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Server performance has become a crucial issue for improving the overall perfor­
mance of the World-Wide Web. This paper describes Webmonitor, a tool for evalu­
ating and understanding server performance, and presents new results for a realistic 
workload. 

Webmonitor measures activity and resource consumption, both within the kernel 
and in HTTP processes running in user space. Webmonitor is implemented using 
an efficient combination of sampling and event-driven techniques that exhibit low 
overhead. Our initial implementation is for the Apache World-Wide Web server run­
ning on the Linux operating system. We demonstrate the utility of Webmonitor by 
measuring and understanding the performance of a Pentium-based PC acting as a 
dedicated WWW server. Our workload uses a file size distribution with a heavy tail. 
This captures the fact that Web servers must concurrently handle some requests for 
large audio and video files, and a large number of requests for small documents, 
containing text or images. 

Our results show that in a Web server saturated by client requests, up to 90% of 
the time spent handling HTTP requests is spent in the kernel. Furthermore, keeping 
connections open, as required by TCP, causes a factor of 2 increase in the elapsed 
time required to service an HTTP request. Data gathered from Webmonitor provide 
insight into the causes of this performance penalty. These results emphasize the im­
portant role of operating system and network protocol implementation in determin­
ing Web server performance. 

INTRODUCTION 

The quality of networked services like the World-Wide Web (WWW) depends on 
many factors, including performance, reliability, and security. The overall perfor­
mance of the Web depends on the performance of its main components; namely 
clients, the network, and servers. The explosive growth of the Web is placing a heavy 
demand on servers [Birman et ai, 1996]. As a result, users see slow response times 
on the most popular sites, which are overrun by millions of requests per day. Thus, 
server performance has become a critical issue for improving the quality of service 
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on the World-Wide Web. In order to improve Web server performance, we need to 
understand how server behavior differs in response to different types of requests, 
such as requests for small HTML documents, or for large audio and video files. We 
need to gain insight into server behavior under heavy load in the presence of such 
heterogeneous requests. In particular, we need to assess the impact of operating sys­
tem and network protocol implementation on server performance. This suggests the 
need for quantitative measurements that show how system resources are being uti­
lized when servicing HTTP requests. 

Despite the importance of measuring and understanding the behavior of Web 
servers, there are no freely available performance tools that give detailed information 
about server behavior. In this paper, we describe and present results from a prototype 
tool (called Webmonitor) that does just this. For an HTTP workload, Webmonitor 
measures activity and resource consumption, both within the kernel and in HTTP 
processes running in user space. Webmonitor is implemented using an efficient com­
bination of sampling and event-driven techniques that have low overhead (less than 
4%), and therefore does not significantly perturb server behavior. Our initial imple­
mentation is for the Apache WWW server running on the Linux operating system. 

We demonstrate the utility of Webmonitor by measuring and understanding the 
performance of a Pentium-based PC acting as a dedicated WWW server. We present 
results for a workload generated by WebStone [Trent et al., 1995], which is a con­
figurable tool for benchmarking Web server performance, available from Silicon 
Graphics. We parameterized the server workload generated by WebS tone to capture 
the heterogeneous nature of HTTP requests, using values from [Arlitt et al., 1996]. 
Specifically, we used a file size distribution with a heavy tail to capture the fact that 
Web servers must concurrently handle some requests for huge multimedia files and a 
large number of requests for small HTML and image documents. Such distributions 
occur in the size of files available at servers, and in files requested by clients [Ar­
litt et al., 1996, Crovella et at., 1996]. This heterogeneity in workload stresses the 
limits of the underlying operating system much further than traditional applications 
[McGrath et ai, 1995]. One other important characteristic of our workload (and ex­
periments) is that we do not reuse TCP connections for multiple HTTP requests, as 
described in [Mogul, 1995a] and the Apache documentation [Robinson et al., 1995]. 
Thus, we open a new TCP connection for every request. We therefore capture the 
costs of servicing our workload under the "worst case" assumption of being unable 
to use persistent connections. 

We present two new results from data collected using Webmonitor. First, in a 
Web server saturated by client requests, we find that up to 90% of the time spent 
handling HTTP requests is spent in the kernel. Second, that keeping TCP connections 
open causes a factor of 2 increase in the elapsed time required to service an HTTP 
request. It is necessary to keep TCP connections open (in the TIME-WAIT state) at 
the server to guard against old data being received by a new connection. Although 
such problems with the way TCP interacts with HTTP have been pointed out by 
others [Mogul, 1995c, Mogul, 1995a, Padmanabhan, 1994], we isolate and quantify 
their impact. Specifically, we show that these lingering TCP connections cause a 
33% performance penalty in terms of throughput. 

