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Abstract 
Access control is the cornerstone of information security and integrity, but the 
semantic diversity of object models makes it difficult to provide a common 
foundation for access control in object-oriented systems. This paper presents a 
primitive capability-based access control architecture that can model a variety 
of authorization policies. The architecture described is integrated at the meta­
object level of the Meta-Object Operating System Environment, providing a 
common foundation for access control in heterogeneous object models. 
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1 INTRODUCTION 

Access control is critical to the security and integrity of distributed systems. 
While object-oriented technology has become a touchstone for developing dis­
tributed systems, the full potential of access control mechanisms for objects 
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has yet to be realized. Most advances in object-based access control have 
been confined to database security (see, e.g., Dittrich et al., 1989; Keefe et 
al., 1989; Jajodia and Kogan, 1990; Bruggemann, 1992; Thomas and Sandhu, 
1993; Bertino et al., 1994; Fernandez et al., 1994; Jonscher and Dittrich, 1995). 

Several factors have limited the incorporation of access control mecha­
nisms in distributed object technology. Object models are heterogeneous with 
tremendous semantic diversity. Authorization policies, greatly influenced by 
the specific object models they are designed to protect, cannot be applied to 
other object models. Moreover, most access control mechanisms are brittle, 
incapable of supporting multiple policies. 

Capabilities, which are unforgeable tokens that endow their possessors with 
privileges (Fabry, 1974; Karger, 1984, 1988), can implement a variety of au­
thorization policies. The flexibility of capabilities suggests their use as a meta­
model for access control of objects in distributed environments. 

The Meta-Object Operating System Environment (MOOSE) (Hale et al., 
1997) provides a framework for developing verifiably secure heterogeneous 
distributed objects with a mix of formal methods and object technology. The 
MOOSE Meta-Object Model (MOM) decomposes object-oriented behavior 
into a few core mechanisms. The security mechanisms integrated into MOM 
can express a variety of authorization models for object-oriented systems. 

This paper describes a capability-based access control architecture for meta­
objects as a common foundation for security in heterogeneous distributed 
object systems. The paper begins with an overview of access control in object­
oriented systems. The Meta-Object Model (MOM) and the access control 
architecture are described along with their roles in capturing heterogeneous 
access control models. The paper concludes with a discussion of related work. 

2 ACCESS CONTROL OF OBJECTS 

Object-oriented systems are composed of classes, instances, attributes (in­
stance variables) and methods. These components support encapsulation, 
modularity and re-use through message-passing, inheritance and aggregation. 

The goal of access control is to protect resources (objects) from unautho­
rized access by users (subjects). An authorization state is a function State : 
(Subject x Object x Privilege) ~Boolean, where the subject's privilege is 
the access type. Often, the authorization state is represented as a list of tu­
ples, e.g., < Subject, Object, access_type >, declaring that Subject has the 
access_type privilege for Object. An access control model defines domains for 
subjects, privileges and objects. Also, it defines implicit authorization rules 
and commands to take systems from one authorization state to another. 

While access control is fundamental to information security, authorization 
models in object-oriented database management systems (OODBMSs) (Keefe 
et al., 1989; Rabitti et al., 1991) lack a common perspective compared with 
those for relational database management systems. Many OODBMSs do not 
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Figure 1 Object-oriented electronic commerce model. 

provide any type of access control. The semantic diversity of object models is 
partly to blame, e.g., not all object models support multiple inheritance. The 
presence of competing authorization models also introduces problems. Each 
model resolves protection granularity, access types and implicit authorization 
flow in its own way. The dilemma is illustrated using a simple example. 

Consider the object-oriented electronic commerce model in Figure 1. The 
protection granularity specifies the finest units to be protected. Classes, ob­
jects, attributes and methods are all viable atomic units for protection. 

