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Abstract 
Communication protocols are commonly designed in such a way that 
implementations of the same protocol can be used as peers for communication. 
Such a protocol is said to be symmetric. When two or more entities are employed to 
perform a certain task as in the case of communication protocols, the capability to 
do so is called interoperability and considered as the essential aspect of correctness 
of communicating systems. This paper deals with the problem of deriving 
interoperability test suite for control part of symmetric protocols. A new approach 
to efficient interoperability testing is described with justifications and the method of 
interoperability test suite derivation is shown with the example of the A TM 
Signaling protocol. 
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1. INTRODUCTION 

When more than one objects are employed to perform a certain function, there 
arises the problem of whether they together behave correctly. This is the problem of 
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interoperation in a general sense. Here (1) involvement of more than one objects 
and (2) the objects together behaving as expected are the two key characteristics of 
(correct) interoperation. Thus it can be said that two or more objects intemperate if 
they together behave as expected. For interoperability of communication protocols, 
such expectations are documented in specifications. Usually the expectations about 
interoperation are not described in a single dedicated document. Rather they should 
be inferred or derived from the relevant specifications. 

Within the context of communication networks, an object mentioned above can 
be a network node, a layer of a node or a component of a layer or a plane or even a 
network, i.e. anything we decide to view as a whole. These notions of 
interoperation and object allow us to view various kinds of interacting behavior 
within a network and between networks as special kinds of interoperation. Thus 
internetworking can be seen as interoperation of objects which are networks. 
lnterworking of two nodes or two networks utilizing an interworking function unit 
becomes interoperation of the three objects, i.e. two nodes or networks together 
with the interworking function unit in between. 

An abstract view of communication can be conceived when protocols of 
network nodes are layered and underlying layers are regarded as the service 
provider for the layer above. Then by similarly abstracting from the underlying 
layers, we can focus on the behavior of a certain layer and think about 
interoperation of the objects which realize the particular layer under consideration. 
In this way, the above definition of interoperation remains valid even when we take 
an abstract view of network nodes and networks. 

Once the notion of interoperation is clearly understood, there arises the problem 
of verifying interoperation for target implementations which interact with each 
other. This is the task of interoperability testing. By virtue of the two characteristics 
of interoperation noted at the beginning of this section, interoperability testing 
differs from conformance testing. Because of the first characteristic, more varied 
test architectures are possible than with conformance testing. Because of the second 
characteristic, test suite derivation become a more challenging task for which the 
expected behavior need be inferred first. 

1.1 Related Work 

In the past, research on protocol testing mainly concentrated on conformance test 
sequence generation (cf. [Chow 78] [Sidh 90] and the bibliographies therein). 
Accordingly, it didn't take long before the international standard for the 
methodology and framework for conformance testing has come into existence 
[ISOIIEC 9646]. Although conformance testing is regarded as a necessary step on 
the way to achieving interoperation, it is agreed that it is insufficient to ensure 
interoperation of communication network entities. Some sort of direct testing of 
interoperation is considered indispensable. Work on interoperability testing can be 
classified into two categories depending on whether it is more geared to practical 
things such as clarification and implications of interoperability testing or to 
systematic generation of interoperability test suite. As work along the former line 
are [Bonn 90] [GRSS 90] [Cast 91] [VerB 94] . [Bonn 90] [VerB 94] present 
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interoperability testing experiences. [GRSS 90] gives a comprehensive discussion 
on various aspects related to interoperability testing. 

For the latter line of work, there are [RafC 90] [AraS 92] [APRS 93] [CasK 94] 
[LuBP 94] [KanK 95]. All these base interoperability test suite derivation on some 
sort of reachability analysis. For interoperability test architecture, [RafC 90] uses 
upper testers as well as lower testers. [AraS 92] [LuBP 94] introduces notions of 
stable state to reduce the size of relevant state space. [CasK 94] develops 
interoperability test suite method for synchronous models. [KanK 95] shows how to 
derive test suites for dynamic testing of interoperability. 

