
8

Capability-based primitives for
access control in object-oriented
systems

John Hale
School of Electrical Engineering and Computer Science
Washington State University, Pullman, Washington 99164, USA
hale@eecs. wsu. edu

Jody Threet and Sujeet Shenoi
Department of Computer Science
University of Tulsa, Tulsa, Oklahoma 74104, USA
{ threet, sujeet}@euler. mes. utulsa. edu

Abstract
Access control is the cornerstone of information security and integrity, but the
semantic diversity of object models makes it difficult to provide a common
foundation for access control in object-oriented systems. This paper presents a
primitive capability-based access control architecture that can model a variety
of authorization policies. The architecture described is integrated at the meta­
object level of the Meta-Object Operating System Environment, providing a
common foundation for access control in heterogeneous object models.

Keywords
Access control, distributed object systems, capabilities, meta-object models

1 INTRODUCTION

Access control is critical to the security and integrity of distributed systems.
While object-oriented technology has become a touchstone for developing dis­
tributed systems, the full potential of access control mechanisms for objects

Database Security XI T.Y Lin and Shelly Qian (Eds)
C 1998 IFIP. Published by Chapman & Hall

Access control in object-oriented systems 135

has yet to be realized. Most advances in object-based access control have
been confined to database security (see, e.g., Dittrich et al., 1989; Keefe et
al., 1989; Jajodia and Kogan, 1990; Bruggemann, 1992; Thomas and Sandhu,
1993; Bertino et al., 1994; Fernandez et al., 1994; Jonscher and Dittrich, 1995).

Several factors have limited the incorporation of access control mecha­
nisms in distributed object technology. Object models are heterogeneous with
tremendous semantic diversity. Authorization policies, greatly influenced by
the specific object models they are designed to protect, cannot be applied to
other object models. Moreover, most access control mechanisms are brittle,
incapable of supporting multiple policies.

Capabilities, which are unforgeable tokens that endow their possessors with
privileges (Fabry, 1974; Karger, 1984, 1988), can implement a variety of au­
thorization policies. The flexibility of capabilities suggests their use as a meta­
model for access control of objects in distributed environments.

The Meta-Object Operating System Environment (MOOSE) (Hale et al.,
1997) provides a framework for developing verifiably secure heterogeneous
distributed objects with a mix of formal methods and object technology. The
MOOSE Meta-Object Model (MOM) decomposes object-oriented behavior
into a few core mechanisms. The security mechanisms integrated into MOM
can express a variety of authorization models for object-oriented systems.

This paper describes a capability-based access control architecture for meta­
objects as a common foundation for security in heterogeneous distributed
object systems. The paper begins with an overview of access control in object­
oriented systems. The Meta-Object Model (MOM) and the access control
architecture are described along with their roles in capturing heterogeneous
access control models. The paper concludes with a discussion of related work.

2 ACCESS CONTROL OF OBJECTS

Object-oriented systems are composed of classes, instances, attributes (in­
stance variables) and methods. These components support encapsulation,
modularity and re-use through message-passing, inheritance and aggregation.

The goal of access control is to protect resources (objects) from unautho­
rized access by users (subjects). An authorization state is a function State :
(Subject x Object x Privilege) ~Boolean, where the subject's privilege is
the access type. Often, the authorization state is represented as a list of tu­
ples, e.g., < Subject, Object, access_type >, declaring that Subject has the
access_type privilege for Object. An access control model defines domains for
subjects, privileges and objects. Also, it defines implicit authorization rules
and commands to take systems from one authorization state to another.

While access control is fundamental to information security, authorization
models in object-oriented database management systems (OODBMSs) (Keefe
et al., 1989; Rabitti et al., 1991) lack a common perspective compared with
those for relational database management systems. Many OODBMSs do not

136 Part Three Object-Oriented Systems

~
~
,' ' ' ",

@@@@

TnrlllClionlilat
Bool ai.c:iiruo
Bool c.dChlrgeO

PIN:tbn

Boal 11111190

1' I ', , ' '

~9~
,,' 1 ' '\ ©©®®

. ' . ' . '

~~
(SWdaaal)
A-I

(ntaaal)
A ·-------• 8

Figure 1 Object-oriented electronic commerce model.

provide any type of access control. The semantic diversity of object models is
partly to blame, e.g., not all object models support multiple inheritance. The
presence of competing authorization models also introduces problems. Each
model resolves protection granularity, access types and implicit authorization
flow in its own way. The dilemma is illustrated using a simple example.

