
19

Multilevel decision logic:
a formalism for rules mining

T. Y. Linl ,2 and Xiaoling Zuo3

1 Mathematics and Computer Science Department,
San Jose State University
San Jose, California 95120
408-924-512(voice), 408-924-5080 (fax), tylin@cs.sjsu.edu
2 Department of Electrical Engineering and Computer Science
University of California
Berkeley, California 94720, USA
3 Department of Computer Science
Shanghai Jiaotong University
Shanghai, P.R. China

Abstract
Decision logic is a logical formulation of rough set theory. It is an excellent
formalism for expressing rules in relations. A multilevel decision logic is
introduced to formalise the inferences and rules in relational databases.

Keywords
Decision logic, database security, database, decision table, information table,
relation, multilevel security.

Database Security XI T.Y. Lin and Shelly Qian (Eds)
C 1998 IFIP. Published by Chapman & Hall

308 Part Seven Multilevel Security

1 INTRODUCTION

Decision logic is a logical formulation of rough set theory; it is a convenient
formalism for discussing rules and reasoning in relational databases. In this paper,
we set up decision logic for multilevel (MLS) environment. Based on MLS
decision logic, we may formalise and then discuss inferences in multilevel data. For
single level decision logic, we refer readers to (Palwak, 1991).

Rough set theory (RS) is a formal theory derived from information tables (IT),
also known as information systems or knowledge representation systems .. Loosely
speaking IT's are relation or view instances in relational databases (ROB). RS is a
theory on extensions of relational databases (ERDB) - snap shots of relational
databases. However, unlike ERDB which focuses on storing and retrieving data
from secondary storage, RS emphasizes discovering patterns, rules and knowledge
in data - a sub-discipline of modem data mining theory. In this paper, we are
adopting RS methodology to MLS ERDB.

2. INFORMATION TABLES & RELATION INSTANCES

The structure of IT is very similar to relations. Entities in IT are also represented by
tuples of attribute values. However, an RS-representation may not be faithful, that
is, the correspondence between entities and tuples may not be in one to one fashion.

Relation Instance
A relation instance(RI) consists of following items:

(1) implicitly a set of entities U = {u, v, .. } to be modelled

(2) a set of attributes, T={A1. A2, .. Anl

(3) a set of values, Dom(Ai), for each attribute Ai, and their union denoted by

Dom(T) = dom(A1)u dom(A2)u .. u dom(An)

(4) a set of maps, where each map, called a tuple, represents an entity uniquely,

t:T~Dom,

where t(A) £ dom(Aj) for each Ai £ T.

Informally, one can view relation as a table consists of rows of elements. Each row
represents an entity uniquely.

Multilevel decision logic 309

Information Table
An information table(IT), also known as an information system, a knowledge
representation system, is a 2-tuple (U, T), by abuse of notation denoted by U again,
such that it consists of

(1) explicitly a set of entities U = {u, v, .. }

(2) a set of attributes T ={At, A2, .. An}

(3) a set of values, dom(Ai), for each attribute Ai, and their union denoted by

Dom (T) = dom(A 1)u dom(A2)u .. u dom(An)

(4) a map, p: U x T -+ Dom, called description function, such that

for all u e U and Ai e T.

Note that p induces a set of maps

t= p(u, •): T-+ Dom.

The image of each map is a n-tuple:

t=(p(u, At), p(u, A2), ,p(u, Ai), .. p(u, An))

Proposition For each relation instance, there is a naturally associated an
information table.

Proof: To prove this proposition, it means to construct the following description
function

p: UxT-+ Dom

from the given set of tuples

t:T-+Dom.

310 Part Seven Multilevel Security

Let us name each tuple t by u(t). The collection of these names, each of which
represents an "implicit" entity, forms a universe U. We will define the description
function on such a universe U and the attribute set T as follows:

This completes the proof.

Note that in IT, a tuple tis not necessarily associated with entity u uniquely; two
distinct entities could have the same tuple. However this is not permissible in
relational databases.

