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1 INTRODUCTION 

Decision logic is a logical formulation of rough set theory; it is a convenient 
formalism for discussing rules and reasoning in relational databases. In this paper, 
we set up decision logic for multilevel (MLS) environment. Based on MLS 
decision logic, we may formalise and then discuss inferences in multilevel data. For 
single level decision logic, we refer readers to (Palwak, 1991). 

Rough set theory (RS) is a formal theory derived from information tables (IT), 
also known as information systems or knowledge representation systems .. Loosely 
speaking IT's are relation or view instances in relational databases (ROB). RS is a 
theory on extensions of relational databases (ERDB) - snap shots of relational 
databases. However, unlike ERDB which focuses on storing and retrieving data 
from secondary storage, RS emphasizes discovering patterns, rules and knowledge 
in data - a sub-discipline of modem data mining theory. In this paper, we are 
adopting RS methodology to MLS ERDB. 

2. INFORMATION TABLES & RELATION INSTANCES 

The structure of IT is very similar to relations. Entities in IT are also represented by 
tuples of attribute values. However, an RS-representation may not be faithful, that 
is, the correspondence between entities and tuples may not be in one to one fashion. 

Relation Instance 
A relation instance(RI) consists of following items: 

(1) implicitly a set of entities U = {u, v, .. } to be modelled 

(2) a set of attributes, T={A1. A2, .. Anl 

(3) a set of values, Dom(Ai), for each attribute Ai, and their union denoted by 

Dom(T) = dom(A1)u dom(A2)u .. u dom(An) 

(4) a set of maps, where each map, called a tuple, represents an entity uniquely, 

t:T~Dom, 

where t(A) £ dom(Aj) for each Ai £ T. 

Informally, one can view relation as a table consists of rows of elements. Each row 
represents an entity uniquely. 
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Information Table 
An information table(IT), also known as an information system, a knowledge 
representation system, is a 2-tuple (U, T), by abuse of notation denoted by U again, 
such that it consists of 

(1) explicitly a set of entities U = {u, v, .. } 

(2) a set of attributes T ={At, A2, .. An} 

(3) a set of values, dom(Ai), for each attribute Ai, and their union denoted by 

Dom (T) = dom(A 1)u dom(A2)u .. u dom(An) 

(4) a map, p: U x T -+ Dom, called description function, such that 

for all u e U and Ai e T. 

Note that p induces a set of maps 

t= p(u, •): T-+ Dom. 

The image of each map is a n-tuple: 

t=(p(u, At), p(u, A2), .... ,p(u, Ai), .. p(u, An)) 

Proposition For each relation instance, there is a naturally associated an 
information table. 

Proof: To prove this proposition, it means to construct the following description 
function 

p: UxT-+ Dom 

from the given set of tuples 

t:T-+Dom. 
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Let us name each tuple t by u(t). The collection of these names, each of which 
represents an "implicit" entity, forms a universe U. We will define the description 
function on such a universe U and the attribute set T as follows: 

This completes the proof. 

Note that in IT, a tuple tis not necessarily associated with entity u uniquely; two 
distinct entities could have the same tuple. However this is not permissible in 
relational databases. 

Decision Table 
A decision table(DT) is an information table (U, T, V, p) in which the attribute set 
T = C u D is a union of two non-empty sets, C and D, of attributes. The elements 
in C are called conditional attributes. The elements in D are called decision 
attributes 

Example 
Suppose we are given an RI. Each component of RI is described below: 

(1) implicit set of entities, U={ID-1, ID-2,. . ., ID-9} 

(2) T= {Location, TEST, NEW, CASE, RESULT} 

(3) dom(Location) ={Houston, San Jose, Palto Alto, Berkeley, New York, Atlanta, 
Chicago, Baltimore, Seattle} 

dom(TEST) = { 10, 11, 20} 

dom(NEW) = {92, 90, 91, 93} 

dom(CASE) = {03, 02, 04, 70} 

dom(RESUL T) ={ 10, 50, 99} 

(4) a set of maps: 

tl(Location) = Houston, tl(TEST) = 10, tl(NEW) = 92, tl(CASE) = 03, 

tl(RESULT) = 10; 
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t1(Location) = San Jose, t1(TEST) = 10, t1(NEW) = 92, t1(CASE) = 03, 

t1(RESUL T) = 10. 