Consider the object-oriented electronic commerce model in Figure 1. The
protection granularity specifies the finest units to be protected. Classes, ob­
jects, attributes and methods are all viable atomic units for protection.

Objects could be chosen as the finest unit of protection. The resulting "all
or nothing" access to objects is efficient (only one authorization set is needed
per object), but inflexible. For instance, customers must be able to invoke
Cashier: :ChecltOut() to pay for items. Using objects as atomic protection
units implies that Customer objects would have access to Cashier objects
and the potentially sensitive lists of Cashier transactions. The inflexibility of
this approach forces most object models to respect individual methods and
attributes as atomic units of protection, e.g., permitting customer access to
Cashier: :ChecltOut(), but denying access to Cashier: :Transactions.

Access types are another major issue in object-oriented systems. Database
authorization models use read and write permissions. The privilege of modi­
fying rights can introduce access types (e.g., grant and revoke). Often, this is
a power implicitly held by object owners. Providing grant and revoke types
means that the abilities to grant or revoke can themselves be access types
(e.g., grant-grant). A general implementation of this requires a self-referential
access type.

Suppose that cashiers need to read customer addresses, but should not
modify them. Authorizing < Cashier1, Jody:: AddreSB, read > only gives
Cashier1 read access to Jody: :Address. If attributes can be read or writ-

Access control in object-oriented systems 137

ten directly (without using a local accessor method), access types read and
write are desirable. However, if the model relies on local accessor methods to
preserve encapsulation, then separate methods should exist for reading and
writing attributes and effective read/write control can be manifested via the
e:ucute privilege on those accessor methods (Gal-Oz et al., 1993).

Implicit authorization is a convenient way of propagating permissions and
protections. The idea is that permissions/protections can be given to an entire
class of subjects/objects using one authorization rule - this is most natural
because the class concept is fundamental to object models. An instance can
inherit its authorization status from its class just like it inherits methods
and attributes. The rule < Customer, Stocll:Item :: Price, read > gives all
customers access to the prices of all items in stock.

Generating exceptions to authorization rules is possible using negative au­
thorizations and strong/weak authorizations. A negative authorization explic­
itly denies access to an object (< Chris, Cashier:: Checll:Dut(), -.ezecute >
prohibits Chris from checking out). Combining positive and negative autho­
rizations can lead to conflicts. Thus, authorizations may be derived by labeling
rules as weak or strong. Weak rules cannot override strong ones. While the
presence of such rules makes it difficult to derive an authorization rule for a
particular event, the resulting authorization models are highly expressive.

Messages are the principal medium of communication in object-oriented
systems. Jajodia and Kogan (1990) were the first to propose that messages
be used as the focus of access control mechanisms in object systems. They
introduced a message filter for deciding whether or not to accept a message
on behalf of an object based on its source, content and destination. Message
filters can reside within each object, providing ubiquitous access control. This
decentralized authorization technique is superior to and more natural than
centralized access control schemes for distributed object systems.

Our access control approach decomposes object systems into their most
primitive components. Since message-passing is central to all meta-object
models, the message filter can help unify access control in heterogeneous
distributed object systems. The following section explores access control for
meta-object models and presents a flexible authorization architecture that is
easily integrated with existing object models.

3 META-OBJECT ACCESS CONTROL

This section describes a primitive foundation for access control in object­
oriented systems. It is designed to be integrated at the meta-object level
to permit a unified treatment of meta-classes, classes and objects (Stefik and
Bobrow, 1985). The model is flexible enough to support multiple access control
policies in distributed computing environments.

Meta-object models provide a common theoretical underpinning for object
systems. They present a unified view of features such as classes, subclasses

138 Part Three Object-Oriented Systems

void NlwObjecl()

Bool Bilme{)

I \
I \

I \
I \

(~) GJ
·-----------------------------------, I I

i D A (Sllllcluool) B i
! MetaOltject A~> B !
I I

·-----------------------------------·

Figure 2 Meta-object electronic commerce model.

and inheritance using the more primitive notions of meta-objects and delega­
tion. Meta-object models synthesize method invocation, message-passing and
aggregation, the basic features of all object systems.

Figure 2 shows a meta-object representation of the electronic commerce
model. Note that all classes and objects have been replaced by meta-objects.
Meta-objects that can spawn other meta-objects (using method NewOb j ect ())

model classes. Meta-objects capable of spawning "class" meta-objects are
called meta-classes. HetaClass and Class are both meta-classes.