Decision Table
A decision table(DT) is an information table (U, T, V, p) in which the attribute set
T = C u D is a union of two non-empty sets, C and D, of attributes. The elements
in C are called conditional attributes. The elements in D are called decision
attributes

Example
Suppose we are given an RI. Each component of RI is described below:

(1) implicit set of entities, U={ID-1, ID-2,. . ., ID-9}

(2) T= {Location, TEST, NEW, CASE, RESULT}

(3) dom(Location) ={Houston, San Jose, Palto Alto, Berkeley, New York, Atlanta,
Chicago, Baltimore, Seattle}

dom(TEST) = { 10, 11, 20}

dom(NEW) = {92, 90, 91, 93}

dom(CASE) = {03, 02, 04, 70}

dom(RESUL T) ={ 10, 50, 99}

(4) a set of maps:

tl(Location) = Houston, tl(TEST) = 10, tl(NEW) = 92, tl(CASE) = 03,

tl(RESULT) = 10;

Multilevel decision logic 311

t1(Location) = San Jose, t1(TEST) = 10, t1(NEW) = 92, t1(CASE) = 03,

t1(RESUL T) = 10.

In stead of listing every map, we use the following table (boxed portion) to represent
all maps; each row represent one map

u
ID-1
ID-2

ID-3

ID-4

ID-5

ID-6

ID-7
ID-8

ID-9

Location

Houston

San Jose

PaltoAlto
Berkeley

NewYork
Atlanta

Chica20
Baltimore
Seattle

TEST

10
10

10
11
11
20

20
20
20

NEW CASE RESULT
92 03 10
92 03 10
90 02 10
91 04 50
91 04 50

93 70 99
93 70 99
93 70 99
93 70 99

Following the proof of the proposition, we give each tuple a name, namely,
NAME(tj) =ID-j, and the collection of names U. They are illustrated in the first

column (unboxed portion).

(1) U={ID-1, ID-2, ID-3, ID-4, ID-5, ID-6, ID-7, ID-8, ID-9}
(2) T= {Location, TEST, NEW, CASE, RESULT}
(3) dom(Location) ={Houston, San Jose, Palto Alto, Berkeley, New York, Atlanta,

Chicago, Baltimore, Seattle}
dom(TEST) = { 10, 11, 20}
dom(NEW) = {92, 90, 91, 93}
dom(CASE) = {03, 02, 04, 70}
dom(RESULT) ={ 10, 50, 99}

(4) following the proof of the proposition, the description function can be described
as follows:

p: U x T ~ Dom= dom(TEST) u dom(NEW) u dom(CASE)udom(RESULT)

p(ID-1, Location)= tl(Location)=Houston e dom(Location)

p(ID-1, TEST)= tl(TEST)=lOe dom(TEST)

p(ID-1, NEW)= tl(NEW)=lOe dom(NEW)

p(ID-1, CASE)= tl(CASE)=lOe dom(CASE)

p(ID-1, RESULT)= t1(RESULT)=lOe dom(RESULT)

312 Part Seven Multilevel Security

We illustrate p for the "portion of first row," rest of p can easily be read out from
the table (unboxed column and boxed portion).

3. SECURITY CLASSIFICATION

This section is not part of the formal theory. Issues on security classification are
discussed informally so that one can derive a formal requirement. In this paper,
information tables(IT) which we have discussed in last section are used as Tarskian
semantic models of decision logic (see Section 4). In this respect, IT is better than
RI In IT formulation, the real world is an integral part of the formalism; there are
labels for the real world, which make the correspondence between real world and
mathematical model explicit. An IT is a mathematical model of a "slice" of the real
world that we are interested in. From the prospect of formal logic IT is identified
with the "slice" (Frost, 1986, Section 5.3). IT is the semantic model of the decision
logic.

In a secure world, an entity or a sub-universe of IT has a security classification.
So each formula should also have the security classification, since a logical formula
is meant to describe a "sub-slice" of the real world. In this section, we will examine
the interactions of these security classifications.

3.1. Formulas and their meanings

Let SC be a lattice (Birkoff, 1967); its element is called a security class, security
level or simply label. To each formula q>, we associate a variable to hold a security
class. If q> is interpreted, then its label C(q>) reflects some security semantics of the
meaning lq>I; see Section 4.2 for formal definition of the term "meaning." First, we
will explore the semantics of C(q>) and C(lq>I). To this end, let us consider a tuple t,
representing the entity u,

t = (p(u, A 1>. p(u, A2), ... , p(u, An))

For simplicity, we will write p(u, Ai) by the attribute pair <Ai, vi(u) >, or simply

<Ai, vi> when u is understood. So the entity u can be written as a tuple

Or as a formula

The meaning I q>n I is a singleton { u}, we will simply write I q>n I = u.