In stead of listing every map, we use the following table (boxed portion) to represent 
all maps; each row represent one map 

u 
ID-1 
ID-2 

ID-3 

ID-4 

ID-5 

ID-6 

ID-7 
ID-8 

ID-9 

Location 

Houston 

San Jose 

PaltoAlto 
Berkeley 

NewYork 
Atlanta 

Chica20 
Baltimore 
Seattle 

TEST 

10 
10 

10 
11 
11 
20 

20 
20 
20 

NEW CASE RESULT 
92 03 10 
92 03 10 
90 02 10 
91 04 50 
91 04 50 

93 70 99 
93 70 99 
93 70 99 
93 70 99 

Following the proof of the proposition, we give each tuple a name, namely, 
NAME(tj) =ID-j, and the collection of names U. They are illustrated in the first 

column (unboxed portion). 

(1) U={ID-1, ID-2, ID-3, ID-4, ID-5, ID-6, ID-7, ID-8, ID-9} 
(2) T= {Location, TEST, NEW, CASE, RESULT} 
(3) dom(Location) ={Houston, San Jose, Palto Alto, Berkeley, New York, Atlanta, 

Chicago, Baltimore, Seattle} 
dom(TEST) = { 10, 11, 20} 
dom(NEW) = {92, 90, 91, 93} 
dom(CASE) = {03, 02, 04, 70} 
dom(RESULT) ={ 10, 50, 99} 

( 4) following the proof of the proposition, the description function can be described 
as follows: 

p: U x T ~ Dom= dom(TEST) u dom(NEW) u dom(CASE)udom(RESULT) 

p(ID-1, Location)= tl(Location)=Houston e dom(Location) 

p(ID-1, TEST)= tl(TEST)=lOe dom(TEST) 

p(ID-1, NEW)= tl(NEW)=lOe dom(NEW) 

p(ID-1, CASE)= tl(CASE)=lOe dom(CASE) 

p(ID-1, RESULT)= t1(RESULT)=lOe dom(RESULT) 
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We illustrate p for the "portion of first row," rest of p can easily be read out from 
the table (unboxed column and boxed portion). 

3. SECURITY CLASSIFICATION 

This section is not part of the formal theory. Issues on security classification are 
discussed informally so that one can derive a formal requirement. In this paper, 
information tables(IT) which we have discussed in last section are used as Tarskian 
semantic models of decision logic (see Section 4). In this respect, IT is better than 
RI In IT formulation, the real world is an integral part of the formalism; there are 
labels for the real world, which make the correspondence between real world and 
mathematical model explicit. An IT is a mathematical model of a "slice" of the real 
world that we are interested in. From the prospect of formal logic IT is identified 
with the "slice" (Frost, 1986, Section 5.3). IT is the semantic model of the decision 
logic. 

In a secure world, an entity or a sub-universe of IT has a security classification. 
So each formula should also have the security classification, since a logical formula 
is meant to describe a "sub-slice" of the real world. In this section, we will examine 
the interactions of these security classifications. 

3.1. Formulas and their meanings 

Let SC be a lattice (Birkoff, 1967); its element is called a security class, security 
level or simply label. To each formula q>, we associate a variable to hold a security 
class. If q> is interpreted, then its label C( q>) reflects some security semantics of the 
meaning lq>I; see Section 4.2 for formal definition of the term "meaning." First, we 
will explore the semantics of C(q>) and C(lq>I). To this end, let us consider a tuple t, 
representing the entity u, 

t = (p(u, A 1>. p(u, A2), ... , p(u, An)) 

For simplicity, we will write p(u, Ai) by the attribute pair <Ai, vi(u) >, or simply 

<Ai, vi> when u is understood. So the entity u can be written as a tuple 

Or as a formula 

The meaning I q>n I is a singleton { u}, we will simply write I q>n I = u. 
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The meanings I <f>i I of sub-formulas 

form a nested sequence of sets 

1< A 1, v1>I ;;;:1 1< Ai. v1> "< A2, v2>I ;;;:1 .... 