Objects could be chosen as the finest unit of protection. The resulting "all 
or nothing" access to objects is efficient (only one authorization set is needed 
per object), but inflexible. For instance, customers must be able to invoke 
Cashier: :ChecltOut() to pay for items. Using objects as atomic protection 
units implies that Customer objects would have access to Cashier objects 
and the potentially sensitive lists of Cashier transactions. The inflexibility of 
this approach forces most object models to respect individual methods and 
attributes as atomic units of protection, e.g., permitting customer access to 
Cashier: :ChecltOut(), but denying access to Cashier: :Transactions. 

Access types are another major issue in object-oriented systems. Database 
authorization models use read and write permissions. The privilege of modi­
fying rights can introduce access types (e.g., grant and revoke). Often, this is 
a power implicitly held by object owners. Providing grant and revoke types 
means that the abilities to grant or revoke can themselves be access types 
(e.g., grant-grant). A general implementation of this requires a self-referential 
access type. 

Suppose that cashiers need to read customer addresses, but should not 
modify them. Authorizing < Cashier1, Jody:: AddreSB, read > only gives 
Cashier1 read access to Jody: :Address. If attributes can be read or writ-
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ten directly (without using a local accessor method), access types read and 
write are desirable. However, if the model relies on local accessor methods to 
preserve encapsulation, then separate methods should exist for reading and 
writing attributes and effective read/write control can be manifested via the 
e:ucute privilege on those accessor methods (Gal-Oz et al., 1993). 

Implicit authorization is a convenient way of propagating permissions and 
protections. The idea is that permissions/protections can be given to an entire 
class of subjects/objects using one authorization rule - this is most natural 
because the class concept is fundamental to object models. An instance can 
inherit its authorization status from its class just like it inherits methods 
and attributes. The rule < Customer, Stocll:Item :: Price, read > gives all 
customers access to the prices of all items in stock. 

Generating exceptions to authorization rules is possible using negative au­
thorizations and strong/weak authorizations. A negative authorization explic­
itly denies access to an object ( < Chris, Cashier:: Checll:Dut(), -.ezecute > 
prohibits Chris from checking out). Combining positive and negative autho­
rizations can lead to conflicts. Thus, authorizations may be derived by labeling 
rules as weak or strong. Weak rules cannot override strong ones. While the 
presence of such rules makes it difficult to derive an authorization rule for a 
particular event, the resulting authorization models are highly expressive. 

Messages are the principal medium of communication in object-oriented 
systems. Jajodia and Kogan (1990) were the first to propose that messages 
be used as the focus of access control mechanisms in object systems. They 
introduced a message filter for deciding whether or not to accept a message 
on behalf of an object based on its source, content and destination. Message 
filters can reside within each object, providing ubiquitous access control. This 
decentralized authorization technique is superior to and more natural than 
centralized access control schemes for distributed object systems. 

Our access control approach decomposes object systems into their most 
primitive components. Since message-passing is central to all meta-object 
models, the message filter can help unify access control in heterogeneous 
distributed object systems. The following section explores access control for 
meta-object models and presents a flexible authorization architecture that is 
easily integrated with existing object models. 

3 META-OBJECT ACCESS CONTROL 

This section describes a primitive foundation for access control in object­
oriented systems. It is designed to be integrated at the meta-object level 
to permit a unified treatment of meta-classes, classes and objects (Stefik and 
Bobrow, 1985). The model is flexible enough to support multiple access control 
policies in distributed computing environments. 

Meta-object models provide a common theoretical underpinning for object 
systems. They present a unified view of features such as classes, subclasses 
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Figure 2 Meta-object electronic commerce model. 

and inheritance using the more primitive notions of meta-objects and delega­
tion. Meta-object models synthesize method invocation, message-passing and 
aggregation, the basic features of all object systems. 

Figure 2 shows a meta-object representation of the electronic commerce 
model. Note that all classes and objects have been replaced by meta-objects. 
Meta-objects that can spawn other meta-objects (using method NewOb j ect ()) 

model classes. Meta-objects capable of spawning "class" meta-objects are 
called meta-classes. HetaClass and Class are both meta-classes. 