Multilevel decision logic 313

The meanings I <f>i I of sub-formulas

form a nested sequence of sets

1< A 1, v1>I ;;;:1 1< Ai. v1> "< A2, v2>I ;;;:1

;;;:1 k Ai. v1> "< A1. v2> A, A< An, vn> I= {u}.

Informally, each formula <pi can be expressed as a tuple, so we have the following
"reverse nesting:"

«Ai. v1» ~ « A1, v1>. < A2, v2>) ~

~(<Ai. v1>. < A1. v2>, ... , <An, vn>)=u.

Note that a tuple can be interpreted as a set that selects one element from each
active domain (Maier, i983); this sequence is nesting in this sense. Intuitively we
can regard <p as the "name" of the set l<pl; The former sequence is a sequence of sets
and the latter is a sequence of "names." Note that two sequences can be
juxtaposition together and form a longer sequence if we identify u with { u}. So
these analysis leads us to conclude that we need the following

C(<p) ~ C(u), U E l<pl. (Req 1)

C(l<pl) 2:: C(u), UE l<pl. (Req 2)

(Req 1) The security class of the name of a set is dominated by the security classes
of its elements.

(Req 2) The security class of the set dominates the security classes of its elements.

By similar reasons, we require,

C(l<pl) ;::: C(lrt I), if l<pl ;;;:1 1111 (Req 3)

(Req 3) The security class of a meaning dominates the security classes of its sub­
meaning s.

So we have established three requirements for security classification.

314 Part Seven Multilevel Security

Example Consider the following SQL

Select *
From IT

where (A 1 =v1 /\ A2= v2 /\ /\ Ai,= v;)

The output is the set lq>i I, the conditions in "where clause" is the formula <l>i· So the

security classes of all output tuples dominate the security class of the condition.
The condition uniquely determine the output, so it is the unique "name" of the
output

3.2. Access control, lattice model and information granulation

In last sub-section, we have clarify the relationships between C(A) and
C(name(A)), where A is the meaning of a formula. Now we would like to examine
their access controls. In general,

C(A) ~ C(u) ~ C(name(A)), ue A

C(A) and C(name(A) may not be equal. If C(A) strictly dominates C(u) V ue A
(and A is minimal), then A is called an aggregate (Lunt, 1989). The existence of
aggregates makes the access control complicated. It has been discussed extensively
by many authors (Hinke, 1988, Lunt, 1989, Lin, 1989, 1990, 1991) just to name a
few. In this paper, we will assume such aggregates do not exit; such security model
is called lattice model (Denning, 1976, Lin et al, 1990, Lin, 1991).

Lattice model
A security model is called a lattice model, if C(A) = Sup {C(u): V ue A}. If a
person whose clearance dominates C(name(A)), he can examine the set A,
however, he can examine only those members whose security classes are dominated
by his clearance.

For example, Hughes Aircraft Co (HAC) is a defence contractor. It handles
projects ranging from top secret to unclassified. Let A be the set of data (or
documents) in HAC, then name(A) = HAC. In this case C(HAC), the security class
of name(A), is unclassified according to our interpretation. So an unclassified
person, say John, can work at Hughes Aircraft. However John may not access to all
of A. On the other hand, a top secret person, say Peter, may also work at HAC. In
this case, Peter is permitted to access all of A (provided that he also meets all the
need-to-know conditions).

Information granulation
It is clear there are two primitive objects in MLS environment, namely, individual
elements and aggregates; a user either can access it or not. In other words, the

Multilevel decision logic 315

universe U is decomposed into elements and aggregates by its security semantics.
Such models are studied in (Lin, 1991). For logic formulation, we will come back
in another paper.

4. MLS information tables and relation instances

Let SC be a partial ordered set of security classes. In an MLS environment, each
object, such as an attribute, attribute value and entity, has been assigned a security
class. If we replace objects in IT or RI by object-class pairs, the notions of IT and
RI in Section 2 may be transformed into MLS IT and RI respectively. Note that we
need to require the constraints, (Req 1), (Req 2) and (Req 3) stated in Section 3.
We would like to remind the following implications:

(1) The security label of an attribute is dominated by the security label of its
values:

(2) The security label of an attribute-value pair is dominated by the security label
of its entities:

C(vj) :5 C(u), where u e U and Vj = p(u, Ai) e dom(Ai)

Let us re-iterate the principle behind these constraints. The security label of a
"name" of a collection of objects is dominated by the security labels of these
objects. Attribute Ai is the "name" of dom(Ai), so it is dominated by C(vi). vi is

the "name" of all those entity u whose Atcomponent has common value vi= p(u,

Ai) (or common Atproperties), so C(vi) :5 C(u) for those u whose Ai-component is

Vi·

5. MLS DECISION LOGIC

In this section, we will set up MLS decision logic. For details on single level
version we refer readers to (Palwak, 1991).