The rest of the paper is structured as follows. Section 2 outlines specific charac­
teristics of the Web that influenced the approach we adopted to measure server be­
havior. In section 3 we describe the experimental environment that was instrumented 
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and measured, and the workload used to drive our experiments. Section 4 presents an 
overview of the Webmonitor architecture and important aspects of its implementa­
tion. Next, we present and analyze measurements collected by Webmonitor. We then 
use the tool to measure the behavior of a busy Web server, and discuss the impact of 
the Web server implementation on performance. Finally, section 5 summarizes the 
paper. 

2 MEASURING A WEB SERVER 

The standard performance tools provided by Unix operating systems include ps, 
vmstat and netstat. In Linux, all of them collect information from Iproc filesystem 
[Welsh, 1994]. Although these tools can provide insight into server behavior, they re­
flect the performance only from a system-wide standpoint. Furthermore, those stan­
dard tools may introduce unbearable overhead during the monitoring of a busy Web 
server [Cockcroft, 1996]. 

In order to obtain in-depth information about the server behavior, we also need to 
collect data at the HTTP Server level. HTTP servers usually log per-request informa­
tion in log files, but that is not enough to gain insight in the way system resources 
are used to service an HTTP workload. Thus, we decided to build a specific tool 
to monitor the behavior of Web servers and to measure resource usage. In this sec­
tion, we describe the guidelines and principles we followed to design a Web server 
performance monitor. 

2.1 Characteristics of Web Servers 

As pointed out in [Arlitt et al., 1996, Crovella et. aI., 1996, Mogul, 1995a, Mogul, 
1995b, Almeida Bestavros et al., 1996], there are several characteristics that distin­
guish Web servers from traditional distributed systems. The following two charac­
teristics have a profound impact on the behavior of Web servers. 

(a) Heavy Tailed Distributions 
Recent studies [Arlitt et al., 1996, Crovella et. aI., 1996] have shown that file sizes 
in the World-Wide Web exhibit heavy tails, including files stored on servers, files 
requested by clients and transmitted over the network. A heavy-tailed distribution 
(e.g., Pareto) is given by P[X > xl '" x-a, as x --+ 00 and 0 < 0: < 2. Theoretical 
heavy-tailed distributions have infinite variance, which, in practical terms, means that 
very large observations are possible with non-negligible probability. In [Crovella et 
al., 1996], the authors surveyed a number ofWWW servers in the Internet and found 
evidence of heavy-tailed distributions of sizes of files on the servers. One possible 
explanation is the presence of large multimedia files that contribute to increase the 
tail of file size distribution. 

(b) Short-lived Processes 
Most HTTP server implementations use a new TCP connection for almost every re­
quest. Several references [Arlitt et aI., 1996, Crovella et al., 1996] report that over 
90% of client requests are for small HTML or image files. The combination of these 
facts explains a common phenomenon that has been observed during the operation 
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of busy Web servers: the creation of a large number of short-lived processes [Mogul, 
1995a, Mogul, 1995b]. This brings new challenges to some operating systems that 
are not tuned for handling a large number of short-lived, processes. Short-lived pro­
cesses also represent new problems for performance monitoring. Although UNIX 
provides accurate measurements for processor usage by processes of moderately 
long duration, the authors in [Somin et al., 1996] point out the problems in trying to 
measure CPU time used by short-lived individual processes. 

2.2 Measurement Approach 

The fundamental characteristics of a good measurement tool are low overhead, low 
interference in the system being measured, and high accuracy. We address these char­
acteristics in the design and implementation of Webmonitor. 

Although monitors can provide a great deal of useful data, there are problems with 
the use of their data for performance modeling. Thus, Webmonitor was designed to 
provide data for analytical models also. The basic input data required by queueing 
network models are service demands of a request at a server [Menasce et at., 1994]. 
Those demands specify the total amount of service time required by a request dur­
ing its execution at each major component of the server. It is worth mentioning that 
service demand refers only to the time a request spends actually receiving service. 
It does not include waiting times. Webmonitor was designed to provide this infor­
mation, which can then be used to derive the basic data required by analytical and 
simulation queueing models. 

In this section we show the features of Webmonitor that take advantage of World­
Wide Web workload characteristics to achieve low overhead and high accuracy. 

(a) Monitoring Techniques 
Webmonitor uses a combination of sampling and event-driven techniques to collect 
different levels of information about the operation of a Web server. Sampling-based 
measurement is used to read counters that are maintained by the kernel. Those coun­
ters provide system-level information (e.g., resource utilization, interrupt rates, etc.) 
as well as network statistics. Because events occur within different modules in a 
Web server, our monitor supports the concept of different sampling intervals, that 
are adjusted to the nature of the information being monitored. However, the choice 
of sampling intervals always represents a trade-off between accuracy and overhead. 
To do sampling in an efficient way, we made some modifications to the Linux kernel, 
because of the high volume of requests that would imply high overhead. 