This model uses capabilities (Fabry, 1974; Karger, 1984, 1988} for method­
based access control of meta-objects. A capability is an unforgeable token that 
a subject uses as a ticket for object access. A ticket, which is also associated 
with an access type, can be held by a subject or for a subject by a trusted 
third party. The ticket is inspected by an object or by the trusted third party 
before access is granted. Alternatively, capabilities can be viewed as locks and 
keys; this view implies that objects must hold matching tokens. Each subject 
has keys that give access to objects with matching locks. 

Capabilities typically control run-time privilege distribution between pro­
cesses and subprocedures. They can be used to implement various authoriza­
tion models, including identity and group-based Discretionary Access Control 
(DAC), Role-Based Access Control (RBAC) and Mandatory Access Control 
(MAC). This flexibility makes capabilities ideal for meta-level access control 
and conducive to supporting multipolicy functionality. 

An authorization model must resolve (s, o, a) as true or false for every sub­
ject (s), object (o) and access type (a) given an authorization state. An au-
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Figure 3 Access control definitions. 

thorization state is defined by State : Object -t Privilege -t Token -t Bool 
where Token serves as a representative for the subject. 

The recursive definition of access types (Figure 3) implements general grant 
and revoke privileges. The definition permits access types such as G. G. LOCK 
(grant grant lock) and G. R. G. KEY (grant revoke grant key). These types 
can be thought of as pertaining to token lists. Note that every type other than 
KEY behaves as a lock, e.g., G. R. KEY is a type of lock that guards the R. 
KEY list. Any subject with KEY token matching a token associated with G. R. 
KEY in an object can add (grant) tokens to the R. KEY list. 

The ALL privilege in Figure 3 confers privileges of every type to a subject. 
A subject with the ALL privilege can add or remove any type of authorization. 
The only limitation is that the subject must hold the actual token as a key. 
Rule 1 in Figure 4 formalizes the semantics of the ALL access type. 

The command set given in Figure 3 enables alteration of the authorization 
state. It comprises commands for adding and removing authorization tuples. 
Subjects can only add or remove tokens that they hold as keys. This means 
that even when a subject has a grant or revoke permission on some ·access 
control list, the only tokens it is able to add or remove are those that it holds 
as keys. The third command allows atomic ADD/REMOVE command sequences. 

Predicates EVAL and TRANS are defined on authorization states. EVAL is true 
when a command can take one state to another. It is used to give semantics 
to the command set. TRANS is true if a transition between states is possible. 
The relationship between EVAL and TRANS is formalized by Rule 2. 

Rule 3 gives semantics to the ADD command. It states that a subject must 
have grant privilege over an access type in an object to add a token of that 
type to the object. The constraint that subjects can only add tokens held 
by them as keys is formalized. E.g., authorization tuples < o, G.R.LOCK, a >, 

< s,KEY, a> and< s,KEY, b >allow the command ADD R.LOCK b o s. 
The semantics for the REMOVE command (Rule 4) specify when it is legal 

for a subject to remove authorization tuples. Using the previous example, an 
additional authorization tuple< o,R.R.LOCK, b >would lets remove R.LOCK 
permissions from o. Again, s must hold the affected token as a key. 

Rule 5 introduces command sequences to the system. It formalizes the tran­
sitive nature of commands on authorization states. 
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Figure 4. Access control rules. 

4 AUTHORIZATION IN THE META-OBJECT MODEL 

The Meta-Object Model (MOM) is a core model for the design and analysis of 
distributed object systems. MOM is augmented with mechanisms supporting 
the implementation and analysis of a spectrum of authorization models for 
object-oriented systems. This section describes MOM and the integration of 
capability-based access control primitives in MOM. 

MOM is constructed with the Robust Object Calculus (ROC), a process 
calculus for distributed objects (Hale et al., 1997). ROC's features, such as 
encapsulation and tuple-based communication, have facilitated the formal de­
sign of MOM. MOM is influenced by ACTORS (Agha, 1986) and LOOPS 
(Stefik and Bobrow, 1985). It models core object behavior, including per­
sistence, method invocation, asynchronous message-passing, delegation and 
aggregation. Virtually any object model can be built from MOM. 