5.1. The Syntax of a MLS Decision Logic

Alphabet
a) SC- The security lattice; its element is called a security class, security level

or simply label.
b) T - The set of attribute names

316 Part Seven Multilevel Security

c) V= u dom (A) -The set of attribute values of A e T, called active domain of
attribute A.(Maier, 1983)

d) 3={-, /\, v, ~. =}-The set of connectives (negation, and, or, implication,
equivalence)

Formulas n
The smallest set satisfies the following:
a) Expressions of the form, attribute value pair < A, v> with label C (<A, v>)

called atomic formulas, are formula of MLS DL-language for any A e T and v
e dom(A).

b) To each formula <pin DL-language, we associate a label, denoted by C(<p), to
hold the security class of <p.

c) If <p and Tl are formulas, so are -<p, (<j>/\ TJ), (<pv TJ), (<p ~ TJ) and their labels
are C(-<p)=C(<p), C(<p)AC{TJ), C(<p)vC(TJ), -C(<p)vC(TJ), where v and/\ are
lattice operations.

5.2. The Semantics of a MLS Decision Logic

A model of MLS decision logic is an MLS IT.

Interpretations at level C

Let UC or simply U (when C is understood) be an MLS IT at level C. It consists of
all entities that are dominated by the security class C. As usual at each level, we
will denote u l=u <p or u I= <p when U is understood, if an object u e U satisfies a

formula <pin U. So we will say u I= <p, iff

u l=<A, v> iff p(u, A) = v
u I= -<p iff non u I= <p
u I= (<j>/\ TJ) iff u I= <p and u I= Tl
u I= (<p v TJ) iff u I= <p or u I= Tl

We have many usual formulas, such as
u I= (<p ~ TJ) iff u I= -<p v Tl

We associate the formula <p, the following set

I <p lu = {u: u e U and u I= U <p }.

It will be called the meaning of <p at level C. A formula is said to be true if l<plU =

U; <p is logically equivalent to Tl iff their meanings are the same, i.e., l<p IU = lrtlU"

Multilevel decision logic 317

All formula and their meanings are properly classified. Note all U in this paragraph

is actually UC

Monotonic assumption
For simplicity, we will assume SC consists of two elements, L and H, read as low

and high respectively. We will ignore polyinstantiation and assume uL !;;;;; uH,
whereL~H.

5.3. The Deductive System of a MLS Decision Logic

Recall that at level C means all objects which are dominated by C.

Inference rules at Level C
Modus ponens is the only rule.

Axioms at level C
(1) The set of propositional tautologies
(2) Specific axioms:

(a) <A, V> A <A, u> = 0 for any A e T and v, u e V and v *- u

(b)V{ <A, v>: for every v e dom(A) and for every A e T} = 1

(c)- <A, v> = V{ <A, u>: for every u e dom(A) and every A e T, v *- u}

We need few auxiliary notations and results: Let 0 and 1 denote falsity and truth at
security level C. From the monotonicity assumption, these 0 and 1 will behave
consistently from level to level.

Formula of the form

is called P-basic formula or P-formula, where v1 e dom (Ai), and P= {At, A2, ..

An } . For P = T, P-basic formulas will be called basic formulas. The set of all basic

formulas satisfiable in U is called basic knowledge in U. The specific Axiom (a)
follows from the assumption that each entity can have exact one value in each
attribute. The Axiom (b) implies that each value of its domain must be taken once.
This is saying that dom(A) is the active domain of attribute A. The Axiom (c)
allows us to get rid of the negation in such a way that instead of saying that an
object does not possesses a given property we can say that it has one of the
remaining properties. It implies the closed word assumption. Let ~ (P), or simply

318 Part Seven Multilevel Security

l: (P) denote the disjunction of all P-basic formulas satisfied in U. The closed word
assumption can be express in the following (Pawlak, 1991):

Proposition l=U l: U (P) = 1. For any P ~ T.

