
24
A Methodology for the
Description of System
Requirements and the
Derivation of Formal
Specifications
Atsushi Togashi, Fumiaki Kanezashi, Xiaosong Lu
Department of Computer Science,Shizuoka University
5-1, 3 Johoku, Hamamatsu 432, Japan
phone: +81- 53- 478- 1463 fax: +81-53-475-4595
togashi~cs.inf.shizuoka.ac.jp

Abstract
A methodology for the description of system requirements and the deriva­
tion of formal specifications from system requirements are presented. We will
specifically deal with the issues (1) mathematical treatment of system require­

ments and their relationship with formal specifications represented as state
transition systems, (2) a sound and complete system with respect to a system
requirement, i.e. a standard system of the system requirement specified as a
unique model of the system requirement, (3) derivation of standard systems
from system requirements, (4) a support system and an application example,
and (5) some comparative discussions on the methodology with partial logical
Petri Nets, Production systems, and so on.

Keywords
Function Requirement, System Requirement, Formal Specification, State Tran­
sition System, Standard System, Logical Petri Net.

1 INTRODUCTION

For a complex and sophisticated system, operational descriptions might be too
tedious to handle for rapid prototyping and analysis of a system's behavior.

In such cases, it is more convenient to express the system on a higher level,
somehow in a functional manner. This approach yields formal specifications
that emphasize the system's general behavioral properties rather than its
operational details. Moreover, it has a practical significance if the desired

Fonnal Description Techniques and Protocol Specification, Testing and Verification

T. Mizuno, N. Shiratori, T. Higashino & A. Togashi (Eds.) © 1997 IFIP. Published by Chapman & Hall

384 Part Seven Languages and Applications

description can be derived or synthesized in a systematic way from the user
requirements on system functions.

This paper proposes a new methodology for the description of system re­
quirements and the synthesis of formal specifications from system require­
ments. The formal specifications can be taken as models of the system re­
quirements. More generally, the main objective is to be able to derive an
implementable or operational system description from a given high-level de­
scription on system functions. The proposed methodology can be fully au­
tomated, hence mayjcan improve both productivity and quality of system
development. We have implemented a support system based on our approach
and applied several practical system designs such as a telephone service, a
communication protocol, a cable TV system, etc.

In the literature on communicating systems, Formal Description Techniques
(FDT), e.g. SDL (5], Estelle (3] and LOTOS (6], have been proposed as high­
level specification languages. The conventional state machine oriented ap­
proaches such as SDL and Estelle and algebraic approach such as LOTOS are
suitable for the purpose of description and investigation of the total behavior
of systems. But, these approaches might be not suitable for rapid prototyping
and flexible software development. Because we must enumerate and/or deter­
mine all system behaviors from an early stage of system design. Our objective
is to give theoretical foundations and proposal of a flexible approach on the
synthesis of formal specifications from user requirements written in an early
stage of system design.

From objectives, our work has some connection with an STR (State Tran­
sition Rule) method, which is a specification method based on a production
system proposed by Hirakawa and Takenaka in (10]. But, the methodology
proposed here differs from their approach mainly in theoretical discussions
such as soundness and completeness and formal treatment, rather than prac­
tical methodology for description and use. Another related work is a synthesis
of communicating processes from temporal logic specification by Manna and
Wolper in (11]. Their approach is based on tableau-like method and com­
pletely different form ours from technical point of view. Besides those works,
no other related works could be found in the literature.

The outline of this paper is as follows: In section 2 after giving some pre­
liminaries, we deal in detail with the issue of system requirements and for­
mal specifications. In section 3, we discuss the key notions, soundness and
completeness. Section 4 provides an equivalent transformation on system re­
quirements with the result of determinacy on the resulting transition systems.
Section 5 gives an automatic transformation technique from system require­
ments to formal specifications. Section 6 gives an overview of the support
system with an application example followed by the discussions in section 7
and the concluding remarks in section 8.

A methodology for the description of system requirements 385

2 REQUIREMENTS AND FORMAL SPECIFICATIONS

Requirements of a system can be described as expression based on proposi­
tional logic. To begin with we will give some preliminaries on propositional
logic needed for the description of a system requirement. Let P be a set of
atomic propositions. Each atomic proposition describes a specific property of
the intended system under the target of design. A partial interpretation I is
a partial mapping I: P -t {true, false}, where true and false are the truth
values of propositions. If the truth value of a proposition f under I is defined
to be true then we say that I satisfies J, denoted by I I= f. I ~ f denotes
that the truth value off is defined to be false and we say I does not satisfy
f. These can be defined inductively as follows:

(1) I I= A (I ~ A) if I is defined on A and I(A) = true (I(A) = false),
where A E P.