Access control policies are implemented in MOM systems with object ac­
cess control lists (OACLs) and message filters. These mechanisms implement 
flexible and ubiquitous access control for objects and methods. Objects with 
OACLs and message filters can provide authorization services to domains of 
subobjects when efficiency concerns outweigh security requirements. 

4.1 MOM Objects 

MOM objects are collections of tightly encapsulated components (processes). 
Each MOM object uses a navigational identifier (nid) set that defines how it 
is addressed. MOM components that share a nid are part of the same object. 

A MOM system has a hierarchical structure of object domains, specifying 
objects that contain objects. Each MOM system has one root object that is 
not contained by any other object. Each object is named by a local identifier 
(lid) unique to its domain. Nids are constructed from (lid, direction) pair 
sequences. The domain of an object is its parent object. 
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The local identifier of an object (say Obj1) is prepended to the global iden­
tifier (gid) of its parent (say root) to define a unique gid for the object, e.g., 
[[out, Obj1 #]#, [[out, root#]#, null#]#]. Objects contain several cooperat­
ing MOM components: an object registry, a message handler and methods. The 
message handler and the object registry form the basis for an object's identity 
and control communications. Furthermore, objects can house a message filter 
and an object access control list (OACL), which contains authorizations for 
access to the object's components. The message filter resides in the message 
handler and authorizes each message using the OACL. 

An object registry maintains a record for each component within an ob­
ject. Specifically, it keeps track of message handlers, method interfaces and 
active method invocations. Component lids and types are stored within reg­
istry records. As an object is being deleted, it must refer to its registry to 
gracefully delete each of its components. Furthermore, to create an object 
inside a parent, the registry is checked to see that the new lid is unique. Only 
then is the object created and registered with the parent object. 

4.2 MOM Message-Passing 

Messages embody asynchronous communication in MOM. They carry re­
quests, acknowledgements and replies. A message handler processes incoming 
MOM messages and marshals object requests. It controls the distribution of 
requests and replies for' MOM components. An incoming message can be re­
ceived as a local request or delegated to another object. A message is delegated 
by consuming it and then re-creating it in an adjacent domain. 

4.3 MOM Methods 

The method architecture incorporates three types of processes: method inter­
faces, method arbiters and method bodies. Method interface components accept 
invocation requests propagated by message handlers, and control activation 
and synchronization for individual methods. A unique method interface exists 
for each method in an object. A method interface spawns a method arbiter 
and method body upon receiving a method invocation request. The method 
body performs the actual computation, while the method arbiter negotiates 
communications between the method body and the outside world. 

MOM includes mutable and immutable methods. A mutable method invoca­
tion spawns a persistent process with state that can be accessed many times. 
Immutable methods, on the other hand, behave like traditional methods, ter­
minating and returning a value upon completion. While mutable methods 
model instance variables, it is a MOM standard to create (immutable) acces­
sor methods in objects for instance variables. 
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Requests to an immutable method spawn a new method arbiter and body to 
support concurrent method invocation. However, a mutable method interface 
does not permit co-existing invocations. Requests to an active mutable method 
are forwarded to the method arbiter. Requests for a mutable method are 
forwarded to its arbiter which then forwards them to the method body. The 
behavior of the method body can be affected by previous requests; this models 
state information. 

Immutable methods behave like methods in conventional object-oriented 
programming languages. Each request spawns a new method body support­
ing concurrent method invocation. The completion of an invocation results in 
a reply from the method body to the method arbiter. This reply can be propa­
gated back to the initiating object (modeling a traditional method invocation) 
or it can go elsewhere as indicated by the request. 

Component creation and deletion are handled by special methods resident in 
each object. Objects invoke these methods like they would any other method: 
For example, a foreign object might issue a request to another object to create 
a subobject. However, this request might be refused if a conflict exists in the 
object registry (e.g., a subobject of the same name exists) or even as a matter 
of policy (e.g., only ancestors can delete object components). 