The previous work, however, did not provide a coherent framework for 
interoperability testing in that the notions of interoperability, interoperability 
testing, interoperability test case and interoperability test architecture were not 
presented in an integrated manner nor were interrelated for the purpose of 
interoperability test suite development. In particular, there is no work specially 
treating symmetric protocols. So the consequences and possible optimizations for 
interoperability test derivation that may arise from a communication protocol being 
symmetric remained unexplored. 

This paper, which belong to the second line of work on interoperability testing, 
addresses these issues. Starting from the general definition of interoperability which 
we already gave in the previous section, we carefully select an interoperability test 
architecture. The chosen architecture, combined with natural assumptions and 
inherent limitations for testing, is shown to induce a notion of interoperability test 
case. And this notion of interoperability test case allows us to focus on genuine 
interoperability aspect and at the same time to derive interoperability test suite in a 
cost-effective manner. It is shown that the test suite derivation and the actual testing 
itself can be made very efficient in particular when the protocol under consideration 
is symmetric. The remainder of this paper describes in detail this approach to 
efficient interoperability testing and the method of interoperability test suite 
derivation with the example of the ATM Signaling protocol. 

1.2 Our Approach 

We consider interoperability testing of two interacting implementations as the most 
basic type of interoperability testing. When more than two objects are involved, 
interoperability testing requires a more complicated test architecture. Also the test 
derivation, the test execution and the test result analysis become more complicated. 

In this paper, we restrict our attention to control part of symmetric 
communication protocols. A communication protocol is said to be symmetric if it is 
designed in such a way that the implementations of the same protocol can be used 
as communication peers. In order to be symmetric, a protocol should be such that 
its peers have exactly the same functional features. Peers for a symmetric protocol 
need not be placed adjacent. Commonly protocols are symmetric or near symmetric 
(with asymmetry resulting only from differences in some features). Examples of 
asymmetric protocol are master-slave protocol and client-server protocol. 

In our approach to interoperability test suite derivation, it is assumed that (1) the 
communication protocol is structured as a finite state machine (FSM) and that (2) a 
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complete set of conformance abstract test cases has been already developed 
(elsewhere) based on the FSM structure. Because of this second assumption, our 
approach will yield an interoperability test suite which has no overlapping with 
conformance test suites as we will see later. Furthermore, (3) we adopt the test 
architecture in Figure 1. We call an individual object involved in interoperation an 
Implementation Under Test (IUT). In spite of the term IUT, it is important to note 
that the target of testing here is not the individual objects (which are the targets of 
conformance testing) but the system as a whole which consists of those objects. 
Still, IUT is a convenient term and will be used throughout the paper. 

Tester I UTa IUTb Tester 

...... ,... 
........ 

Service Provider 

0 : PCO 

Figure 1. Test architecture for interoperability testing. 

Note that there are only two Points of Control and Observation (PCO's) in 
Figure 1. Often in practice a monitoring point or Point of Observation (PO) is set 
between IUT's. We do not set such PO. For with such PO, (1) it would be more 
costly to generate test suite, (2) it would be more costly to perform testing and (3) 
interoperability testing would have much overlapping with conformance testing. 

As with conformance testing, interoperability testing is restricted by 
observability and controllability that is allowed in a chosen test architecture. In 
addition, it is usually assumed that the slowness of the environment [LuBP 94] 
places practical limit on observability and controllability. That is, transient states 
cannot be observed or controlled in a predictable way and hence are considered 
useless for the purpose of testing. This justifies basing any notion of test case on 
stable states as we do in this paper. 

The interoperability test approach of this paper is to test interoperability of 
implementations against interoperability of specifications. In this approach, 
interoperability testing is a (yet another) conformance testing, i.e. conformance 
testing of the system which is composed of the actual subsystem implementations. 
Any notion of interoperation, if any, should be expressed in principle in a given 
specification or should be agreed upon in advance by specification writers and 
implementers. Ascertaining correctness of specifications in this respect is the task 
of verification and validation, which goes beyond the proper scope of testing. For 
the target of testing is the relation between specification and implementation rather 
than between specifications. However, if specific interoperability requirements are 
subject to validation and verification at the specifications level, then the same 
validation and verification method can be applied to a system of implementations 
for testing. 