This model uses capabilities (Fabry, 1974; Karger, 1984, 1988} for method­
based access control of meta-objects. A capability is an unforgeable token that
a subject uses as a ticket for object access. A ticket, which is also associated
with an access type, can be held by a subject or for a subject by a trusted
third party. The ticket is inspected by an object or by the trusted third party
before access is granted. Alternatively, capabilities can be viewed as locks and
keys; this view implies that objects must hold matching tokens. Each subject
has keys that give access to objects with matching locks.

Capabilities typically control run-time privilege distribution between pro­
cesses and subprocedures. They can be used to implement various authoriza­
tion models, including identity and group-based Discretionary Access Control
(DAC), Role-Based Access Control (RBAC) and Mandatory Access Control
(MAC). This flexibility makes capabilities ideal for meta-level access control
and conducive to supporting multipolicy functionality.

An authorization model must resolve (s, o, a) as true or false for every sub­
ject (s), object (o) and access type (a) given an authorization state. An au-

ACCESS TYPES

priv 11• ALL
I priv2

priv2 11• DY
I LOCK
I o • priv2
I R • priv2

Access control in object-oriented systems 139

ACCESS CONTROL COMMANDS

coma 11• ADD-> priv ->token-> object ->object
I RBllOVB -> priv -> token -> object -> object
I COlllll , COlllll

ACCESS CONTROL PREDICATES

BVAL1 coma -> •tat• -> •tat• -> bool

'l'RANS1 •tat• -> •tat• -> bool

Figure 3 Access control definitions.

thorization state is defined by State : Object -t Privilege -t Token -t Bool
where Token serves as a representative for the subject.

The recursive definition of access types (Figure 3) implements general grant
and revoke privileges. The definition permits access types such as G. G. LOCK
(grant grant lock) and G. R. G. KEY (grant revoke grant key). These types
can be thought of as pertaining to token lists. Note that every type other than
KEY behaves as a lock, e.g., G. R. KEY is a type of lock that guards the R.
KEY list. Any subject with KEY token matching a token associated with G. R.
KEY in an object can add (grant) tokens to the R. KEY list.

The ALL privilege in Figure 3 confers privileges of every type to a subject.
A subject with the ALL privilege can add or remove any type of authorization.
The only limitation is that the subject must hold the actual token as a key.
Rule 1 in Figure 4 formalizes the semantics of the ALL access type.

The command set given in Figure 3 enables alteration of the authorization
state. It comprises commands for adding and removing authorization tuples.
Subjects can only add or remove tokens that they hold as keys. This means
that even when a subject has a grant or revoke permission on some ·access
control list, the only tokens it is able to add or remove are those that it holds
as keys. The third command allows atomic ADD/REMOVE command sequences.

Predicates EVAL and TRANS are defined on authorization states. EVAL is true
when a command can take one state to another. It is used to give semantics
to the command set. TRANS is true if a transition between states is possible.
The relationship between EVAL and TRANS is formalized by Rule 2.

Rule 3 gives semantics to the ADD command. It states that a subject must
have grant privilege over an access type in an object to add a token of that
type to the object. The constraint that subjects can only add tokens held
by them as keys is formalized. E.g., authorization tuples < o, G.R.LOCK, a >,

< s,KEY, a> and< s,KEY, b >allow the command ADD R.LOCK b o s.
The semantics for the REMOVE command (Rule 4) specify when it is legal

for a subject to remove authorization tuples. Using the previous example, an
additional authorization tuple< o,R.R.LOCK, b >would lets remove R.LOCK
permissions from o. Again, s must hold the affected token as a key.

Rule 5 introduces command sequences to the system. It formalizes the tran­
sitive nature of commands on authorization states.

140 Part Three Object-Oriented Systems

Rule 1 : Vp : priv, o : obj, t : token, s : state. s o ALL t ::} s op t

Rule 2: Vs1, s2.3c: comm. EVAL c s1 s2 ::} TRAIS s1 s2

Rule 3: Vp, s1, s2, 01, 02, t.
s1 01 KEY t I\ s1 02 G.p t::} (s2 02 p t I\ (\:/01,p1, t'. o' :f. 02 V p' :f. p

Vt' :f. t::} s1 0 1 p1 t' = s2 0 1 p1 t')::} EVAL {ADD pt 02 01) s1 s2)

Rule 4: Vp, s1, s2, 01, 02, t.

s1 01 KEY t I\ s1 02 R.p t::} ...,(s2 02 pt I\ (\:/01,p1, t'. o' :f. 02 V p' :f. p

V t' :f. t::} s1 o' p1 t1 = s2 o' p1 t') ::} EVAL (REMOVE p t 02 oi) s1 s2)

Rule 5: EVAL (c1) s1 s2 I\ EVAL (c2) s2 s3 ::} EVAL (c1;c2) s1 s3

Figure 4. Access control rules.