Note that all commercial DBMS have this assumption. For example, the output of
not red colour consists of all non-red colours. A formula cp is a theorem, denoted by
I- cp , if it is derivable from the axioms. At level C, the set of theorems of MLS DL­
logic is identical with the set of theorems of propositional calculus with specific
axioms (a)- (c).

6. INFERENCE AND DECISION RULES

In this section, we will discuss potential applications of MLS decision logic. Recall
that "objects at level C" means "objects whose security classes are dominated by
C."

Decision rules at level C

We will use UC or simply U to denote the universe at level C (dominated by C).
Any implication (cp -+ Tl) is called a decision rule. A decision rule is consistent in U
if it is true in U (that is, l=u (cp-+ T\); otherwise, the decision rule is inconsistent.

Decision rule is a term used by the community of decision support systems. In
database security community a decision rule is often referred to as an inference rule
(Lunt, 1989, Lin, 1989, 1993). We will use it, when there is no danger of
confusing. It should be clear that such a inference rule is a formula, not the
inference rules of a deductive system. A decision rule (cp -+ Tl) is called a PQ-basic
rule, if cp and T\ are P-basic and Q-basic formulas respectively. A decision
algorithm is defined to be a set of decision rules (Pawlak, 1991). If all decision
rules are PQ-basic rules, then the algorithm is said to be PQ-algorithm. Note that
common definition of an algorithm is a sequence, not a set. Let P ~ A be a subset
of attributes.

Proposition Let P and Q be two subsets of attributes in U. Then PQ-algorithm
determine a decision table and vice versa.

Inference problems
By employing IT processing (rough set methodology), we can find a minimal
decision PQ-algorithm at each level C. From such a minimal decision algorithm,
we can detect all the potential formal inference channels (channels of formal
reasoning). However, there are informal channels, such as plausible reasoning,
human reasoning and etc.

Multilevel decision logic 319

Let us consider three formulas <p, n. and <p ~ Tl· We would like to find the

constraints among their security classes so that inference attacks can be avoided.

Let p be a person who may access <p but not T\. Then p should not be permitted to

access <p ~ Tl· The security clearance C(p) of should obey the following

constraints:

C(p) ~ C{<p), C(p) < C{<p ~ T\). and C(p) < C(n).

In other words, if p is permitted to access some information about <p, then p should

not be permitted to know anything about <p ~Tl· Partial knowledge about l<pl and

l<p ~ nl may result in some partial knowledge about IT'ii which is not desirable. Any

subset of l<p ~ nl = -l<p I u I nl, whose security classification is dominated by C(p),

should be empty. We will defer such analysis in future papers.

Robust rules and soft rules
The previous analysis is based on precise and exact analysis that are useful for
small to median size of data. If the data is huge, we may want to do some filtering.
One possible choice is to look only at rules that have appeared repeatedly (Agrawal
et al, 1993, Lin, 1996, Lin and Chen, 1996, 1997). These are very robust rules. We
should caution security officers that some of these robust rules are very often well
known facts in the users' community. We may also want to mine approximate rules
(Lin & Yao, 1996).

7. CONCLUSION

An information table that include a snap shot of a relational database can be viewed
as a logic system. Note that such a system is not the so-called deductive database
system. In this paper, we formalise these information tables or loosely these snap
shots into MLS decision logic systems. Based on such logic systems, one can find
all the formal inference rules of varying degree of robustness. This paper provides
a model for a comprehensive and complete analysis of possible formal inference
attacks. Further experimental works are needed to uncover practical effects or
difficulties of such formal systems.

8. REFERENCES

Agrawal, R., Imielinski, T and Swami, A. (1993) "Mining Association Rules
between Sets of Items in Large Databases." In Proceeding of ACM-SIGMOD
international Conference on Management of Data, pp. 207-216, Washington,
DC, June, 1993

320 Part Seven Multilevel Security

Birkhoff, G.D. (1967) Lattice Theory, American Mathematical Society,
Colloquium Publications, 1967

Denning, D. E. (1976) "A Lattice Model of Secure Information Flow",
Communications of the ACM, Vol. 19, No. 5, May 1976, pp. 236 - 243.

