). Today's school-age children have grown up with 
the fractal terrains of science fiction movies, many are aware of the Mandelbrot 
set. They are anxious to learn more about these marvels. We did several 
exercises involving fractals some with drawing or building, others with counting. 

Buildingfractal trees 
This is an introduction to how fractals can generate plant-like structures. In 
addition to paper and pencils, students were given small coloured stickers, a 
penny, and a clear plastic 'tree tool'. With a few pictures and a minimum of 
instruction, they set off to create trees. The stickers are for leaves or flowers at the 
ends of the branches. 
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> 
Figure 4 A Tree Figure 5 The Tree tool 

The instructions: Place the tree tool at the tip of a branch so the dark line lines up 
with the branch. Add two new branches by drawing along the edges of the tree 
tool (see figures 4 and 5). There are different ways to make a fractal tree. Try 
some of these: 

1. Always use the right (90") angle and the same length for the branches. 
2. Always use the right (90") angle but make the branches get shorter the farther 
out you go. 
3. Try the same things, always using the 30° angle (see figure 6a). 
4. Each time you are about to add two branches, toss a coin. Use 90° if it came 
up heads and 30° for tails (see figure 6b). 
5. Find a way to use coin tosses to decide on the lengths ofbranches. 

With dice and a vast supply of 1/4" thick squares of varying sizes, students were 
able to build fractal terrains, not as convincing as those of Lucas Films, but they 
got the point In both these exercises, students experienced the way in which 
randomness can perturb a deterministic algorithm to generate variety in nature. 
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Figure 6 Student trees. 
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Students met Sierpinski' s Triangle by drawing many levels on a triangular grid 
and then rediscovered Sierpinski's Triangle in Pascal's Triangle. They also drew 
many levels of snowflake curves. While drawing, they counted edges or triangles 
and deduced formulas to tell how many occurred at each level. This exercise like 
the counting of edges and vertices while building a tesseract is great preparation 
for the combinatorial analysis they will need if they ever have to analyze 
algorithms. It is also a clear introduction to recursion. 

Graph theory--algorithms 
It is easy to explain the problems of finding the shortest or cheapest path, or 
minimal spanning tree in a graph to someone with no mathematical background 
beyond simple arithmetic. It is also very easy for children to understand that these 
are relevant problems to scheduling airlines or even to routing packets on a 
computer network. Graphs are easy to visualise, draw, and talk about Children 
can propose algorithms and try carrying out each other's proposals. They don't 
necessarily come up with perfect algorithms but it is the act of proposing a 
method, and stating it clearly enough so that someone else is able to perform it 
that is important. 

A program we have our computer science freshmen write in Algorithms Data 
Structures n draws graphs and animates several standard graph algorithms. 
Printouts of the drawing provide a large source of sample graphs for elementary 
school children to experiment with (e.g., see figure 7). They can, eventually, 
watch an animation and try to deduce the algorithm being executed. 

Figure 7 Sample graphs for cheapest path and minimal spanning tree searches. 

Cryptography-statistics 
Secret codes have always appealed to children, and encryption is crucial to the 
success of communication technology. In this project, children create a histogram 
of occurrences of characters in a passage and match their result to a bar chart 
showing the probability of letters in common English. From the match they 
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deduce the Caesar shift necessmy to decode their personal messages. They gain a 
sense of how a probability distnbution and an exact count can be close to each 
other but not exactly the same. This is another project that came from my 
freshman computer science class. The college students had to write programs to 
draw the histogram, the children did it by hand. 

Frequency of letters in English 

Figure 8 Frequency graphs. 