4 AUTHORIZATION IN THE META-OBJECT MODEL

The Meta-Object Model (MOM) is a core model for the design and analysis of
distributed object systems. MOM is augmented with mechanisms supporting
the implementation and analysis of a spectrum of authorization models for
object-oriented systems. This section describes MOM and the integration of
capability-based access control primitives in MOM.

MOM is constructed with the Robust Object Calculus (ROC), a process
calculus for distributed objects (Hale et al., 1997). ROC's features, such as
encapsulation and tuple-based communication, have facilitated the formal de­
sign of MOM. MOM is influenced by ACTORS (Agha, 1986) and LOOPS
(Stefik and Bobrow, 1985). It models core object behavior, including per­
sistence, method invocation, asynchronous message-passing, delegation and
aggregation. Virtually any object model can be built from MOM.

Access control policies are implemented in MOM systems with object ac­
cess control lists (OACLs) and message filters. These mechanisms implement
flexible and ubiquitous access control for objects and methods. Objects with
OACLs and message filters can provide authorization services to domains of
subobjects when efficiency concerns outweigh security requirements.

4.1 MOM Objects

MOM objects are collections of tightly encapsulated components (processes).
Each MOM object uses a navigational identifier (nid) set that defines how it
is addressed. MOM components that share a nid are part of the same object.

A MOM system has a hierarchical structure of object domains, specifying
objects that contain objects. Each MOM system has one root object that is
not contained by any other object. Each object is named by a local identifier
(lid) unique to its domain. Nids are constructed from (lid, direction) pair
sequences. The domain of an object is its parent object.

Access control in object-oriented systems 141

The local identifier of an object (say Obj1) is prepended to the global iden­
tifier (gid) of its parent (say root) to define a unique gid for the object, e.g.,
[[out, Obj1 #]#, [[out, root#]#, null#]#]. Objects contain several cooperat­
ing MOM components: an object registry, a message handler and methods. The
message handler and the object registry form the basis for an object's identity
and control communications. Furthermore, objects can house a message filter
and an object access control list (OACL), which contains authorizations for
access to the object's components. The message filter resides in the message
handler and authorizes each message using the OACL.

An object registry maintains a record for each component within an ob­
ject. Specifically, it keeps track of message handlers, method interfaces and
active method invocations. Component lids and types are stored within reg­
istry records. As an object is being deleted, it must refer to its registry to
gracefully delete each of its components. Furthermore, to create an object
inside a parent, the registry is checked to see that the new lid is unique. Only
then is the object created and registered with the parent object.

4.2 MOM Message-Passing

Messages embody asynchronous communication in MOM. They carry re­
quests, acknowledgements and replies. A message handler processes incoming
MOM messages and marshals object requests. It controls the distribution of
requests and replies for' MOM components. An incoming message can be re­
ceived as a local request or delegated to another object. A message is delegated
by consuming it and then re-creating it in an adjacent domain.

4.3 MOM Methods

The method architecture incorporates three types of processes: method inter­
faces, method arbiters and method bodies. Method interface components accept
invocation requests propagated by message handlers, and control activation
and synchronization for individual methods. A unique method interface exists
for each method in an object. A method interface spawns a method arbiter
and method body upon receiving a method invocation request. The method
body performs the actual computation, while the method arbiter negotiates
communications between the method body and the outside world.

MOM includes mutable and immutable methods. A mutable method invoca­
tion spawns a persistent process with state that can be accessed many times.
Immutable methods, on the other hand, behave like traditional methods, ter­
minating and returning a value upon completion. While mutable methods
model instance variables, it is a MOM standard to create (immutable) acces­
sor methods in objects for instance variables.

142 Part Three Object-Oriented Systems

Requests to an immutable method spawn a new method arbiter and body to
support concurrent method invocation. However, a mutable method interface
does not permit co-existing invocations. Requests to an active mutable method
are forwarded to the method arbiter. Requests for a mutable method are
forwarded to its arbiter which then forwards them to the method body. The
behavior of the method body can be affected by previous requests; this models
state information.