As the result of interoperability testing of implementations, problems residing in 
specifications may be found and reported. Then the additional ingredient 
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interoperability testing provides in addition to verification of interoperability of 
specifications is to fill the gap left by usual conformance testing. The real work of 
interoperability assurance should come at the stage of specification development. 
But still the fine points that may have been missed at the time of specification 
writing (including validation and prototyping) can be augmented through testing. 

2. COMMUNICATING SYSTEMS OF IOSM'S 

In this paper, we take the view that specifications and implementations of 
communicating entities can be modeled as some sorts of FSM's. This makes 
possible rigorous discussion on conformance and interoperability issues which 
would provide the basis for automating test suite derivation process. In this section, 
we make precise the FSM model to be called IOSM and its communication 
behavior. 

Definition 1 An IOSM is a 5-tuple <St, s0, L;0 , Lout• Tr> where: 
(1) St = { s0, .. . ,S0 _1} is a set of states, 
(2) L;n = {v~o ... ,vm} is a set of input symbols, 
(3) Lout= { u~o ... ,up} is a set of output symbols, 
(4) Trk{ s-v/U~s' I s,s'E St 1\ VE L;n 1\ UE P(Lout)} and 
(5) s0E St is the initial state. 

In the definition, P(X) denotes the power set of the set X. L;n and Lout are 
respectively called input alphabet and output alphabet. L;n and Lout can be further 
subdivided into two classes: one prefixed with 'i_' and the other without the prefix. 
'i_' is used to indicate internal messages as opposed to external messages. So for 
example when two IOSM's M1 and M2 are communicating, the messages between 
M1 and M2 are internal messages and are prefixed with 'i_' but messages between 
M1 (or M2) and their environment are external messages and are not prefixed. Tr is 
a set of transitions. 'v/U' is called a label. The message before '/' is the received 
message and the set of messages after '/' are messages sent. The set notation is used 
because upon receiving a message IOSM can send zero or more messages. In the 
set Tr of transitions of a deterministic IOSM, for any state there is only one 
transition with the same input symbol. Note that Definition 1 does not restrict 
IOSM to be deterministic. 

Definition 2 Let M be an IOSM. Let v,v;E L;0 , u,U;E Lauto VE L;0 *and s, s'e St. Then: 
(1) cr(s,v) = { (s' ,v/u) I (s-v/U~s')e Tr A ue U } 
(2) cr(s,v) = { (s',vl/ul···vk/uk) I v = VJ ... vk 1\ 

(s-v1/U1~s1)eTr A . . • A (sk_ 1-vk/Uk~s')eTr A u1eU1 A ... A UkEUk} 
(3) M(v) = <r(SQ,V) 

A member of M(v) is a sequence of labels and is called a run (or trace) of M for 
the input sequence v. Next we define communicating system ofiOSM's. 

Definition 3 A (communicating) system:!: of n IOSM's is<{ (M;,Q;)I l:5i:5n}, Ll:.in• 
Ll:.outo s1:.o> where: 
(1) M;, 1:5 i :5n, is a IOSM <St;, s;.0, Li.in• Li.outo Tr;> as in Definition l. 
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(2) Qi, l~ i ~n. is an input queue for Mi. 
(3) L:~:,in is a set of external input symbols. 
( 4) L:~:.out is a set of external output symbols. 
(5) The initial state of the system is s:~:.o = <(s1,0,Q0), ... ,(sn.o.Qn)> where Qi is empty 
and si,o is the initial state of Mi. l ~ i ~n. 

In this model, there is one explicitly defined input queue for each IOSM and 
implicit bi-directional communication channels between each pair of IOSM's. In 
the next definition, we give a precise description of the global behavior of a 
communicating system of IOSM's. It is assumed that each message contains 
enough information to identify the receiving IOSM. 