Sampling is an inadequate technique to trace the execution of every HTTP request 
in user space. Thus, for monitoring the execution of every request in the HTTP pro­
cesses, Webmonitor uses an event-driven technique that required the instrumentation 
of the server. However, it is important to note that this instrumentation was designed 
to be lightweight to minimize its effect on server processing. 

(b) Classes of Requests 
Although it would be desirable to have detailed execution information about each 
individual request, it is unfeasible, in terms of overhead, to keep track and record 
this quantity of information. This is especially true for busy Web servers that are 
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overloaded by requests. A possible solution would be to simply accumulate the ex­
ecution information for all requests and to calculate average values for the measure­
ments. However, as we saw earlier in this paper, requests for documents at Web 
servers follow heavy tailed probability distributions, that have very large variance. 
Thus, average results for the whole popUlation of requests would have no statistical 
meaning. 

As a compromise to keep overhead as low as possible without impairing the ac­
curacy and significance of the measurements, we catagorized requests into a small 
number of classes. A class is defined by a range of file sizes, and these ranges are 
chosen to reflect a heavy tailed distribution of file sizes on the server. Thus, each 
class comprises requests that are similar with respect to the size of the files they 
retrieve. As a result, we group together requests of similar behavior in terms of re­
source usage, which helps reduce the variance of the collected data. 

3 EXPERIMENTAL SETUP 

This section explains in detail the WWW server which we used in our experiments. 
We describe the workload, hardware, and software used to perform the measure­
ments and collect the performance data. 

The operating system used is Linux version 2.0.0, which is distributed under the 
terms of GNU General Public License [Welsh, 1994]. The server software is Apache, 
version 1.1.1, a public domain HTTP server [Robinson et al., 1995]. 

Apache was originally based on code and ideas found in NCSA HTTP server [Mc­
Grath et ai., 1995). It is "A PAtCHy server", in the sense that it was based on some 
existing code and a series of "patch files" . Apache can run in two different modes: 
from the inetd system process or, in standalone mode. The main disadvantage of 
running an HTTP server from inetd is that, for each HTTP connection received, a 
new copy of the server is started from scratch; after the connection is complete, this 
program exits. Thus, there is a high per-connection overhead. Standalone is there­
fore the most common mode of operation, since it is far more efficient. The server is 
started once, and services all subsequent connections. 

Another interesting point worth mentioning concerns the management of the HTTP 
processes. Apache maintains a pool of child server processes to handle incoming re­
quests. On startup, a master server process spawns a pre-defined number of child 
processes and as the load in the server increases, new processes are spawned and in­
cluded in this pool. The master process periodically checks the number of idle child 
processes and dynamically adapts this number to the load it sees. There are pre­
defined limits (lower and upper bounds) to the number of idle processes. Besides 
this, there are also upper bounds for the number of requests each child is allowed to 
process before it dies and on the total number of child processes running, that is, a 
limit on the number of clients that can simultaneously connect to the server. 

Our Apache server was configured to run in standalone mode. The number of 
KeepAlive requests per connection [Robinson et ai., 1995] was set to ° (only one 
HTTP request was serviced per connection). The lower and upper bounds in the 
number of idle processes were set to 5 and 10, respectively; and the number of re­
quests a child process serves before dying was set to 30. Our hardware platform was 
an Intel Pentium 75MHz system, with 16 Megabytes of main memory and a 0.5 Gi-
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gabyte disk. It has a standard 10 Megabit/second Ethernet card. Linux was installed 
on the disk on a partition of 416 Megabytes, and a partition of 36 Megabytes was 
allocated for swap space. 

To generate a representative WWW workload, we used WebStone [Trent et al., 
1995] (version 2.0), which is an industry-standard benchmark for generating HTTP 
requests. WebStone is a configurable client-server benchmark for HTTP servers, that 
uses workload parameters and client processes to generate Web requests. This allows 
a server to be evaluated in a number of different ways. It makes a number of HTTP 
GET requests for specific pages on a Web server and measures the server perfor­
mance, from a client standpoint. 

WebStone is a distributed, multi-process benchmark, where a master process spawns, 
local or remotely, a pre-defined number of client processes. Each client process gen­
erates requests to the server and collects the performance statistics. After all clients 
finish running, the master process collects the client's statistics and calculates the 
overall server performance during the execution of the workload. In our experiments, 
the client processes were spread over three machines: two SparcStation 20 (128 and 
256 megabytes of main memory and operating systems SunOS 4.1.4 and 5.5) and 
one SparcStation Ultra (128 megabytes of main memory and SunOS 5.5) In order 
to generate load for a WWW server, client processes successively request files from 
the server, as fast as the server can answer the requests. A new request is sent out to 
the server right after a client receives the answer from a previous request. The main 
performance measures collected by WebStone are latency and throughput. The for­
mer represents the response time to complete a request, viewed from the client side. 
Throughput is measured in connections per second and also in bytes transferred per 
second. 