Immutable methods behave like methods in conventional object-oriented
programming languages. Each request spawns a new method body support­
ing concurrent method invocation. The completion of an invocation results in
a reply from the method body to the method arbiter. This reply can be propa­
gated back to the initiating object (modeling a traditional method invocation)
or it can go elsewhere as indicated by the request.

Component creation and deletion are handled by special methods resident in
each object. Objects invoke these methods like they would any other method:
For example, a foreign object might issue a request to another object to create
a subobject. However, this request might be refused if a conflict exists in the
object registry (e.g., a subobject of the same name exists) or even as a matter
of policy (e.g., only ancestors can delete object components).

4.4 MOM Security

OACLs and message filters implement access control in MOM systems. Each
object can contain an OACL and a message filter. An OACL is a list of au­
thorization tuples of the form< component, access_type, token>. Message
filters use OACLs to authorize incoming messages. A message includes in­
formation regarding the type of access and a set of tokens provided by the
message originator that are used as keys in the authorization process.

Method-based access control is specified by tuples with method names in
the component field. Authorization commands, e.g., G. KEY, can also be issued
in messages to destination objects. Since filtration occurs at the destination
and at objects along the message route, the delegation of messages between
objects must be authorized. This feature protects entire objects.

A message filter examines a message and refers to its OACL to determine au­
thorization. If the message contains a key matching a lock held by the intended
component recipient, the message is authorized. This scheme is adequate for
object-oriented programming languages and is well-suited to object-oriented
databases and distributed object systems. Figure 5 shows MOM object com­
ponents with the OACL and message filter.

MOM objects affect access control by introducing intervening filters. Sup­
pose objects has legitimate access to object o because it has a key matching
one of o's locks. Object s could be denied access to o if an intervening object
i is on the message path between s and o. This can occur because messages

Access control in object-oriented systems 143

. .
M Haadltr

~
M• ... Jlllter

~~

Object A_, Coalrol Liat I

COIDllOllOlll Pli'rilege Token

Melhod_lttetfaoe_ 1 Key •
IMthod_lrfftfaoe 1 Lode •
Mtlthod_lttetfaoe_ 1 Al q

1Mthod_lttetfaoe_2 Key q

1Mthod_lrfftfaoe_2 Lock •
1Mthod_/ttetfaoe_2 Al •
Slb_Objed_ 1 Key b

Slb_Objed_1 Lode b

Slb_Objed_ 1 Lode •
Mfllhod_lltetfaoe_1 RKey •
IMthod_lttetfaoe 2 Key •
Method_lttetfaoe_1 G.G.Lodc •
1Mthod_Albler_2 Key z
Method_Albl.,_2 Lock •

'

Figure 5 OACL and message filter components.

must be authorized to pass through each domain between source and desti­
nation. Ifs is not allowed to send messages to i, the message will be returned
at that point, effectively denying access to o. Intervening objects complicate
the authorization architecture, but facilitate specialization of authorizations.

The root object plays an important role by creating meta-objects and ini­
tializing the authorization state. Classes are meta-objects with special meth­
ods that construct instance objects of a certain type. Authorizations can be
inherited by instances or subclasses via token propagation and runtime dele­
gation. These techniques manifest implicit authorization flow. User-controlled
objects' manifest explicit authorization at runtime by invoking methods con­
taining authorization commands.

Figure 6 shows the MOM version of the electronic commerce model. It is
complemented by a partial view of the virtual global OACL that shows the
authorization state after the bootstrapping process (Figure 7).

No customer should access the information of another customer. This is
enforced by ensuring that no Customer instance has a key to a lock in the
OACL of the root object (which contains all Customer instances). Figure
6 shows the result of John trying to access Jody. Access to Jody and its
subobjects is denied because the filter in root intervenes. The filter checks
the OACL in root and discovers that John does not have permission to send
messages to (or through) Jody.

It is important that customers read, but not modify, stock item prices.