Definition 4 (Communicating system of IOSM's) Let 1: be as in Definition 3. Let 

VEL:~:,in• UE P(L:~:,out), VE L:~:,in *, U,U~oUzEL:~:.out*• s, s' be states of 1:. Then 
(1) cr(s,v) = { (s',v/uJ.Uz) I s=<(S~oji.E), ... ,(si,jioE), ... ,(Sn,jn•E)> 1\ 

31~i~k:(si.i-v/U~si.f)E Tri 1\ u1E <p(U) 1\ 

(s',u2)Ecr'(!l(s,{(si,r.E)/(si.i•E)}u {(si.i•Qi)/(si.i•i_w.Qi) I i_wEU}))} 
where cr'(s) = { (s',u1.u2)1 u1E q>(U)/\(s',u2)E cr'(!l(S, { (sk.j•QJ/(sk,j•i- w.Qk)li_ WE U}))} 

if31~i~n: s = < ... ,(si,j•Qi.i_w), ... > 1\ (si,j- i_w!U~si,y)ETri 
cr'(s) = { (s,E)} otherwise 
where Jl(s,0) = s 

!l(< ... ,(s,Q), ... >, Pu{(s',Q')/(s,Q)}) = Jl(< ... ,(s',Q'), ... >,P) 
q>(0) = {E} 
<p({i_w}uU) = q>(U) 
q>({u}uU) = {u.ul uEq>(U)} 

(2) cr(s,vv) = {(s",v1/u1 ... vk/ukv/u) I 
v = v1 ... vk 1\ (s',v1/u1 .. vJuk)EO'(s,v) 1\ (s",v/u)EO'(s',v)} 

cr(s,£) = { (s,£)} 
(3) .t(v) = cr(s:~:,0,v) 

A system state in which input queues are all empty is called a stable state [LuBP 
94]. The communicating system as defined above takes a sequence of inputs from 
the environment one by one. The next input from the environment is processed only 
when the system is in a stable state. This definition of stable state makes it 
unnecessary in later sections to describe input queues to show (stable) states of a 
communicating system. In (I), cr with a single external input defines a set of new 
states reached by processing of a single input from the environment followed by 
sequences of messages (including sequences of internal state changes) sent by the 
receiving IOSM. The reception of a message and sending messages as its response 
constitutes an atomic action. Thus inputs from the environment or IOSM's is 
instantly placed into the input queues of the receiving IOSM's. 11 is a function that 
updates states. q> takes a set of messages and returns the set of all possible orderings 
of external messages excluding internal messages. (2) extends a to a sequence of 
external inputs. (1)-(3) for communicating systems are similar to (1)-(3) for 
IOSM's of Definition 2. In a communicating system of IOSM's, deadlock is said to 
occur when any combination of (external and internal) inputs cannot change the 
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system state. Livelock is said to occur when system state changes forever without 
reaching a stable state. Note that Definition 4 can also be regarded as defining a 
composition ofn IOSM's, denoted M1xM2x ... xM"' for which 
( 1) the states are stable states of I: 

(2) between its states sand s' there is a transition with the label 'v/u' if and only if 
(s',u)e cr(s,v) 

(3) its initial state is the same as the initial state of I:. 
Therefore we will use I: and M1xM2x ... xM0 in an interchangeable way. 

In conformance testing, conformance test suite is developed in such a way that 
for the given specification with FSM structure, absence of operation errors (or 
correctness of input/output behavior) and absence of transfer errors (or correctness 
of the state reached after the transition) are examined with respect to each 
transition of the FSM [Chow 78]. For this purpose, a conformance test case consists 
of three parts: preamble, test body and postamble. Test body is the part of a 
conformance test case that checks operation errors and transfer errors. Test body 
ends by reaching a stable state. New test cases are needed to examine the behavior 
of the machine M at the stable state reached after the transition. Preamble is the 
part that takes M to the stable state at which the test body can be started. 
Postamble, which is often empty, is the part that takes M to a stable state. Methods 
to generate such a conformance test suite are well-known [Chow 78][Sidh 90]. Let 
TS(M) be the set of all such conformance test cases, conformance test suite in short, 
forM. We say that a conformance test suite is complete if each and every transition 
in the specification modeled as IOSM has a corresponding conformance test case as 
defined above. 