Table 1 Characteristics of HTTP Workload 
File size (KBytes) Access probability 

Item Number of files Total Average Total Average 

HTML 24 180 7.5 0.192 0.008 

Images 29 385 13.28 0.754 0.026 

Sound 20 3580 179 0.05 0.0025 

Video 4 9216 2304 0.004 0.001 

The WebStone workload is defined by the number of client processes and by the 
configuration file that specifies the number of files, their size and access probabilities. 
Table 1 gives baseline information for the HTTP workload used in our experiments. 
The parameters that define the workload are representative of the kinds of workload 
typically found in busy WWW servers [Arlitt et al., 1996]. It is worth noting that the 
set of files in this workload consumes 82% of physical memory. Furthermore, once 
the kernel and HTTP processes are also present in memory, we observe significant 
disk activity in our experiments. 



Measuring the behavior of a world-wide web server 

MONITOR 

Kernel Module 

I 
I 

I 
I 

I 
I 

I 

I 
I 

I 
I 

I 

/ Kernel Module 

(sampling) 

I 
I 

I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

I 
I 

counters/timers 

( WWWserver 

Request-level Statistics 

For each class of HTIP request: 

· bytes transferred 
· I/O operations 

· blocks read and written 

· average response time 

~ parsing time 
.. processing time 

- logging time 

· average time in system and user modes 

63 

I 
1 ____________________________ ..J 

System-ievel Statistics 

· processor utilization : system and user 

· interruption rates (total, disk, and network) 
· context switches 

I • page-in, page-out 
· disk activity 
· processes: processor and memory usage 

I 

~-------------------------

--------------------------
I 

Network Statistics 

· packets send and received 

· errors 

I • connections in WWW port 
L _________________________ J 

Figure 1 Overview of the Webmonitor 

4 ARCHITECTURE OF THE MONITOR 

Figure 1 depicts an overview of Webmonitor. The monitor can be seen as a com­
bination of two main components that operate at different levels of the system and 
collect performance data using different techniques. This division in based on the in­
teraction between the monitor and system, the technique of instrumentation used and 
the nature of the data collected. The Kernel Module runs independently of the Web 
server and collects information about the operating system as a whole. The code of 
the Server Module is actually linked with the server code, and therefore runs as part 
of the server. It collects information about server performance during the handling 
ofHTTP requests. 

4.1 The Kernel Module (KM) 

The Kernel Module (KM) collects resource usage data, not only from a system-wide 
standpoint but also from the Web server viewpoint. The information collected is: 
processor utilization, disk activity, paging activity, and interrupt rates. This module 
also collects information about network activity, which is divided into two groups. 
The first one refers to statistics on communication activities through the Ethernet in-
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terface, such as the number of packets transmitted or received, number of errors that 
occurred during transmission or reception. The second group provides information 
about the number and state of TCP connections to the HTTP port in the server. The 
TCP state information is useful for understanding the "lifetime" of connections in 
the server. 

In addition to the three types of system-wide information activity described above, 
KM also obtains information about certain processes. The information is basically 
CPU and memory utilization. It also collects the total number of copies of each mon­
itored program (started processes) and the number of copies waiting for run time 
(running processes). In our experiments, we chose to monitor the HTTP processes 
and the kernel processes responsible for swapping and buffer cache management. 
However, since our results show that the vast majority of system resources are con­
sumed by the HTTP processes, we only present results for these processes. 

Usually the Linux kernel keeps performance data internally. They can be read 
by user programs through the /proc filesystem [Welsh 1994]. This is a "virtual file 
system", in the sense that its contents are not located on disk but in memory. A read 
of any file below /proc causes data in the kernel to be copied to memory in user 
space. This information is actually copied as a sequence of ASCII characters. Thus, 
to find specific data, it is necessary to parse a string for a specific keyword and then 
read one or more numeric values. 

There is one important disadvantage to using /proc to gather kernel activity infor­
mation. If one needs to gather information scattered throughout several kernel data 
structures, one must perform multiple reads (each of which is a system call), or read 
very large blocks of data out of the kernel. Both of these alternatives are very expen­
sive. This overhead of reading /proc, to get specific but scattered information, is the 
main reason we decided to implement the KM using four new system calls. 

The information gathered by the KM is collected through four system calls that 
summarize and return specific information about kernel activity in a single buffer. 
The KM system calls are as follows: 

• my _geLkstats: returns information about processor utilization, disk activity, pag­
ing activity and interrupt rates. 