144 Part Three Object-Oriented Systems

.... ------... -..................... --------.................. ..
,"_.......-----------.. , ,

/ ---------. tool ~ Slocklhlm1 \ ,' ,-----------... : : • RmcPricl(): \
: : . : : cart : ,----... ·-----.... -..... : J : ~
• : MlllCllll1 : I : c.--)-{ 11 • \ '·----•• ---•' I ! ~------------~:::::::_-:! : : ' AeacPkc;t __ i

: f • .. .,. .. .,..,...,.,..,..,..,.., I ,.,,..,.,.. .. • l' 12 .. , (13 '1 :

: :-········: l ,-------· ' -----..... , ' FfltlllJP - ' • J
I 1 ca- 1 \ ~ I I ',..,.,,....... I
.; ·'-t :·Mark\: i •
: : : I : : \ : Guest : , , :
I ---------- • I GetPllcl() I I I ,.. - ... , I "I:
f ,---------~ (··::::·-- \ (Ci't J :..: \ ~to) · •;
I I I ' '"' I \ I I ,•"'"'"'' I I ' I
I : C&lhilr• -~--.... " ' ,' Jody"\ ' ~ C1 I ~ ,' i ! i ,' Chris \ ____ ! l \ ... :---:./ / : ---------· : : T\ , · .. , ,•'

: I ,........ : ,............ \ ~ C3 I I ,'

~ .. ---·-----.... :, (C2) : :' John "' \, ',,/ ··'
\ ~ C.lhilr1 \'11..., ,: : ~ -·

"· ... :~~~~~~~~--~-~~--~~~~~~~:~-----~:·~:::::~:~--------------······

lllVOCldlon ollflld*ed -

Figure 6 Electronic commerce model (MOM representation).

Therefore, tuple < ReadPrice(), LOCK, reacLprice > is placed in the OACL
for the meta-object (class) Stock Item. Customer access to prices through
Customer: : ReadPrice () requires the OACL for meta-object (class) Customer
to contain < ReadPrice(), KEY, read.price >. The authorizations to add
these tuples are given by the root object in the bootstrapping process.

Delegations must be authorized like method invocations. Meta-objects prop­
agate delegation authorizations to instances, e.g., Stock Item must propagate
< ReadPrice(), LOCK, reacLprice >to each of its instances and/or subclasses.
Propagation is performed in the constructor for Stock Item.

When a Customer reads a price, it delegates to Customer: :ReadPrice()
which has the key to stock item prices. Figure 6 shows the chain when
Mark: :GetPrice() is invoked for I2. At the other end of this invocation re­
quest, Customer: :ReadPrice() calls an accessor function local to I2, which
is then delegated to an accessor method in Stock Item.

Authorizations for method-based access can be specialized like methods.
The authorization to delegate is held by the delegating object (instance or
subclass), facilitating its specialization. For example, the accessor method in
I1 could choose not to-delegate to its parent class, but instead define its own
behavior and/or authorization set. This is shown in Figure 6 where Chris
attempts to get the price of I1, but is denied because the OACL for I1 does
not contain the authorization tuple < ReadPrice(), LOCK, reacLprice > for
delegation to the parent class (Figure 6).

Efficiency is a concern whenever message filters are used. The proposed
architecture permits objects to provide authorization services for entire do­
mains. This obviates the use of message filters and OACLs in each object in
MOM, resulting in a :flexible and potentially lightweight access control system.

Access control in object-oriented systems 145

Stodctem ,,,..,,., LOCK _,.,
12 ,,.,,,,.,,., LOCK _,.,
13 IMglMndfer LOCK _,.,
u ,,,..,,., LOCK _,.,
Stodctem RtNd'rloe() LOCK teed.JJlft»

12 RtNd'rloe() LOCK teed.JJlft»

13 RtNd'rloe() LOCK teed.JJlft»

u Rntl"lfoe(} LOCK teed.JJlft»

I:: eu.tom.r LOCK _,.,
SIDdr/'8m LOCK _,.,

tuOt SIDdr/'8m LOCK Olllltlmer

ClllltOmer IMglMndfer KEY Olllltlmer

John ""1(/HMdler KEY OU1tomer

CllltOm.r RtNd'rloe() KEY teed.JJlft»
John Rntl"lfoe(} KEY teed.JJlft»

CllltOm.r IMglMndfer LOCK _,.,
John IMgllantller LOCK _,.,

Figure 7 Global view of OACLs.

5 RELATED WORK

This work is motivated by the sophisticated meta-object models of LOOPS
(Stefik and Bobrow, 1985) and ACTORS (Agha, 1986). The access control
mechanisms in MOM support multipolicy access control in heterogeneous ob­
ject systems. The meta-level authorization scheme is geared for distributed
objects and relies on three concepts: capabilities, message filters and method­
based access control. Integrating these features in a meta-object model pro­
duces a rich framework for expressing a variety of authorization models for
object-oriented systems.