3. INTEROPERABILITY TEST SUITE DERIVATION 

To illustrate our method we use as an example the ATM Signaling Protocol for the 
ATM switch. The behavior of the protocol at the user-network interface is specified 
in [ITU-T Q.2931] and also in ATM Forum UNI specification [AF UNI]. The two 
specifications have much in common. The behavior of the protocol at the network­
network interface differs from that of user-network side. Among ATM Forum 
specifications, PNNI specification [AF PNNI] is the one that gives the most 
complete description of protocol behavior at the network-network interface. We use 
ATM Forum UNI 3.1 and PNNI specifications as the definitive specifications of 
the interface behavior of the A TM switch which together constitute the A TM 
signaling protocol for the ATM switch (to be subsequently abbreviated as Signaling 
Protocol). 

3.1 Pruning Transitions 

The first step is to derive an IOSM, sayS, from the relevant informal specifications. 
Assuming that we already derived S, let pr(S) be the IOSM which is the same as S 
except that pr(S) does not contain the transitions inS which (1) do not change state 
and (2) do not contain 'i_' prefixed messages. For example, upon receiving 
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STATUS_ENQUIRY message at any state, the signaling protocol entity should 
send STATUS message reporting its current state [AF UNI][AF PNNIJ. Such 
transitions would not appear in pr(S). In this way, we come up with an IOSM 
depicted in Figure 2 from Signaling Protocol. 

Calling Party Side Called Party Side 

i SETUP/ 

i_CALL_PROC/{} 

CONN/ 
{CONN_ACK, i_CONN} 

Figure 2. Call establishment part of the pruned IOSM for Signaling Protocol. 

Conceptually an IOSM is one connected graph. With this example, the picture in 
one graph would be severely cluttered due to its complexity. Therefore we present 
the graph partitioned with respect to functionalities. Figure 2 describes state 
transitions for call establishment. At any moment, signaling protocol entity 
functions either as a calling party or as a called party (but not both). In the figure, it 
is made clear with the dotted line in the middle. There are two kinds of messages 
(or PDU's): one appearing at the UNI interface and the other appearing at the NNI 
interface. In Figure 2, NNI messages are prefixed with 'i_'. The reason for the 
prefix is the interactions occurring at NNI are internal events between two A TM 
switches. As explained with Figure I in Section 1.2, we take the view that, by not 
monitoring NNI, interactions at NNI do not directly affect test results. 

When combined with the conformance test suites for s. and Sb, the 
interoperability test suite for pr(S.)xpr(Sb) covers all the test cases for s.xsb. The 
following theorem states this completeness formally. 

Theorem 1 Lets., Sb be two IOSM's. Then 
TS(S.xSb) k { TS(pr(S.)xpr(Sb)) u TS(S.) u TS(Sb)} 

Note that this step of optimization is applicable regardless of whether the protocol 
is symmetric or not. For symmetric protocols, the behavior of the global system can 
be described as the composition of pr(S.) with itself, i.e. pr(S.)xpr(S.). 

3.2 Interoperability Test Case 

Figure 3 depicts a typical message interaction sequence for successful call 
establishment. The terminal equipment TEa initiates a call to TEb by sending 
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SETUP through the switch IUTa. TEb accepts the call by sending CONN through 
the switch IUTb. The shaded area represents a black-box whose internals we decide 
not to observe. 

Figure 3. Message interaction sequence for call establishment. 

i_CONN • ••• ........ 
·"[CONN ACK .... .... -- ... ~ ........ 

Figure 4. An interoperability test case for subsequence (C). 

As with the conventional conformance testing, unstable states are not available 
for control purposes and can be utilized to reduce the size of state space of protocol 
entities logically built from specifications and at the same time the number of test 
cases. There are 4 stable states, (NO,NO), (N3,N6), (N3,N9) and (NlO,NlO) in the 
interaction sequence of Figure 3. Since we assume that test bodies are from a stable 



66 Part One Testing Theory for Concurrent Systems 

state to a stable state, there are 4 subsequences which are candidates for testing as 
marked with (A), (B), (C) and (D). However, (B) and (D) are actually conformance 
test cases for IUTb and IUTa, respectively, since only one IUT is involved. (A) and 
(C) are genuine interoperability test cases. Figure 4 is one of the interoperability 
test cases derivable from the interaction sequence of Figure 3. 