;;;:1 k Ai. v1> "< A1. v2> A, .... A< An, vn> I= {u}. 

Informally, each formula <pi can be expressed as a tuple, so we have the following 
"reverse nesting:" 

«Ai. v1» ~ « A1, v1>. < A2, v2>) ~ .... 

~(<Ai. v1>. < A1. v2>, ... , <An, vn> )=u. 

Note that a tuple can be interpreted as a set that selects one element from each 
active domain (Maier, i983); this sequence is nesting in this sense. Intuitively we 
can regard <p as the "name" of the set l<pl; The former sequence is a sequence of sets 
and the latter is a sequence of "names." Note that two sequences can be 
juxtaposition together and form a longer sequence if we identify u with { u}. So 
these analysis leads us to conclude that we need the following 

C(<p) ~ C(u), U E l<pl. (Req 1) 

C(l<pl) 2:: C(u), UE l<pl. (Req 2) 

(Req 1) The security class of the name of a set is dominated by the security classes 
of its elements. 

(Req 2) The security class of the set dominates the security classes of its elements. 

By similar reasons, we require, 

C(l<pl) ;::: C(lrt I), if l<pl ;;;:1 1111 (Req 3) 

(Req 3) The security class of a meaning dominates the security classes of its sub­
meaning s. 

So we have established three requirements for security classification. 
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Example Consider the following SQL 

Select * 
From IT 

where (A 1 =v1 /\ A2= v2 /\ .... /\ Ai,= v;) 

The output is the set lq>i I, the conditions in "where clause" is the formula <l>i· So the 

security classes of all output tuples dominate the security class of the condition. 
The condition uniquely determine the output, so it is the unique "name" of the 
output 

3.2. Access control, lattice model and information granulation 

In last sub-section, we have clarify the relationships between C(A) and 
C(name(A)), where A is the meaning of a formula. Now we would like to examine 
their access controls. In general, 

C(A) ~ C(u) ~ C(name(A)), ue A 

C(A) and C(name(A) may not be equal. If C(A) strictly dominates C(u) V ue A 
(and A is minimal), then A is called an aggregate (Lunt, 1989). The existence of 
aggregates makes the access control complicated. It has been discussed extensively 
by many authors (Hinke, 1988, Lunt, 1989, Lin, 1989, 1990, 1991) just to name a 
few. In this paper, we will assume such aggregates do not exit; such security model 
is called lattice model (Denning, 1976, Lin et al, 1990, Lin, 1991). 

Lattice model 
A security model is called a lattice model, if C(A) = Sup {C(u): V ue A}. If a 
person whose clearance dominates C(name(A)), he can examine the set A, 
however, he can examine only those members whose security classes are dominated 
by his clearance. 

For example, Hughes Aircraft Co (HAC) is a defence contractor. It handles 
projects ranging from top secret to unclassified. Let A be the set of data (or 
documents) in HAC, then name(A) = HAC. In this case C(HAC), the security class 
of name(A), is unclassified according to our interpretation. So an unclassified 
person, say John, can work at Hughes Aircraft. However John may not access to all 
of A. On the other hand, a top secret person, say Peter, may also work at HAC. In 
this case, Peter is permitted to access all of A (provided that he also meets all the 
need-to-know conditions). 

Information granulation 
It is clear there are two primitive objects in MLS environment, namely, individual 
elements and aggregates; a user either can access it or not. In other words, the 
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universe U is decomposed into elements and aggregates by its security semantics. 
Such models are studied in (Lin, 1991). For logic formulation, we will come back 
in another paper. 