Research in database security has also influenced this work (Dittrich et
al., 1989; Thuraisingham, 1989; Thomas and Sandhu, 1993; Fernandez et al.,
1994; Demurjian et al., 1995). The ORION/ITASCA system adopts discre­
tionary access control for objects, embracing notions of explicit/implicit, pos­
itive/negative and weak/strong authorizations (Rabitti et al., 1991). An ex­
tension by Bertino et al. (1994) supports additional access types and type
dependency modeling, clarifies subject group semantics, and considers object
versions and the potential for distributed authorization control. Our model
can be extended to positive/negative and weak/strong authorizations by mod­
ifying components to handle the new types. An important advantage of our
model is that semantic-based forms of implicit authorization emerge in any
system designed using MOM.

Gal-Oz et al. (1993) introduced method-based access control for objects. By
using methods as a basis for access control, first-order access types (e.g., read
and write) are reduced to a single execute type. This scheme complements the

146 Part Three Object-Oriented Systems

MOM architecture nicely because MOM stipulates that any form of access
always occurs through a method invocation (accessor methods are used to
read and write instance variables). This facilitates policy specifications that
are emergent from meta-level access control primitives and MOM.

Multipolicy access control is an important area of research (Bell, 1994;
Bertino et al., 1996). Multipolicy mechanisms and models enable users to
protect each object according to a different policy. The architecture described
by Bertino et al. (1996) employs :flexible access control mechanisms and me­
diators (Wiederhold, 1992). Mediators shape access control mechanisms to
enforce user-specified authorization policies. Our work in multipolicy systems
seeks a common ground for access control mechanisms that can support the
interoperation of disparate authorization policies.

Argos (Jonscher and Dittrich, 1995) shares the goal of developing a unified
view of heterogeneous access control models in open distributed environments.
It achieves this goal by incorporating features of various identity-based autho­
rization models. It models implicit authorization flow and introduces domains
to generate classes of behavior and protection, exploiting the richness of the
object-oriented paradigm to create a :flexible system. Our approach differs by
decomposing object behavior into primitive mechanisms. Capabilities are also
more general - they can be identities, groups, labels, roles or tasks.

The Distributed Computing Environment (DCE) uses a decentralized au­
thorization service in its security architecture (Rosenberry et al., 1993). DCE's
authorization service associates access control lists with servers, files and
records, specifying legal operations for each user. The authorization service
works in concert with DCE's authentication service. Privilege attributes are
embedded in tickets provided to subjects by the authentication server at login.
ACL managers that reside on each server authorize access requests. DCE sup­
ports a variety of authorization models by allowing developer customization
of ACL managers. DCE does not deal directly with object-oriented and multi­
policy access control issues. However, it provides a framework for ubiquitous,
yet practical, access control in distributed systems.

6 CONCLUSIONS

The meta-level authorization service architecture presented in this paper in­
tegrates primitive capability-based access control mechanisms within a meta­
object model for maximal support of multiple policies in heterogeneous object
systems. The meta-object model engages message filters and method-based ac­
cess control, although access control for objects is also possible. Access control
in this model can be ubiquitous, where each object is responsible for its own
authorization policy. It can also be lightweight, where objects provide autho­
rization services for entire object domains. Implemented in the Meta-Object
Model (MOM), this authorization service architecture provides a common
foundation for the secure interoperation of heterogeneous distributed objects.

Access control in object-oriented systems 147

Acknowledgement This research was supported by MPO Grants MDA904-
94-C-6117 and MDA904-96-1-0115 and OCAST Grant AR2-002.

REFERENCES

Agha, G.A. {1986) ACTORS: A Model of Concurrent Computation in Dis­
tributed Systems. MIT Press, Cambridge, Massachusetts.

Bell, D. (1994) Modeling the multipolicy machine. Proceedings of the New
Security Paradigms Workshop, 2-9.

Bertino, E., Jajodia, S. and Samarati, P. (1996) Supporting multiple access
control policies in database systems. Proceedings of the IEEE Sympo­
sium on Research in Security and Privacy, 94-109.

Bertino, E., Origgi, F. and Samarati, P. (1994) A new authorization model
for object-oriented databases, in Database Security, VIII: Status and
Prospects (eds. J. Biskup et al.), Elsevier, Amsterdam, 199-222.

Bruggemann, H.H. (1992) Rights in an object-oriented environment, in
Database Security, V: Status and Prospects (eds. C. Landwehr and
S. Jajodia), Elsevier, Amsterdam, 99-115.