3.3 Optimizing Test Suite Derivation Process 

In the previous sections, in the course of optimizing interoperability testing, we (1) 
pruned transitions of IOSM and (2) gave definition of interoperability test case in 
such a way that it is based on stable states and abstracts from internal interactions. 
In this section, we consider further optimizations. To do that, we need the notions 
of initiator and responder. An active tester which always initiates a test body is 
called initiator. A tester which may be active or passive but never initiates a test 
body is called responder. An active responder may send messages during test case 
execution. For example, it may initiate preamble part by sending a message. 

In the test architecture of Figure I, suppose that IUTa and IUTb are 
implementations of the same protocol specification. One of Tester A or Tester B 
must send a message to initiate a test body. If Tester B were to send a message to 
initiate a test body, then by making Tester A initiate the test body with the positions 
of Tester A and Tester B interchanged the mirror image of the same sequence of 
interactions would occur. This observation can be stated as follows: 

Theorem 2 Given the test architecture of Figure I, for interoperability testing 
of symmetric protocols, it is sufficient to have one initiator and one responder. 

For example, the test execution shown in Figure 4 can be achieved by switching 
the positions of IUTa and IUTb and keeping Tester A as the initiator and Tester B 
as the responder. An implication of the observation is that the same test suite 
should be run twice, the second run after switching the positions of Initiator and 
Responder. However, the necessary test suite size is now reduced approximately to 
half. In general Theorem 2 is not true of asymmetric protocols. 

3.4 An Efficient Algorithm to Generate Stable States 

Not only can we reduce the test suite size approximately to half as shown in the 
previous section, but also it is possible to optimize the test generation process itself. 
Relying on Theorem 2, we show below an algorithm to generate all stable states 
which form the starting and the ending states of interoperability test cases. Actual 
test cases generation is realized by decorating the algorithm with the step to store 
the applicable sequence of events between stable states. In our approach to 
interoperability testing, the number of stable states is small enough that it can be 
used as a suitable basis for manual calculation as well as for automatic generation 
of interoperability test suites. 



/nteroperability test suite derivation 

input: 
output: 
j :=0; 

IOSM's Sf and S2 
Stable[j] contains all the stable states of SfxS2 

Stable[j] := { (s f,o, s2.o)}; 
New := { (sf.o, s2.o)}; 
while New '# 0 do begin 

/* All stable states generated up to Stage j */ 
/* Stable states to be expanded at Stage j+ 1 */ 

<New, (sh s2)> := delete-one-element(New); 
OldFrontier := 0; /* Already expanded nodes at Stage j */ 
NewFrontier := { (s h s2)}; I* Nodes to be expanded at Stage j+ 1 */ 
while (NewFrontier '# 0) do begin 

<NewFrontier, (sh s2)> := delete-one-element(NewFrontier); 
OldFrontier := OldFrontier u { (s h s2)}; 
Event_Seq_Set := interaction-sequences((sh s2)); 

while Event_Seq_Set '# 0 do begin 

67 

<Event_Seq_Set, Event_Seq> := delete-one-element(Event_Seq_Set); 
if Event_ Seq ends with a stable state (s hs2) 

then begin 
if s' E (Stable[j] u New u OldFrontier) 
then NewFrontier := NewFrontier u { (s hs2)}; 

end 
else begin 

There is an error in the specifications. 
Stop and fix the error. 

end 
end while; 

end while; 
j :=j+l; 
Stable[j] := Stable[j-1] u OldFrontier; 
New:= {(s2,sf) I (s1h)EStable[j] "(s2,sf)EStable[j] }; 

end while; 

Figure 5. An efficient algorithm to generate stable states. 