• my _geLprocstats: returns cpu and memory utilizations for each process with a 
given command name. 

• my _geLnetstats: returns the number of packets transmitted and received and the 
number of errors occurred in the network interface. 

• my _geLconnstats: returns the number of connections in each TCP state con­
nected to a given TCP port. 

The KM runs as a group of two to four processes, periodically collecting infor­
mation through the system calls described above. The number of samples, the TCP 
port to be monitored, the number of different programs to be monitored, the name 
of them and the number of KM processes spawned are parameters specified in a 
configuration file [Almeida Almeida et aI., 1996]. 

4.2 The Server Module (SM) 

The Server Module (SM) is responsible for collecting information about server per­
formance during the handling of HTTP requests. It is implemented as a library of 
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routines compiled and linked with the server code. Calls to specific routines were 
inserted at appropriate points in the server code. Instead of being based on sampling, 
like the KM described in the last section, the SM collects informating based on a 
trace of events that occur during the handling of a single request. The data collected 
are: bytes transmitted, connections established, read and write operations, and num­
ber of blocks read and written during the handling of the request. Another important 
piece of information is the processing time at the server to handle a request. The time 
measured by the SM begins with the establishment of a connection and ends when 
the server (i.e., HTTP process) is ready to handle the next request. It is broken into 
three components, which are measured in processor time and in elapsed time. Pars­
ing time is the interval that begins just after the establishment of the connection and 
ends when the header of the request has been parsed and is ready to be processed. 
Processing time is the time spent actually processing the request. It does not include 
the server logging time. It accounts for the time spent reading the URL (Uniform 
Resource Locator) and the time needed to move the file from memory or disk to the 
network. Logging time is the time spent performing standard HTTP logging. After 
logging, a server process is ready to handle a new request. 

Unfortunately, the Linux timing routines are not accurate enough to account for 
the three components of the execution time of a short request. The timing resolu­
tion is on the order of 10 milliseconds [Welsh, 1994]. In order to measure parsing, 
processing, and logging times with greater accuracy, we implemented a "stopwatch" 
scheme using the gettimeofday routine, that returns the elapsed seconds and mi­
croseconds since a predefined date. This resolution is because gettimeofday reads 
the time directly from the hardware timer. In order to be timed using a stopwatch, a 
process must call a system routine to include itself in a CPU Monitored Processes 
Table, located in kernel memory. This routine returns the entry allocated in the table 
for that process. There are also system calls to Start and Stop the time accounting. 
To discount the time that the CPU was used by processes other than the one being 
monitored, an entry of the CPU Monitored Processes Table also contains the time 
between Start and Stop spent servicing other processes [Almeida Almeida et aI., 
1996]. 

A similar scheme was implemented in order to collect per-process disk activity 
information. It creates a Disk Monitored Processes Table, where appropriate infor­
mation is kept. To be monitored, a process must allocate an entry in this table through 
a system call. Every time a disk request from a process being monitored is served, 
the number of read or write operations and the blocks transfered are registered in its 
entry in this table. 

Each server process collects the statistics described above for the requests that 
it services. In addition, the SM incorporates the concept of request classes. Each 
request is categorized into one of several predefined classes depending on the size 
of the file requested. The classes are defined in a configuration file specifying the 
maximum file size for each class. The statistics collected by a server process are 
separated by class. Thus, while handling a request, a server updates the counters 
associated with the class of the request being serviced. In this manner, the SM gen­
erates cumulative information for each class and each HTTP server process. To keep 
overhead low, this information is written to disk by the server processes after 10 re­
quests have been served. After data collection is complete, these cumulative values 
can be processed to generate other statistics such as averages, variances, etc. 
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4.3 Monitor Overhead 

One of the main concerns in the design of the WWW server monitor was to keep 
overhead as low as possible. The response time (in seconds) and throughput (connls 
and Mbitsls) measured by WebStone for the server with the monitor (KM and SM 
modules) were 1.74, 17.35 and 3.91, respectively. Without the monitor, WebStone 
measured 1.69, 17.96 and 4.02, for the same workload. Thus, the overhead intro­
duced by the monitor is less than 4% for all three measures. We also compared the 
cost of using our system calls against the cost of obtaining the same information 
through the /proc filesystem. Compared to Webmonitor system calls, collecting the 
same data via /proc is between 5 and 200 times more expensive [Almeida Almeida 
et al., 1996]. 