(2) IF •/ (I~ •f) if I~ f (IF f).
(3) I I= fAg (I~ fA g) if I I= f and I I= g (I~ for I~ g).
(4) I I= I v g (I~ I v g) if I I= for I I= g (I~! and I~ g).

Note that truth value of a proposition under an interpretation is not always
defined since we are concerned with partial interpretations. For propositions
f and g, f => g denotes the assertion that for any partial interpretation I,
I I= f implies I I= g.

Definition 21 Let f and g be propositions.

(1) f is consistent if I I= f for some partial interpretation I.
(2) f is inconsistent iff is not consistent.
(3) f is dependent on g if either g => f (in positive) or g => •! (in negative).
(4) f is independent of g iff is not dependent on g. D

A literal is an atomic proposition A of the negation of an atomic proposi­
tion •A. Let 1, 1' be consistent conjunctions of literals. It is clear from the
definition that 1 => 1' iff£{!) ::> £{!'), where £{!) denotes the set of all
literals appearing in I· This implies the following proposition.

Proposition 21 Let 1 be a consistent conjunction of literals. An atomic
proposition A is independent of 1 iff A does not appear in 1 at all neither
in positive nor in negative. The negative literal •A is independent of 1 iff A
is independent of I· D

A system can be essentially specified by its fundamental functions and their
related constraints for execution. To be more precise, a system function may
be invoked by a specific input provided that its pre-condition to be satisfied
before execution can hold in the current state. Then, the function is executed,
possibly producing some appropriate output. After the execution the current
state is changed into the new one. In the new state, other functions (including
the same function as well) can be applicable. Taking account into this intuition

386 Part Seven Languages and Applications

of system specifications, a function requirement is formally defined in the next
definition.

Definition 22 A function requirement is a tuple p = (id, a, fin , o, !out}, where

(1) id is a name of the function;
(2) a is an input symbol of the function;
(3) fin is a pre-condition of the function to be satisfied before execution,

which is represented as a consistent proposition using atomic propositions
in P;

(4) o is an output symbol of the function;
(5) !out is a post-condition of the function to be satisfied after execution,

which is represented as a consistent conjunction of literals by atomic
propositions in P. 0

For simplicity, in what follows we omit the names and the output symbols
from the description of function requirements because they do not play the
central roles on the theoretical treatment in this paper. A function requirement
p = (a, fin , !out) is often abbreviated asp : fin ~ !out •

Definition 23 A system requirement is a pair n = (R, 'Yo), where R is a
set of function requirements and 'Yo is an initial condition represented as a
consistent conjunction of literals in P. 0

In this paper, state transition systems are considered as formal specifica­
tions. In the literature, a state transition system is an underling structure of
Formal Description Techniques, e.g. SDL [5], Estelle [3] and LOTOS [6], and
used to give the operational semantics of concurrent processes in process cal­
culi [12], based on the paradigm of SOS (Structural Operational Semantics)
by Plotkin [14] .

Definition 24 A state transition system is a quadruple M = (Q,~,-,q0),
where Q is a set of states, ~ is a set of input symbols, - is a transition relation
defined as - C Q x ~ x Q, and q0 is an initial state. 0

The transition relation defines the dynamical change of states as input
symbols may be read. For (p,a,q) E - , we normally write p ~ q. Thus,
the transition relation can be written as - = {~I a E ~}. p ~ q may be
interpreted as "in the state p if a is input then the state of the system moves
to q" . Now, we assume that for an atomic proposition A and for a state q E Q
it is pre-defined whether or not A holds (is satisfied) in q if the truth value of
A in q is defined. q f= A indicates that the truth value of A in q is defined and

A methodology for the description of system requirements 387

A holds in q. Let us define the partial interpretation associated with a state
q in M, denoted by I(q), in such a way that

{
true

I(q)(A) = false
undefined

if q I= A
if q ~A (q I= -,A)
otherwise

for all atomic propositions A. Thus, a state transition system can be treated
as a Kripke structure [2], where the interpretation of atomic propositions vary
over states. Let

Sat(q) = { ll the truth value of a literall is defined in q and q I= l}.