Encrypted Message: 

Frequency ofletters in message 

ulcly ohkdl zlluz vthuf mpylm splzj vunyl nhalk vuvul zwvaa olfms pjrlk 
aoyvb noaol ayllz puzdh ytzao lfjyh dslkv uaoln yhzza olibz olzhu kaolv 
spcla yburz aoJfk ypmal kpuzd hytzv clyvb yolhk zhuks huklk vuaol ybnzs 
prlny llult ilyzn spaal ypunz aylht zvmao ltmsl dvbav clyao lihfz dpysp 
unvcl yaold halyh ukaol uypno avuJb laolw vywvp zlzhw wlhyl k 

Decrypted message: 
never had we seen so many fireflies congregated on one spot they flicked 
throu ghthe trees inswa rmsth eycra wledo ntheg rasst hebus hesan dtheo 
livet runks theyd rifte dinsw armso verou rhead sandl anded onthe rugsl 
ikegr eenem bersg litte rings tream softh emfle wouto verth ebays wirli 
ngove rthew atera ndthe nrigh toncu ethep orpoi sesap peare d 

Figure 9 Breaking a secret code. 

Game of Life - algorithm, simulation 
The Game of Life is an example of cellular automata that has entertained 
mathematicians and computer scientists since it was invented by John Horton 
Conway in 1970. The game is a simulation of living cells evolving according to 
simple rules. Simple rules, however, can lead to a vecy complex structure. In 
addition to just following the rules for life and death, students get to design 
creatures that will live, die, move, grow, go through planned changes, or just do 
things they never imagined 
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Though the rules for going from one generation to the next are simple to 
describe, they are not trivial to follow as you must not confuse the new generation 
with the last. We used Xs on a grid to represent the last generation and bright 
pink squares for the new generation. Then we copied the new generation as Xs 
onto a new grid. We also used a lovely interactive computer program of the game 
designed by Richard Rasala (Internet) for yet another computer science exercise. 

OTHER TOPICS 

There were many other equally sophisticated topics we worked on: plotting 
functions of one variable-lines, parabolas, circles, the Serpentine Curve, and the 
Witch of Agnesi (Hodgman, 1959}-afline functions of two variables (finding the 
image of the unit square with the letter P written in it); binary numbers; infinite 
series (Cohen, 1991); 1r (Beckmann, 1971); LOGO; Mobius Strips; Fibonacci 
Numbers and the Golden Ratio-including sunflowers and pineapples 
(Thompson, 1992}-Patterns in Numbers (Burns, 1982); and Sound. 

OBSERVATIONS AND CONCLUSION 

Our math club was a success, 20 to 30 children, three to six parents, and two or 
three teachers showed up early Monday morning just to do math. The math club 
projects filtered into the classroom. More girls showed up than boys-that may 
not be a measure of success but it does say that there was something in my 
methods that appealed to girls. A twelve-year-old student wrote that Math Club, 

" ... has altered first thing Monday, traditionally a dreaded time, into a 
meeting with a cheerful atmosphere and compelling exercises that are 
actually fun to do. It has changed the image of Math in mind from boring, 
photo-copied sheets full of tedious numbers and operation signs into 
exciting projects such as calculating how to efficiently put board-walks 
across a city or how to make an authentic tree out of fractals or to make a 
3-D mountain range that could possibly be a setting for a Science Fiction 
movie. . .. It has shown me that there are NO limits to mathematics; they 
can stretch as far as the mind will allow." (Adrienne Newberg, 1993). 

There are many topics in mathematics and computer science that are accessible 
without much background. They inspire mathematical exploration, description, 
discussion, conjecture, and proof. They allow children to get an early start at the 
abstract thought that is necessary for higher mathematics and computer science. 

Clubs run by parent-scientists fit into any level of elementary or secondary 
school. They can bolster the work of teachers and without interfering with 
classroom curriculum can help introduce ideas from the forefront of technology. 
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FUTURE WORK 

The Internet now makes it possible to spread these ideas. We should create 
depositories to make project materials available to parents or teachers. Such a site 
should, however, be backed up by people willing to answer questions. That still 
leaves the issue of such a site not being universally accessible, but though there 
may be a gap now, I believe that gap will continue to narrow and we must plan on 
computer technology becoming at least as accessible as books are now. 
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