5 RESULTS 

Recall that one of the main design goals of our WWW server performance monitor is 
to understand how time is spent servicing HTTP requests, and how different compo­
nents of the server software are utilized. The KM addresses this goal by measuring 
the CPU user and system time, and the rate at which different kernel services are 
invoked (e.g., read calls per second). The SM addresses this goal by measuring the 
CPU utilization and latency of servicing requests, as well as tracking per-connection 
use of some kernel services (e.g., read calls per connection). 

We demonstrate the utility of our WWW server performance monitor at the most 
interesting operating point of the server - when it has just become saturated. To de­
termine the saturation point, we ran experiments varying the number of WebStone 
clients that communicate with the server. Our results, average values from 3 exper­
iments, are for 30 clients, which cause both the CPU and memory of the server to 
be utilized at levels greater than 90%. We discuss these results for the server mod­
ule first, then describe results from the kernel module, and then tie them together. 
Finally, we present results for experiments where we change the Linux TCP imple­
mentation to not keep connections open at the server. Comparing these results with 
our original results shows the effect that keeping TCP connections open has on server 
performance. 

5.1 Server Module Results 

Table 2 shows server module (SM) measurements for the three different classes of 
requests. Recall that these request classes correspond to different file sizes that span 
a heavy-tailed distribution. Furthermore, each class is representative of an object 
"class," as in Table 1. Class I requests (for HTML and image documents) are for 
small files; they have a mean size of 12.1 KB and make up the vast majority of the 
requests (i.e., 94.6%). Class 2 requests (for audio files) are moderate in size and 
amount to 5% of requests. Class 3 requests (for video clips) are large (2.3 MB on 
average) and make up only 0.4% of the workload. The most interesting result in Ta­
ble 2 lies in the last six rows, which show the processor time and the elapsed time of 
the three different phases of execution of an HTTP request. These rows show that in 
most cases the majority of the time spent servicing an HTTP request is spent moving 
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Table 2 Server Module Results for 30 Clients 
Class 1 Class 2 Class 3 

conn/s 16.40 0.88 0.07 

Mbits/s 1.55 1.17 1.19 

reads/conn 0.03 2.67 34.67 

CPU parsetime(ms)/conn 4.78 4.81 3.81 

CPU processingtime(ms)/conn 18.75 150.56 2231.35 

CPU logtime(ms)/conn 5.28 6.99 9.10 

elapsed parsetime(ms)/conn 23.45 21.80 6.20 

elapsed processingtime(ms)/conn 155.81 3789.95 60578.90 

elapsed logtime(ms)/conn 774.31 940.35 827.42 

the requested URL from the filesystem to the network (i.e., processing the parsed 
request). This is true of CPU time for all three request classes in our workload. Fur­
thermore, the elapsed processing time also dominates the elapsed parse and logging 
times for moderate and large (Class 2 and 3) requests. The CPU time and elapsed 
time for processing requests increases by three orders of magnitude as the mean file 
size for the three classes does also. The other measurements shown in Table 2 which 
show the same increase are the read calls per connection. This suggests that disk 
activity explains the increase in elapsed time for processing large requests, as one 
would expect. One other interesting result in Table 2 is the distribution of network 
bandwidth among the three request classes. Note that even though the connections 
per second rate decreases with class number (and requested file size), the bandwidth 
that each class consumes on the network is about the same (i.e., between 1 and 1.6 
Mbps). This is due to the heavy-tailed nature of the file size distribution. 

The results from Table 2 suggest that most of the CPU time consumed by the 
HTTP processes is spent in the kernel. In other words, the task of moving the re­
quested URL from the filesystem to the network is the most expensive part of han­
dling a request. Since both the file system and the networking code are in the kernel, 
one would expect time spent in the kernel to be greater than time in user space. We 
tested this hypothesis by instrumenting the HTTP processes to call getrusage after 
every 10 requests, and report the user and system time per connection, for the du­
ration of the experiment. These results show that our HTTP processes consume an 
average of 50 msec of CPU time in the kernel per connection, compared with only 
5.2 msec in user space. We'll see later that the kernel module results also demonstrate 
this high (i.e., 10: 1) ratio of system CPU time to user CPU time, for the WWW server 
as a whole. 

5.2 Kernel Module Results 

Table 3 shows kernel module (KM) measurements for the workload described above. 
Recall that KM measures only kernel-level statistics such as overall CPU user and 
system time, and the rate at which different services are invoked. It therefore does 
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Table 3 Kernel Module Results for my _geLkstats and 30 Clients 

cpu_user(%) 9.00 pageins/s 137.42 

cpu_sys(%) 90.65 pageout/s 7.94 

cpuJdle(%) 0.35 interrupUs 1011.22 

reads/s 5.17 neUnterrupUs 620.43 

writes/s 4.90 diskJnterrupUs 289.90 

context switch/s 51.66 

Table 4 Kernel Module Results for my _geLprocstats and 30 Clients 

cpu(%) 93.75 started processes 27.55 

mem(%) 102.61 running processses 25.01 

not separate its measurements according to request class. The most interesting result 
in Table 3 is that the ratio of system time to user time is high, and is approximately 
the same as for the HTTP processes monitored by the SM, i.e., 10: I . Within the time 
spent in the kernel, it is also important to note the relative frequency of certain kernel 
operations. For example, there are over 100 page-in's, network interrupts, and disk 
interrupts per second. There are several read calls performed per second. However, 
there are also a significant number of corresponding write operations per second. 
These are presumably due to paging activity and logging of HTTP requests. 