In the algorithm, (sf, s2) denotes the global system state where s1 and s2 are 
stable states of Sf and S2, respectively. delete-one-element(Set) is a function that 
choose an . arbitrary element from the set Set and removes it. The output of this 
function is a pair of which the first argument is the chosen element and the second 
argument is the resulting Set without the chosen element. interaction-sequences((sh 
s2)) generates all possible sequences of interactions which are initiated by the 
IOSM which is in state sf. Let TS'(Sb S2) denote the test suite generated by the 
algorithm. 

An application of the algorithm is shown in Figure 6. The global states in boxes 
are stable states and those not in boxes are transient states. Underline for instance in 
~ indicates that the tester for the IUT with the underlined state is the initiator. After 
the first stage is over, the only node of which the full expansion has been postponed 
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is ~,N6) marked in bold face. Therefore the 2nd stage would begin with the 
expansion of (N6,N3). In general, there can be more than one such nodes. 
Similarly, in the 2nd stage the only node which would be not fully expanded is 
~,N3). Hence in the 3rd stage (N3,N9) should be expanded. 

(N3,NO) 

i_SETUP/{i_CALi_PROC,SETUP) 

(lli,N6) 

(NO,N6) 

i_REU{ i_REL_CfMP,REL) 

<l:!Q,N12) 

REU{) 
REL_COM {) 

Figure 6. The I st stage of test suite generation algorithm. 

Let tcs1. 52 be one of the test cases generated from the algorithm. Let tcs2. s1 
denote the test case with exactly the same structure as tcs1. s2 except that in the 
former the roles of S1 and S2 are exchanged. For example, if tcsa. sb to be obtained 
from the 2nd stage is stated as: 

The initial state is (N6,N3). 
After IUTa receives CALL_PROC from LTa, IUTa does not respond. 
The final state is (N9,N3). 

then tcsb. sa is as follows: 
The initial state is (N3,N6). 
After IUTb receives CALL_PROC from L Tb, IUTb does not respond. 
The final state is (N3,N9). 

It is the characteristic of the algorithm that it only generates one of these two test 
cases. But neither of the test cases can be dispensed with. The following states an 
obvious fact about the algorithm. 

Lemma 3 Let S~o sl be IOSM's and tCsJ, Sl and tcS2, Sl be as defined above. Then 
tcs1. s2E TS'(S 1o S2) if and only if tcs2. st E TS'(S 2, S1) 
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Thus the algorithm can be said to be complete in the sense that if it is applied twice, 
the second time with the positions of S1 and S2 interchanged, all the test cases 
generated by the conventional method would be covered. The next theorem states 
this completeness. 

Theorem 4 Let S1, S2 be IOSM's. Then 
TS(S1xS2) ~ TS'(SJ. S2) u TS'(Sz, S1) 

Symmetry of TS'(SJ. S2) and TS'(Sz, S1) implies that for actual application the effect 
of applying the two test suites would be achieved simply applying one of the suites 
twice, the second time with the positions oftwo IUT's interchanged. 

When it is known that the two IUT' s are identical, possible nonconforming · 
behavior which would be detected with the positions of lOT's interchanged would 
be detected without interchanging their positions. Let exec(tc, Iaxh) denote the 
result of applying the test case tc to the system of IUT's lax/b. For test suite TS, 
define 

exec(TS, Iaxh) = { exec(tc, l0 Xlb) I teE TS} . 

Corollary 5 LetS], S2 be IOSM's and Ia. h be IUT's. Then 
exec(TS(S1xS2), Iaxh) s;;; exec(TS'(SJ.S2), Iaxh) 

This means that if Ia =hit is sufficient to apply TS'(S~>S2) (or TS'(Sz,S1)) once 
for interoperability testing. Note that Lemma 3, Theorem 4 and Corollary 5 are 
stated generally and they remain valid in the special case when the relevant IOSM's 
are pruned machines. 