4.4 MOM Security 

OACLs and message filters implement access control in MOM systems. Each 
object can contain an OACL and a message filter. An OACL is a list of au­
thorization tuples of the form< component, access_type, token>. Message 
filters use OACLs to authorize incoming messages. A message includes in­
formation regarding the type of access and a set of tokens provided by the 
message originator that are used as keys in the authorization process. 

Method-based access control is specified by tuples with method names in 
the component field. Authorization commands, e.g., G. KEY, can also be issued 
in messages to destination objects. Since filtration occurs at the destination 
and at objects along the message route, the delegation of messages between 
objects must be authorized. This feature protects entire objects. 

A message filter examines a message and refers to its OACL to determine au­
thorization. If the message contains a key matching a lock held by the intended 
component recipient, the message is authorized. This scheme is adequate for 
object-oriented programming languages and is well-suited to object-oriented 
databases and distributed object systems. Figure 5 shows MOM object com­
ponents with the OACL and message filter. 

MOM objects affect access control by introducing intervening filters. Sup­
pose objects has legitimate access to object o because it has a key matching 
one of o's locks. Object s could be denied access to o if an intervening object 
i is on the message path between s and o. This can occur because messages 
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Figure 5 OACL and message filter components. 

must be authorized to pass through each domain between source and desti­
nation. Ifs is not allowed to send messages to i, the message will be returned 
at that point, effectively denying access to o. Intervening objects complicate 
the authorization architecture, but facilitate specialization of authorizations. 

The root object plays an important role by creating meta-objects and ini­
tializing the authorization state. Classes are meta-objects with special meth­
ods that construct instance objects of a certain type. Authorizations can be 
inherited by instances or subclasses via token propagation and runtime dele­
gation. These techniques manifest implicit authorization flow. User-controlled 
objects' manifest explicit authorization at runtime by invoking methods con­
taining authorization commands. 

Figure 6 shows the MOM version of the electronic commerce model. It is 
complemented by a partial view of the virtual global OACL that shows the 
authorization state after the bootstrapping process (Figure 7). 

No customer should access the information of another customer. This is 
enforced by ensuring that no Customer instance has a key to a lock in the 
OACL of the root object (which contains all Customer instances). Figure 
6 shows the result of John trying to access Jody. Access to Jody and its 
subobjects is denied because the filter in root intervenes. The filter checks 
the OACL in root and discovers that John does not have permission to send 
messages to (or through) Jody. 

It is important that customers read, but not modify, stock item prices. 
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Figure 6 Electronic commerce model (MOM representation). 

Therefore, tuple < ReadPrice(), LOCK, reacLprice > is placed in the OACL 
for the meta-object (class) Stock Item. Customer access to prices through 
Customer: : ReadPrice () requires the OACL for meta-object (class) Customer 
to contain < ReadPrice(), KEY, read.price >. The authorizations to add 
these tuples are given by the root object in the bootstrapping process. 

Delegations must be authorized like method invocations. Meta-objects prop­
agate delegation authorizations to instances, e.g., Stock Item must propagate 
< ReadPrice(), LOCK, reacLprice >to each of its instances and/or subclasses. 
Propagation is performed in the constructor for Stock Item. 

When a Customer reads a price, it delegates to Customer: :ReadPrice() 
which has the key to stock item prices. Figure 6 shows the chain when 
Mark: :GetPrice() is invoked for I2. At the other end of this invocation re­
quest, Customer: :ReadPrice() calls an accessor function local to I2, which 
is then delegated to an accessor method in Stock Item. 

Authorizations for method-based access can be specialized like methods. 
The authorization to delegate is held by the delegating object (instance or 
subclass), facilitating its specialization. For example, the accessor method in 
I1 could choose not to-delegate to its parent class, but instead define its own 
behavior and/or authorization set. This is shown in Figure 6 where Chris 
attempts to get the price of I1, but is denied because the OACL for I1 does 
not contain the authorization tuple < ReadPrice(), LOCK, reacLprice > for 
delegation to the parent class (Figure 6). 

Efficiency is a concern whenever message filters are used. The proposed 
architecture permits objects to provide authorization services for entire do­
mains. This obviates the use of message filters and OACLs in each object in 
MOM, resulting in a :flexible and potentially lightweight access control system. 
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Figure 7 Global view of OACLs. 