We have seen a correspondence between SM and KM statistics looking at Table 2 
and then Table 3. We also wanted to show a correspondence in the reverse direc­
tion. Table 4 shows aggregate process statistics for the HTTP processes, measured in 
the kernel. Note that the CPU is over 90% utilized, and that memory utilized by the 
HTTP processes alone is over 100% (which indicates paging activity) . This explains 
why the CPU user and system times for the HTTP processes (measured by SM) and 
for the system as a whole (measured by KM) agree. The number of running pro­
cesses suggests that Apache's process management requires 25 processes to service 
30 concurrent connections, given our workload. Finally, the measurements obtained 
by KM concerning network statistics reported no errors in network interface during 
the experiments, which is consistent with WebStone results that also reported no er­
rors on the client side. 

We also wanted to show that our main conclusions still held when the set of files 
being requested at the server was sufficiently small to reduce disk activity. A new 
workload was obtained by dividing the file sizes presented in Table I by a factor of 
4, but keeping the same number of clients. The results for this workload are shown 
in Tables 5 and 6. In Table 6, the SM request class sizes are also scaled down by a 
factor of 4. These results show that, despite reduced disk activity, the ratio of system 
time to user time remains very high. Both KM and SM results show that over 89% of 
the CPU time is spent in the kernel. It is also interesting to note the higher connection 
rate, due to a much faster handling of each request. 
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Table 5 KM Results for Workload Table 6 SM Results for Workload 
with Smaller Files with Smaller Files 

cpu_user(%) 9.87 user time(ms)/conn 23 .97 

cpu_sys(%) 87.07 system time(ms)/conn 2.83 

cpuJdJe(%) 3.06 (aggregate) conn/s 25 .74 

reads/s 0.79 (aggregate) Mbits/s 3.45 

The validation of the results collected by KM and SM was done through compari­
son with similar measurements obtained through the /proc filesystem and WebS tone, 
respectively. The differences between them are less than 1% [Almeida Almeida et 
al., 1996]. 

5.3 Effect of Keeping TCP Connections Open 

We wanted to use Webmonitor to measure the effect of keeping TCP connections 
open on our Web server. Recall that this is a requirement of TCP, to guard against 
old data being received by a new connection. To isolate this effect, we reproduced 
the experiments described above, but changed Linux' s TCP implementation to close 
connections without spending any time in the TIME_WAIT state. Although such 
a TCP implementation is not "legal," this modification allowed us to show the ef­
fect of keeping connections open on server behavior. In a legal implementation, the 
TIME_WAIT state is entered to catch and discard packets from a closed connection, 
that were retransmitted by a client. The usual holding time in this state is 60 seconds, 
after which the connection is closed (put in the TCP _CLOSE state). It has been ob­
served by others [Mogul, 1995a, Mogul, 1995c, Padmanabhan et at., 1994] that the 
holding time in the TIME_WAIT state is a possible performance problem for WWW 
servers, however, we are the first to quantify this and give some insight into possible 
causes. 

Table 7 Number of Connections in TCP States (KM) 

TCP State TIME_WAIT = 0 TIME_WAIT = 60 sec 

ESTABLISHED 29.14 29.74 

TIME_WAIT 0 941.84 

CLOSE 64.45 35.03 

Table 7 gives the average number of connections seen in different TCP states. Al­
though TCP actually has II states, the number of connections in the other 8 states 
was zero or negligible. The most interesting number in Table 7 is the large num­
ber (over 900) connections in the TIME_WAIT state, when its holding time is 60 
seconds. These results are consistent with those in [Mogul, 1995a, Mogul, I 995c). 
Fortunately, because of the large number of TCP connections that may be open at 
the same time, Linux uses a hashed lookup table with a single entry cache to store its 
connection desriptors. Such an implementation guards against connection descriptor 
lookup times that increase linearly with the number of open connections (a common 
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mistake in older TCP implementations). It is also interesting to note that more time 
is spent in the closed state (TCP _CLOSE), than in the state where the connections 
are actually performing useful work (the ESTABLISHED state). 