Proposition 22 q I= f iff f is implied from Sat(q) - every interpretation
satisfying Sat(q) also satisfies f, for each proposition f.

Proof: The proof is by structural induction on propositions f. 0

By the completeness of propositional logic, we have that q I= f iff Sat(q) f­
f, f is provable from Sat(q).

Two states p and q in Mare logically equivalent iff I(p) = I(q). A transition
system M is logically reducible if there exist distinct logically equivalent states
in M. Otherwise, the system is logically irreducible. To the rest of this paper,
unless stated otherwise, a transition system means a logically irreducible sys­
tem. Thus, p = q iff l(p) = I(q) (Sat(p) = Sat(q)) . By this assumption, note
that a state q in a (an irreducible) transition system M can be equivalently
represented as a consistent set X of literals, where q I= A (q I= -,A) iff A EX
(-,A EX).

3 SOUNDNESS AND COMPLETENESS

Definition 31 A state transition t = {p ~ q} satisfies (is correct w.r.t.) a
function requirement p: fin ~ fov.t, denoted as t I= p, if the following condi­
tions hold:

(1) PI= fin, a= b, and q I= fov.t·
(2) The partial interpretations I(p) and I(q) are identical if atomic proposi-

tions independent of f ov.t are only concerned. 0

The condition (1) means the precondition and the postcondition must hold
in the current state and the next state, respectively. The condition (2) states
that for an atomic proposition A independent of fov.t, p I= A iff q I= A.
This means that the truth value of independent atomic propositions w.r.t.
the postcondition remain unchanged through the state transition.

388 Part Seven Languages and Applications

Example 31 Consider the system requirement

R1 = ({Pl :A::! -.A, P2: B ~A}, A A B)

and the transition system M1 given in (a) in Figure 1. Now, consider the

transition t 1 = (q0 ~ q1) and the function requirement p1 : A ~ -.A. Since
q0 f= A and q1 f= -.A the condition (1) in Definition 31 holds for t 1 w.r.t.
p1. The atomic proposition independent of -.A is B. Since the truth values
of B in q0 , q1 are defined and q0 f= B, q1 f= B the condition (2) in Definition
31 holds. Thus, the transition t 1 satisfies the function requirement p1. In the

exactly same way, we can easily check that the transitions q0 ~ q0, q1 ~ q0

satisfy the function requirement p2 : B ~ A. 0

a

(a)

Figure 1 Transition Systems M 1 and M2

Example 32 As a more involved example, let us consider the system require-
ment

R2 = ({ P1 : A ~ -.A A -.B,

P3: -.c ~ c,
AA-.B A -.C)

b
P2 : -.A A -.B V A A C => -.C,

P4 : C ~A},

and the transition system M 2 given (b) in Figure 1. In the same way as in
Example 31, it is easily checked that:

• the transitions Qo ~ Q1, Q2 ~ q3 satisfy P1;
th t •t• b b b • f

• e rans1 1ons ql - q1, q2 - qo, q3- ql satls y P2;
• the transitions qo ~ q2, q1 ~ q3 satisfy p3;

h . . d d . f
• t e transitions Q2 - q2 , q3 - q2 satis y P4· 0

A methodology for the description of system requirements 389

Let 'Y be a consistent conjunction of literals. We define a partial interpre­
tation I (-y) based on "f by

I('Y)(A) = false if A appears negative in"(, {
true if A appears positive in 1

undefined otherwise

for all atomic propositions A.

Definition 32 A state transition system M = (Q, I:,-->, qo) is sound with
respect to a system requirement R = (R, 'Yo) if the following conditions are
satisfied:

(1) I(qo) = I('Yo);
(2) for any transition t in M there exists a function requirement p E R such

that t I= p. D

Note that the transition systems M1 in Example 31 and M2 in Example 32
are sound with respect to the system requirements R 1 and R2, respectively.

Definition 33 LetM = (Q,I:,-+,q0) andM' = (Q',I:,-+',q~) be state tran­
sition systems in common input symbols. A homomorphism from Minto M'
is a mapping ~ : Q -+ Q' such that

(1) ~(qo) = q~.
(2) if p ~ q in M, then ~(p) ~ {(q) in M'.
(3) pI= f implies {(p) I= f, for all states pin M and for all propositions f.