4. FURTHER DEVELOPMENT 

When the approach shown in this paper is fully applied to Signaling Protocol, we 
obtain 19 test case skeletons (3 for call establishment, 11 for call clearing, 5 for 
restarting). In [KanC 96], they were called test case skeletons because actual 
abstract test cases can be derived from them by embellishing PDU's. In general, 
more than one abstract test cases may be constructed depending on the chosen test 
approach. With the test architecture used in this paper (Figure 1), interoperability 
test cases can be adequately described in TTCN. 

Signaling Protocol is structured in such a way that depending on whether each 
IUT supports CALL_PROC, there are four different possible sets of test cases as 
follows: 

!UTa IUTb 
Upon receiving SETUP (1) Yes Yes 
Does IUT send CALL_PROC (2) No Yes 
to the user? (3) Yes No 

(4) No No 

We used the case (1) for the example in this paper. The case (4) can be handled in 
the exactly the same manner shown in this paper. 
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5. CONCLUSION 

In this paper, first we clarified the notions of interoperation and interoperability 
testing and showed a specific interoperability test architecture and testing approach 
in accordance with those notions. We applied the approach to symmetric protocols 
and showed how various optimizations can be achieved. The details of 
optimizations were exhibited with the example of the A TM Signaling Protocol. In 
order to do that, firstly, we defined as the conceptual basis interoperability test case 
such that it utilizes stable states, abstracts from interactions internal to the two 
communicating protocol entities and is disjoint from conformance test. Secondly, 
we showed how to prune IOSM's so that, provided that the relevant conformance 
test suites already exist, the interoperability test suite derived from the pruned 
IOSM has no overlapping with them and covers all the proper interoperability test 
cases. Thirdly, we developed an efficient algorithm to generate all stable states to 
optimize test suite generation process itself. As the result, the test suite size can be 
reduced approximately to half in the case of symmetric protocols. Moreover, it was 
shown that when it comes to interoperability testing of two identical IUT's the 
number of test cases to be actually executed can be reduced to half. 

There are some preliminary steps necessary before the interoperability testing 
can be applied. It is usually taken for granted that interoperability testing should be 
done after IUT's pass conformance testing [ISO 9646-1]. The first reason for this is 
that if IUT's are non-conforming most likely they would not interoperate. 
Moreover, when a system of implementations fails, we would not know which one 
is responsible for non-interoperation or whether there is an interoperation problem 
residing in specifications themselves. In addition, before the interoperability testing 
can be applied, implementations of the underlying service need to be thoroughly 
tested and should be known to be conforming. These assumptions are in line with 
the established conformance test methodology [ETSI 96]. 

Since the purpose of the B-ISON signaling protocol is to provide ATM layer 
connection, one may think that one should check that traffic does indeed go through 
ATM layer connection after a successful call setup. This involves not only the 
behavior of the Signaling layer but also the behavior of the ATM layer. Thus 
testing of such interoperation behavior requires a more complicated test 
architecture with additional PCO's for the User Plane above the ATM layer. Being 
based on the test architecture shown in Figure I, our interoperability test cases do 
not cover such cases. A similar view has been taken in ATM Forum signaling user­
side ATS [AF Sig U-ATS] and network-side ATS [AF Sig N-ATS] and also 
CCITT ISDN Layer 3 0-channel testing [ITU-T Q.93lbis], where data transport 
through B-channel and A TM connection, respectively, are not examined. Verdicts 
for nondeterministic test cases should be given by adopting all-weather conditions 
assumption as in other work [LuBP 94][Brin 88], i.e. run them sufficiently many 
times to expose any nonconformance. In the example in Section 3, such test cases 
are those beginning at (NO,NO) with SETUP and at (N6,N3) with CALL_PROC. 

The basic idea of interoperability testing framework and approach developed in 
this paper was partially proposed and was used for interoperability test suite 
development inside the ATM Forum [KKCS 96][KanC 96]. In Section 4, we 
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mentioned the cases where the protocols are asymmetric. Our approach would not 
directly work for those cases. However, if protocols are almost symmetric then it is 
very likely that modification of our approach would work for them. We also plan to 
extend our application target to include point-to-multipoint signaling feature. 
Furthermore, we plan to extend our method for testing protocol data incorporating 
data flow analysis. 
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