
23 

An environment for developing 
securely interoperable hetero­
geneous distributed objects 

M. Berryman, C. Rummel, M. Papa, J. Threet, S. Shenoi 
Department of Computer Science 
University of Tulsa, Tulsa, Oklahoma 74104, USA 
sujeet@utulsa.edu 

John Hale 
School of Electrical Engineering and Computer Science 
Washington State University, Pullman, Washington 99164, USA 
hale@eecs. wsu. edu 

Keywords 
Distributed objects, secure interoperability, high assurance, process calculus, 
execution model 

PROJECT DESCRIPTION 

The heterogeneity and volatility of open distributed systems make high as­
surance security an elusive goal. One solution is to provide developers with 
tools for designing and implementing robust object systems with verifiable 
behavior in open environments (Cleaveland et al., 1994). The Meta-Object 
Operating System Environment (MOOSE) (Hale et al., 1997) is intended to 
support the development, execution and verification of secure heterogeneous 
distributed systems. 

MOOSE uses a layered architecture (see, e.g., Zhang et al., 1995) and dual 
operational and verification frameworks to blend object technology with for­
mal methods (Figure 1). The foundation of MOOSE is provided by the Ro­
bust Object Calculus (ROC), a process calculus (see, e.g., Milner et al., 1989; 

Dalabasc Security XI T.Y. Lin and Shelly Qian (Eds) 
C 1998 IFIP. Published by Chapman & Hall 



386 Part Nine System Implementations 

R.OC MecbanlZltlon Into HOL 

Figure 1 The Meta-Object Operating System Environment (MOOSE). 

Nierstrasz, 1991) for modeling and reasoning about distributed objects. The 
Meta-Object Model (MOM), defined using ROC, forms the next layer of the 
operational framework. It is a primitive distributed object architecture (see, 
e.g., Agha, 1986; Houck and Agha, 1992) for constructing more sophisticated 
object models and programming languages that constitute the upper levels 
of the operational framework. MOM implements a capability-based security 
model of access control for distributed objects. Capabilities, which are un­
forgeable tokens, are modeled in ROC by unique names that are not visible 
and cannot be reproduced. 

MOM is used to design Mumbo, a concurrent object-oriented programming 
language (COOPL) for orchestrating the secure interoperability of heteroge­
neous resources in open systems. Mumbo employs wrapper technology and 
abstract specifications to integrate native components, while translators pro­
vide mappings from high-level languages to ROC, permitting source-level in­
tegration. Mumbo uses MOM's security model to support discretionary access 
control (DAC) for software components. It also provides new language con­
structs for constraining class and object protocols, giving developers more 
control over component communication patterns. 

The MOOSE verification framework complements the operational frame­
work. The mechanization of ROC into Higher Order Logic (HOL) (Melham, 
1992; Gordon and Melham, 1993) permits reasoning about distributed systems 
modeled in the operational framework. Each verification framework layer con­
tains theorems about the corresponding layer in the operational framework. 



Securely interoperable heterogeneous distributed objects 387 

ROCVM IDE 
C++ ROCVM 

LJ 
Visualiution 

~ 

Figure 2 MOOSE implementation. 

Figure 2 shows a schematic diagram of the MOOSE implementation. Im­
plemented in Java to permit operation on heterogeneous platforms, MOOSE 
comprises two main components, a ROC Virtual Machine (ROCVM) and an 
Integrated Development Environment (IDE). ROCVM is designed to execute 
(reduce) ROC expressions, thereby simulating the execution of ROG-modeled 
applications in heterogeneous distributed environments (Hale et al., 1997). 
The IDE provides an interactive graphical interface for intuitive visualization 
and analysis of distributed systems modeled with ROC. 

Plans for future work include implementing the Mumbo coordination lan­
guage and a distributed version of the ROCVM reduction engine that would 
permit multiuser engagement. The IDE will be extended to incorporate the 
HOL theorem-proving environment and tools for formal specification and ver­
ification. Also, popular object languages and architectures, e.g., Java and 
CORBA, will be mapped to MOM so that developers can use Mumbo to 
integrate these systems seamlessly and securely into their own applications. 

Acknowledgement This research was supported by MPO Grants MDA904-
94-C-6117 and MDA904-96-1-0115 and OCAST Grant AR2-002. 

REFERENCES 

Agha, G. (1986) Actors: A Model of Concurrent Computation in Distributed 
Systems. MIT Press, Cambridge, Massachusetts. 



388 Part Nine System Implementations 

Cleaveland, R., Gada, J., Lewis, P., Smolka S., Sokolsky, 0. and Zhang, S. 
(1994) The Concurrency Factory - Practical tools for specification, 
simulation, verification and implementation of concurrent systems, in 
Specification of Parollel Algorithms (eds. G. Blelloch, K.M. Chandy 
and S. Jagannathan), American Mathematical Society, Providence, 
Rhode Island, 75-90. 

Gordon, M. and Melham, T.F. (eds.) (1993) Introduction to HOL: A Theorem 
Proving Environment for Higher Order Logic. Cambridge University 
Press, Cambridge, U .K. 

Hale, J., Threet, J. and Shenoi, S. (1997) A framework for high assurance 
security of distributed objects, in Database Security, X: Status and 
Prospects (eds. P. Samarati and R. Sandhu), Chapman and Hall, Lon­
don, 99-115. 

Houck, C. and Agha, G. (1992) HAL: A high level Actor language and its dis­
tributed implementation, Proceedings of the 21st International Con­
ference on Parollel Processing, 158-165. 

Melham, T.F. (1992) A mechanized theory of the 11'-calculus in HOL. Techni­
cal Report 244, University of Cambridge Computer Laboratory, Cam­
bridge, U .K. 

Milner, R., Parrow, J. and Walker, D. (1989) A calculus of mobile processes. 
Technical Report ECS-LFCS-89-85&86, University of Edinburgh, Ed­
inburgh, U .K. 

Nierstrasz, 0. (1991) Towards an object calculus, in Proceedings of the 
ECOOP'91 Workshop on Object-Based Concurrent Computing (eds. 
M. Tokoro, 0. Nierstrasz and R.A. Olsson), Springer Verlag, Amster­
dam, 1-20. 

Zhang, C., Shaw, R., Heckman, M.R., Levitt, K. and Olsson, R.A. (1995) 
A hierarchical method for reasoning about distributed programming 
languages and applications. Proceedings of the International Workshop 
on Higher Order Logic Theorem Proving and its Applications. 