4. MLS information tables and relation instances 

Let SC be a partial ordered set of security classes. In an MLS environment, each 
object, such as an attribute, attribute value and entity, has been assigned a security 
class. If we replace objects in IT or RI by object-class pairs, the notions of IT and 
RI in Section 2 may be transformed into MLS IT and RI respectively. Note that we 
need to require the constraints, (Req 1), (Req 2) and (Req 3) stated in Section 3. 
We would like to remind the following implications: 

(1) The security label of an attribute is dominated by the security label of its 
values: 

(2) The security label of an attribute-value pair is dominated by the security label 
of its entities: 

C(vj) :5 C(u), where u e U and Vj = p(u, Ai) e dom(Ai) 

Let us re-iterate the principle behind these constraints. The security label of a 
"name" of a collection of objects is dominated by the security labels of these 
objects. Attribute Ai is the "name" of dom( Ai), so it is dominated by C(vi ). vi is 

the "name" of all those entity u whose Atcomponent has common value vi= p(u, 

Ai) (or common Atproperties), so C(vi) :5 C(u) for those u whose Ai-component is 

Vi· 

5. MLS DECISION LOGIC 

In this section, we will set up MLS decision logic. For details on single level 
version we refer readers to (Palwak, 1991). 

5.1. The Syntax of a MLS Decision Logic 

Alphabet 
a) SC- The security lattice; its element is called a security class, security level 

or simply label. 
b) T - The set of attribute names 
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c) V= u dom (A) -The set of attribute values of A e T, called active domain of 
attribute A.(Maier, 1983) 

d) 3={-, /\, v, ~. =}-The set of connectives (negation, and, or, implication, 
equivalence) 

Formulas n 
The smallest set satisfies the following: 
a) Expressions of the form, attribute value pair < A, v> with label C (<A, v>) 

called atomic formulas, are formula of MLS DL-language for any A e T and v 
e dom(A). 

b) To each formula <pin DL-language, we associate a label, denoted by C(<p), to 
hold the security class of <p. 

c) If <p and Tl are formulas, so are -<p, ( <j>/\ TJ), ( <pv TJ), ( <p ~ TJ) and their labels 
are C(-<p)=C(<p), C(<p)AC{TJ), C(<p)vC( TJ), -C(<p)vC( TJ), where v and/\ are 
lattice operations. 

5.2. The Semantics of a MLS Decision Logic 

A model of MLS decision logic is an MLS IT. 

Interpretations at level C 

Let UC or simply U (when C is understood) be an MLS IT at level C. It consists of 
all entities that are dominated by the security class C. As usual at each level, we 
will denote u l=u <p or u I= <p when U is understood, if an object u e U satisfies a 

formula <pin U. So we will say u I= <p, iff 

u l=<A, v> iff p(u, A) = v 
u I= -<p iff non u I= <p 
u I= ( <j>/\ TJ) iff u I= <p and u I= Tl 
u I= ( <p v TJ) iff u I= <p or u I= Tl 

We have many usual formulas, such as 
u I= ( <p ~ TJ) iff u I= -<p v Tl 

We associate the formula <p, the following set 

I <p lu = {u: u e U and u I= U <p }. 

It will be called the meaning of <p at level C. A formula is said to be true if l<plU = 

U; <p is logically equivalent to Tl iff their meanings are the same, i.e., l<p IU = lrtlU" 
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All formula and their meanings are properly classified. Note all U in this paragraph 

is actually UC 

Monotonic assumption 
For simplicity, we will assume SC consists of two elements, L and H, read as low 

and high respectively. We will ignore polyinstantiation and assume uL !;;;;; uH, 
whereL~H. 

5.3. The Deductive System of a MLS Decision Logic 

Recall that at level C means all objects which are dominated by C. 

Inference rules at Level C 
Modus ponens is the only rule. 

Axioms at level C 
( 1) The set of propositional tautologies 
(2) Specific axioms: 

(a) <A, V> A <A, u> = 0 for any A e T and v, u e V and v *- u 

(b)V{ <A, v>: for every v e dom(A) and for every A e T} = 1 

(c)- <A, v> = V{ <A, u>: for every u e dom(A) and every A e T, v *- u} 

We need few auxiliary notations and results: Let 0 and 1 denote falsity and truth at 
security level C. From the monotonicity assumption, these 0 and 1 will behave 
consistently from level to level. 

Formula of the form 

is called P-basic formula or P-formula, where v1 e dom (Ai), and P= {At, A2, .. 