Demurjian, S., Daggett, T., Ting, T.C. and Hu, M. (1995) URBS enforce­
ment mechanisms for object-oriented systems, in Database Security,
IX: Status and Prospects (eds. D. Spooner et al.), Chapman and Hall,
London, 79-94.

Dittrich, K., Hartig, M. and Pfefferle, H. (1989) Discretionary access control in
structurally object-oriented databases, in Database Security, II: Status
and Prospects (ed. C. Landwehr), Elsevier, Amsterdam, 105-121.

Fabry, R. (1974) Capability-based addressing. Communications of the ACM,
17(7), 403-412.

Fernandez, E.B., Wu, J. and Fernandez, M.H. (1994) User group structures
in object-oriented database authorization, in Database Security, VIII:
Status and Prospects (eds. J. Biskup et al.), Elsevier, Amsterdam, 57-
76.

Gal-Oz, N., Gudes, E. and Fernandez, E.B. (1993) A model of methods ac­
cess authorization in object-oriented databases. Proceedings of the 19th
International Conference on Very Large Databases, 52-61.

Hale, J., Threet, J. and Shenoi, S. (1997) A framework for high assurance
security of distributed objects, in Database Security, X: Status and
Prospects (eds. P. Samarati and R. Sandhu), Chapman and Hall, Lon­
don, 99-115.

Jajodia, S. and Kogan, B. (1990) Integrating an object-oriented data model
with multilevel security. Proceedings of the IEEE Symposium on Re­
search in Security and Privacy, 76-85.

Jonscher, D. and Dittrich, K.R. {1995) Argos - A configurable access control
system for interoperable environments, in Database Security, IX: Sta­
tus and Prospects (eds. D. Spooner et al.), Chapman and Hall, London,
43-60.

148 Part Three Object-Oriented Systems

Karger, P. {1984) An augmented capability architecture to support lattice
security. Proceedings of the IEEE Symposium on Research in Security
and Privacy, 2-12.

Karger, P. {1988) Implementing commercial data integrity with secure capa­
bilities. Proceedings of the IEEE Symposium on Research in Security
and Privacy, 130-139.

Keefe, T.F., Tsai, W.T. and Thuraisingham, M.B. {1989) Soda: A secure
object-oriented database system. Computers & Security, 8(6), 517-
533.

Rabitti, F., Bertino, E., Kim, W. and Woelk, D. {1991) A model of autho­
rization for next-generation database systems. ACM Transactions on
Database Systems, 16(1), 88-133.

Rosenberry, W., Kenney, D. and Fisher, G. {1993) Understanding DCE.
O'Reilly and Associates, Inc., Sebastopal, California.

Stefik, M. and Bobrow, D.G. (1985) Object-oriented programming: Themes
and variations. Al Magazine, 6(4), 4Q-62.

Thomas, R.K. and Sandhu, R. {1993) Discretionary access control in object­
oriented databases: Issues and research directions. Proceedings of the
Sixteenth National Computer Security Conference, 63-74.

Thuraisingham, M.B. {1989) Mandatory security in object-oriented database
systems. ACM SIGPLAN Notices, 24(10), 203-210.

Wiederhold, G. {1992) Mediators in the architecture of future information
systems: A new approach. IEEE Computer, 25(3), 38-49.

7 BIOGRAPHY

John Hale is an assistant professor in the School of Electrical Engineering
and Computer Science at Washington State University. His research inter­
ests are database security, heterogeneous distributed systems, object-oriented
systems and computer graphics. Dr. Hale received his B.S., M.S. and Ph.D.
degrees in computer science from the University of Tulsa in 1990, 1992 and
1997, respectively.

Jody Threet is vice president and founding partner of Sleek Software,
Inc., Austin, Texas. He received his B.S. in mathematics and his M.S. and
Ph.D. degrees in computer science from the University of Tulsa in 1990, 1993
and 1997, respectively. Dr. Threet's research areas are distributed systems,
intelligent tutoring systems and formal methods.

Sujeet Shenoi is an associate professor of computer science at the Uni­
versity of Tulsa. He received his B.Tech. degree from the Indian Institute of
Technology, Bombay in 1981, and his M.S. (Ch.E.), M.S. (CS) and Ph.D. de­
grees from Kansas State University in 1984, 1987 and 1989, respectively. Dr.
Shenoi's primary research interests are in database systems, artificial intelli­
gence and intelligent control.