5 RELATED WORK 

This work is motivated by the sophisticated meta-object models of LOOPS 
(Stefik and Bobrow, 1985) and ACTORS (Agha, 1986). The access control 
mechanisms in MOM support multipolicy access control in heterogeneous ob­
ject systems. The meta-level authorization scheme is geared for distributed 
objects and relies on three concepts: capabilities, message filters and method­
based access control. Integrating these features in a meta-object model pro­
duces a rich framework for expressing a variety of authorization models for 
object-oriented systems. 

Research in database security has also influenced this work (Dittrich et 
al., 1989; Thuraisingham, 1989; Thomas and Sandhu, 1993; Fernandez et al., 
1994; Demurjian et al., 1995). The ORION/ITASCA system adopts discre­
tionary access control for objects, embracing notions of explicit/implicit, pos­
itive/negative and weak/strong authorizations (Rabitti et al., 1991). An ex­
tension by Bertino et al. (1994) supports additional access types and type 
dependency modeling, clarifies subject group semantics, and considers object 
versions and the potential for distributed authorization control. Our model 
can be extended to positive/negative and weak/strong authorizations by mod­
ifying components to handle the new types. An important advantage of our 
model is that semantic-based forms of implicit authorization emerge in any 
system designed using MOM. 

Gal-Oz et al. (1993) introduced method-based access control for objects. By 
using methods as a basis for access control, first-order access types (e.g., read 
and write) are reduced to a single execute type. This scheme complements the 
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MOM architecture nicely because MOM stipulates that any form of access 
always occurs through a method invocation ( accessor methods are used to 
read and write instance variables). This facilitates policy specifications that 
are emergent from meta-level access control primitives and MOM. 

Multipolicy access control is an important area of research (Bell, 1994; 
Bertino et al., 1996). Multipolicy mechanisms and models enable users to 
protect each object according to a different policy. The architecture described 
by Bertino et al. (1996) employs :flexible access control mechanisms and me­
diators (Wiederhold, 1992). Mediators shape access control mechanisms to 
enforce user-specified authorization policies. Our work in multipolicy systems 
seeks a common ground for access control mechanisms that can support the 
interoperation of disparate authorization policies. 

Argos (Jonscher and Dittrich, 1995) shares the goal of developing a unified 
view of heterogeneous access control models in open distributed environments. 
It achieves this goal by incorporating features of various identity-based autho­
rization models. It models implicit authorization flow and introduces domains 
to generate classes of behavior and protection, exploiting the richness of the 
object-oriented paradigm to create a :flexible system. Our approach differs by 
decomposing object behavior into primitive mechanisms. Capabilities are also 
more general - they can be identities, groups, labels, roles or tasks. 

The Distributed Computing Environment (DCE) uses a decentralized au­
thorization service in its security architecture (Rosenberry et al., 1993). DCE's 
authorization service associates access control lists with servers, files and 
records, specifying legal operations for each user. The authorization service 
works in concert with DCE's authentication service. Privilege attributes are 
embedded in tickets provided to subjects by the authentication server at login. 
ACL managers that reside on each server authorize access requests. DCE sup­
ports a variety of authorization models by allowing developer customization 
of ACL managers. DCE does not deal directly with object-oriented and multi­
policy access control issues. However, it provides a framework for ubiquitous, 
yet practical, access control in distributed systems. 

6 CONCLUSIONS 

The meta-level authorization service architecture presented in this paper in­
tegrates primitive capability-based access control mechanisms within a meta­
object model for maximal support of multiple policies in heterogeneous object 
systems. The meta-object model engages message filters and method-based ac­
cess control, although access control for objects is also possible. Access control 
in this model can be ubiquitous, where each object is responsible for its own 
authorization policy. It can also be lightweight, where objects provide autho­
rization services for entire object domains. Implemented in the Meta-Object 
Model (MOM), this authorization service architecture provides a common 
foundation for the secure interoperation of heterogeneous distributed objects. 
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