Frost, R. (1986) Introduction to Knowledge Base Systems, Macmillan Publishing
Company, New York, 1986.

Hinke, T. H. (1987) "Inference Aggregation Detection in Database Management
Systems," Proceedings of 1988 IEEE Symposium on Security and Privacy,
1987.

Lin, T. Y. (1989) "Commutative Security Algebra and Aggregation", Research
Direction in Database Security, II, Proceedings of the Second RADC
Workshop on Database Security, December 22, 1989.

Lin, T. Y., Kerschberg, L. and Trueblood, R. (1990) "Security Algebra and Formal
Models", Database Security: Status and Prospects III, IFIP-Transaction, edited
by D. Spooner and C. E. Landwehr, North Holland, 1990, pp.75-96.

Lin, T. Y. (1990) "Probabilistic Measure on Aggregation," Proceedings of the 6th
Annual Computer Security Application Conference, Tucson, Arizona, December
3-7, 1990, pp. 286-294.

Lin, T. Y. (1991) "Multilevel Database and Aggregated Security Algebra",
Database Security: Status and Prospects IV, IFIP-Transaction, edited by S.
Jajodia and C. E. Landwehr, North Holland, 1991, pp.325-348.

Lin, T. Y. (1993) "Inference Secure Multilevel Data Model'', Database Security:
Status and Prospects VI, IFIP-Transaction, edited by B. Thurasingham and C.
E. Landwehr, North Holland, 1993, pp.317-332.

Lin, T. Y. (1996) "Rough Set Theory in Very Large Databases," Symposium on
Modelling, Analysis and Simulation, CESA'96 IMACS Multi Conference
(Computational Engineering in Systems Applications), Lille, France, July 9-
12, 1996, Vol. 2 of2, pp. 936-941.

Lin, T. Y. and Yao, Y. Y.(1996) "Mining Soft Rules Using Rough Sets and
Neighbourhoods," Symposium on Modelling, Analysis and Simulation,
CESA'96 IMACS Multiconference (Computational Engineering in Systems
Applications), Lille, France, July 9-12, 1996, Vol. 2 of2,pp.1095-1100.

Lin, T. Y. and Chen, R. (1996) "Supporting Rough Set Theory in Very Large
Database Using ORACLE RDBMS," Soft Computing in Intelligent Systems
and Information processing Proceedings of 1996 Asian Fuzzy Systems
Symposium, Kenting, Taiwan, December 11-14, 1996, 332-337

Lin, T. Y. and Chen, R. (1997) "Finding Reducts in Very Large Databases,"
Proceedings of Joint Conference of Information Science, Research Triangle
Park, North Carolina, March 1-5, 1997, pp. 350-352.

Lunt, T. F. (1989) "Aggregation and Inference: Facts and Fallacies," Proceedings
of 1987 IEEE Symposium on Security and Privacy, 1989.

Maier, D. (1983) The Theory of Relational Databases, Computer Science Press,
1983.

Multilevel decision logic 321

Pawlak, Z. (1991) Lin, T. Y. and Chen, R. (1996) Rough sets. Theoretical Aspects

of Reasoning about Data, Kluwer Academic Publishers, 1991

9. BIOGRAPHY

Tsau Young (T. Y.) Lin received his Ph. D. from Yale University, and now is a
Professor at the Department of Mathematics and Computer Science, San Jose State
University, also a visiting scholar at BISC, University of California-Berkeley. He
has authored or co-authored over hundred research articles. He is the founding

president of international rough set society. He has served as the chairs, co-chairs,
and members of program committees in many conferences, special sessions and
workshops. He is a co-editor-in-chief, associate editor and member of editorial

board of several international journals. His interests include approximation theory
(in database retrievals and reasoning), data mining, data security, fuzzy sets,

intelligent control, non-classical logic, Petri nets, and rough sets (alphabetical
order).

Zuo Xiao-Ling is a Professor at the Department of Computer Science and
Engineering, Shanghai Jiao Tong University. He is the Editor-in-Cheif of the
International Theoretical Computer Science Journal (Shanghai), Vice Chairman of
Computer Science Education Research Association of China's Universities, Vice
Chairman of China Discrete Mathematics Society, and the Chairman of the
Committee of theory of Shanghai Computer Society. His interests include
complexity theory, cryptography, discrete mathematics, fuzzy sets, genetic
algorithm, neural networks, and rough sets (alphabetical order).