An } . For P = T, P-basic formulas will be called basic formulas. The set of all basic 

formulas satisfiable in U is called basic knowledge in U. The specific Axiom (a) 
follows from the assumption that each entity can have exact one value in each 
attribute. The Axiom (b) implies that each value of its domain must be taken once. 
This is saying that dom(A) is the active domain of attribute A. The Axiom (c) 
allows us to get rid of the negation in such a way that instead of saying that an 
object does not possesses a given property we can say that it has one of the 
remaining properties. It implies the closed word assumption. Let ~ (P), or simply 
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l: (P) denote the disjunction of all P-basic formulas satisfied in U. The closed word 
assumption can be express in the following (Pawlak, 1991): 

Proposition l=U l: U (P) = 1. For any P ~ T. 

Note that all commercial DBMS have this assumption. For example, the output of 
not red colour consists of all non-red colours. A formula cp is a theorem, denoted by 
I- cp , if it is derivable from the axioms. At level C, the set of theorems of MLS DL­
logic is identical with the set of theorems of propositional calculus with specific 
axioms (a)- (c). 

6. INFERENCE AND DECISION RULES 

In this section, we will discuss potential applications of MLS decision logic. Recall 
that "objects at level C" means "objects whose security classes are dominated by 
C." 

Decision rules at level C 

We will use UC or simply U to denote the universe at level C (dominated by C). 
Any implication ( cp -+ Tl) is called a decision rule. A decision rule is consistent in U 
if it is true in U (that is, l=u (cp-+ T\); otherwise, the decision rule is inconsistent. 

Decision rule is a term used by the community of decision support systems. In 
database security community a decision rule is often referred to as an inference rule 
(Lunt, 1989, Lin, 1989, 1993). We will use it, when there is no danger of 
confusing. It should be clear that such a inference rule is a formula, not the 
inference rules of a deductive system. A decision rule ( cp -+ Tl) is called a PQ-basic 
rule, if cp and T\ are P-basic and Q-basic formulas respectively. A decision 
algorithm is defined to be a set of decision rules (Pawlak, 1991). If all decision 
rules are PQ-basic rules, then the algorithm is said to be PQ-algorithm. Note that 
common definition of an algorithm is a sequence, not a set. Let P ~ A be a subset 
of attributes. 

Proposition Let P and Q be two subsets of attributes in U. Then PQ-algorithm 
determine a decision table and vice versa. 

Inference problems 
By employing IT processing (rough set methodology), we can find a minimal 
decision PQ-algorithm at each level C. From such a minimal decision algorithm, 
we can detect all the potential formal inference channels (channels of formal 
reasoning). However, there are informal channels, such as plausible reasoning, 
human reasoning and etc. 
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Let us consider three formulas <p, n. and <p ~ Tl· We would like to find the 

constraints among their security classes so that inference attacks can be avoided. 

Let p be a person who may access <p but not T\. Then p should not be permitted to 

access <p ~ Tl· The security clearance C(p) of should obey the following 

constraints: 

C(p) ~ C{<p), C(p) < C{<p ~ T\). and C(p) < C(n). 

In other words, if p is permitted to access some information about <p, then p should 

not be permitted to know anything about <p ~Tl· Partial knowledge about l<pl and 

l<p ~ nl may result in some partial knowledge about IT'ii which is not desirable. Any 

subset of l<p ~ nl = -l<p I u I nl, whose security classification is dominated by C(p), 

should be empty. We will defer such analysis in future papers. 

Robust rules and soft rules 
The previous analysis is based on precise and exact analysis that are useful for 
small to median size of data. If the data is huge, we may want to do some filtering. 
One possible choice is to look only at rules that have appeared repeatedly (Agrawal 
et al, 1993, Lin, 1996, Lin and Chen, 1996, 1997). These are very robust rules. We 
should caution security officers that some of these robust rules are very often well 
known facts in the users' community. We may also want to mine approximate rules 
(Lin & Yao, 1996). 

7. CONCLUSION 

An information table that include a snap shot of a relational database can be viewed 
as a logic system. Note that such a system is not the so-called deductive database 
system. In this paper, we formalise these information tables or loosely these snap 
shots into MLS decision logic systems. Based on such logic systems, one can find 
all the formal inference rules of varying degree of robustness. This paper provides 
a model for a comprehensive and complete analysis of possible formal inference 
attacks. Further experimental works are needed to uncover practical effects or 
difficulties of such formal systems. 
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