Table 8 Server Module Results for TIME-WAIT of 60 with 30 Clients 

TIME_WAIT - 60 sec Class 1 Class 2 Class 3 

conn/s 16.40 0.88 0.07 

Mbits/s 1.55 1.17 1.19 

reads/conn 0.03 2.67 34.67 

CPU parsetime(ms)/conn 4.78 4.81 3.81 

CPU processingtime(ms)/conn 18.75 150.56 2231.35 

CPU logtime(ms)/conn 5.28 6.99 9.10 

elapsed parsetime(ms)/conn 23.45 21.80 6.20 

elapsed processingtime(ms)/conn 155.81 3789.95 60578.90 

elapsed logtime(ms)/conn 774.31 940.35 827.42 

Table 9 Server Module Results for TIME_WAIT of 0 with 30 Clients 
TIME_WAIT - 0 Class I Class 2 Class 3 

conn/s 24.64 1.25 0.10 

Mbitls 2.33 1.66 1.87 

reads/conn 0.02 2.24 33.91 

r:;PU parsetime(ms)/conn 2.41 2.34 2.41 

CPU processingtime(ms)/conn 15.84 101.52 1373.71 

CPU logtime(ms)/conn 6.09 7.07 7.05 

elapsed parsetime(ms)/conn 8.62 6.26 5.83 

elapsed processingtime(ms)/conn 77.89 2519.07 37417.10 

elapsed logtime(ms)/conn 559.37 559.42 530.52 

To understand the impact this large number of TIME_WAIT connections has on 
server performance, we first looked at results from the SM. Tables 8 and 9 show SM 
results for 30 clients using a TIME_WAIT time of60 seconds and 0, respectively. The 
results for latency and throughput (connls and Mbitls) show a dramatic difference in 
performance. Having a TIME-WAIT time of 60 seconds makes all the work that a 
server performs (i.e., parsing, processing and logging an HTTP request) take longer. 
This is true in terms of both CPU time and elapsed time. For example, the CPU time 
to process a large (i.e., Class 3) request is two times greater for a TIME_WAIT time 
of 60 seconds than for a TIME-WAIT time of o. 

As a consequence of the increase in latency when the TIME_WAIT time is set to 
60, throughput decreases significantly. The performance penalty for the server can 
be seen by a 33% higher number of connections serviced (and Mbits sent) per sec-
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ond, when the TIME_WAIT time is O. It is also interesting to examine the resources 
consumed at the server. Our KM results for both configurations (not presented here) 
show that the consumption of all resources is roughly the same. Both CPU and mem­
ory utilizations are over 90%, indicating that the server is saturated in both experi­
ments. Furthermore, roughly the same number of HTTP processes are used to handle 
the higher request rate when no time is spent in the TIME_WAIT state. 

These results clearly show that the impact of the TIME-WAIT holding time is 
twofold. First, although roughly the same number of HTTP processes are active at 
the same time, these processes are able the handle a lower number of requests. Sec­
ond, that these processes consume more CPU time to serve each request. This is, of 
course, only part of the answer to the larger question of whether memory, 110, or the 
CPU is the bottleneck for WWW servers. 

6 CONCLUSION 

Server performance has become a crucial issue for improving the overall perfor­
mance of the World-Wide Web. This paper describes Webmonitor, a tool for evalu­
ating and understanding server performance, and presents new results for a realistic 
workload. These results emphasize the important role of operating system and net­
work protocol implementation in determining Web server performance. 

Webmonitor measures activity and resource consumption, both within the kernel 
and in HTTP processes running in user space. Webmonitor is implemented using 
an efficient combination of sampling and event-driven techniques that exhibit low 
overhead (less than 4%). We demonstrate the utility of Webmonitor by measuring 
and understanding the performance of a Pentium-based PC acting as a dedicated 
WWW server. Our workload, generated by WebStone, uses a file size distribution 
with a heavy tail. This captures the fact that Web servers must concurrently handle 
some requests for huge files and a large number of requests for small files. 

Our results show that in a Web server saturated by client requests, up to 90% of 
the time spent handling HTTP requests is spent in the kernel. Furthermore, keeping 
connections open, as required by TCP, causes a factor of 2 increase in the elapsed 
time required to service an HTTP request. This increase in latency (caused by a high 
number of connections in the TIME_WAIT state) is accompanied by a 33% reduction 
in server throughput. 

Although this paper provides an important understanding of World-Wide Web 
server behavior under heavy load, the picture is far from complete. There is still the 
question of whether memory, 110, or the CPU is the bottleneck for Web servers. The 
answer to this question will probably depend on the nature of the workload, how­
ever, there will continue to be a demand for server architectures that perform well 
for heterogeneous workloads. This suggests the need for new operating system and 
network protocol implementations that are designed to perform well when running 
on Web servers. 
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