D

The third condition (3) in the above definition can be equivalently relaxed:
(3') pI= l implies {(p) I= l, for all states pin M and for all literals l.

If a homomorphism ~ : Q --> Q' is a bijection, a one-to-one and onto map­
ping, and the inverse function f 1 is a also homomorphism from M' to M,
then ~ is called an isomorphism. If there is an isomorphism from M to M',
then M and M' are isomorphic.

Definition 34 Let M be a sound state transition system with respect to R.
M is called complete with respect to R if, there is a homomorphism ~ from
M' into M for every sound state transition system M' with respect to R. D

Definition 35 A sound and complete transition system with respect to R is
called a standard system (model) of R . D

Theorem 31 Let M, M' be standard systems of R, then M and M' are
isomorphic. D

Let M(R) denote a unique standard system of R up to isomorphism.

390 Part Seven Languages and Applications

4 TRANSFORMATION AND DETERMINACY

Without loss of generality, a proposition f can be equivalently expressed as a
disjunctive normal form 11 V · · · Vln, where li are conjunctions of literals. Now,
consider the following transformation rules on sets of function requirements:

rule 1 R U {11 V · · · V In ~ 1} => R U {11 ~ I, ... , In ~ I}.

rule 2 R U { 11 1\ A 1\ 12 ~ 1} => R U { 11 1\ A 1\ 12 ~ 1 1\ A}
where neither A nor -.A appears in I·

rule 3 R U { 1'1 1\ -.A 1\ 12 ~ 1} => R U { 1'1 1\ -.A 1\ 1'2 ~ 1 1\ -.A}
where neither A nor -.A appears in 'Y.

Lemma 41 We have the following results on the transformation rules:
(1) A transition t is correct w.r.t. a function requirement 11 V · · · V 'Yn ~ ')'

iff it is correct w.r.t. some function requirement 'Yi ~')',for some i.
(2) A transition t is correct w. r. t. a function requirement 1'1 1\ A 1\ 12 ~ 1 iff

it is correct w.r.t. the function requirement -y1 1\ A 1\ 1'2 ~ 1 1\ A, where
neither A nor -.A appears in 1 .

(3) A transition t is correct w.r.t. a function requirement -y1 1\ -.A 1\ -y2 ~ ')'

iff it is correct w.r.t. the function requirement 11 1\ -.A 1\ 1'2 ~ 1 1\ -.A,
where neither A nor -.A appears in ')'.

Proof: Obvious from the transformation rules. 0

Let R = (R,-y0) be a system requirement. Let n = (R,-y0) denote the
resulting system requirement by applying the above transformation rules to
R as much as possible. We call ft the canonical form of R.

Theorem 41 Let R be a system requirement. Suppose that state transition
systems M and M are standard systems of R and n, respectively, then M
and M are isomorphic . 0

Example 41 If we apply the above transformation rules to the requirement
R2 in Example 32, we obtain the following requirement R2 .

n2 = ({ P1 :A~ -.A 1\ -.B, P2: -.A 1\ -.B ~ -.c 1\ -.A 1\ -.B,

P2 : A 1\ C ~ -.C 1\ A, P3 : -.C ~ C,

P4 : C d} A 1\ C}, A 1\ -.B 1\ -.C)
By Theorem 41, both requirements have the isomorphic standard transition

systems. 0

Definition 41 Let M be a transition system. M is called deterministic if
there are no transitions p ~ q1 and p ~ q2 for any states p, q1, q2 and for any
input symbol a such that q1 =f. q2 . 0

A methodology for the description of system requirements 391

Proposition 41 Let R be a system requirement. If there are no functions
P1 : It ~ f~, pz : fz ~ f~ with the input symbol in common such that It A fz
is consistent, then the standard system of R is deterministic.

Proof: Suppose the standard system M(R) is nondeterministic, then there
exist transitions t1 = (p ~ qt), t2 = (p ~ q2) for some states p, Qb q2 and for
some input symbol a such that q1 ::f. qz . Let p1 :It ~ f{, P2 : h ~ !2 be the
functions such that t1 F Pl> _tz F pz. Then, p FIt and p F /z. Hence, It A fz
is consistent. 0

5 SYNTHESIS OF FORMAL SPECIFICATION

Our target is to derive a sound and complete state transition system M from
a given system requirement R = (R, 'Yo). Now, we state a transformation T
from R into M. Let us define a transition system T(R) = (f, I:, -+,q0), where

(1) f = b I 'Y is a consistent conjunction of literals in P}
(2) I:= {a I P: fin ~ fout E R}
(3) 'Y ~ "(1 iff there exists a function requirement p: /in ~!out E R such that

(a) I('Y) F hn·
(b) J('Y') F !out·
(c) If an atomic proposition A is independent of lout' then I('Y) F A iff

l('Y'H= A.
(4) Qo ='YO·

The partial interpretation associated with a state 'Y in T(R) is defined as
I('Y). In other words, the states correspond possible partial interpretations for
all atomic propositions in P. It is trivial from the construction that T(R) is
irreducible.

Theorem 51 The state transition system T(R) derived from a requirement
description R = (R, 'Yo) by T is a standard system of R.

Proof: Soundness: This direction is clear from the construction of the tran­
sition system T(R).

Completeness: Let M = (Q, I:,--+, q0) be a sound state transition system
with respect toR. Let define a mapping~ : Q --+ r by ~(q) = 'Y for q E Q,
where 'Y is a consistent conjunction of literals such that l(q) = l("f). The
mapping ~ is well defined.

Now, we will show that~ is a homomorphism from M into T(R). It can
be easily checked that e(qo) = 'Yo since M is a sound transition system and
the initial state q0 in M satisfies only literals appearing in 'Yo. Let p ~ q
be any transition in M. Suppose p : fin ~ lout be the function requirement
in R satisfied by this transition. So, we have p F /;n and q F !out· Thus,

392 Part Seven Languages and Applications

Diagnosis
System

Girl

Graphical
Representation

0 0 Requirements

~ ~
Acquisition Knowledge

System Base

~
System

--4 Translator Requirements

~ ~
Synthesizer (Petri Nets)

~ ~
Transition

"'I
Analyzer Systems

~
Compiler I I Verifier

(Programs)

Figure 2 A Support System

e(p) f= lin and e(q) f= /out, by the definition of e. The statement "e(p) f=
A iff e(q) f= A, for all atomic proposition A independent of !out"
can be implied by the statement "p f= A iff q I= A, for all atomic
proposition A independent of !out". Therefore, we have a transition e(p) ~
e(q) in T('R). By the definition of e, p f= f implies e(p) f= f for all proposition
f. Hence, e is a homomorphism from Minto T('R). o

6 SUPPORT SYSTEM AND APPLICATION EXAMPLE

The outline of a support system for the development of (communication)
software is briefly stated. The system consists of Acquisition System of sys­
tem requirements with a help of Knowledge Base, Synthesizer of transition
systems as formal specifications from system requirements, Compiler to c++
programs (executable codes) from transition systems (not fully implemented),
Diagnosis System of system requirements with respect to transition systems

A methodology for the description of system requirements 393

(not fully implemented), Verifier of specifications via Temporal Logic (not
fully implemented), Translator of system requirements to partial logical Petri
Nets, and Girl- Visualizer of transition systems on the X-window system -.
Figure 2 shows the system structure of our support system.

As a more real example, we will apply our method to a small portion of a
simplified CATV system. The terminal of the CATV system is connected with
the host computer, we can take several services on TV programs by controlling
the buttons of the remote switch of the terminal. A system requirement of
the CATV system is briefly stated: Power button enables power on-off of the
system alternatively at any time ([power on/off] function). By pushing the
channel-up, channel-down, or ten-key button, we can select the next, previous,
or intended channel directly, respectively ([channel-change] functions). As
the usual TV systems, the CATV system has muting facility ([mute on/off]
function). Force tuning and buzzering functions are the characteristics of the
CATV system ([force-tune] and [buzzer on/off] functions). According
to the brief description of the system, a system requirement of the CATV
system is described by the the following system requirement:

initiaLcondition: -,muteon 1\ -,jcrrce 1\ -,poweron 1\ -,buzzer
power_off : poweron 1\ -,jcrrce 1\ -,buzzer p~r -,poweron
power_on: -,poweron p~r -,muteon 1\ poweron

chup
channeLup : poweron 1\ -,jcrrce 1\ -,buzzer ===> -

f bu chdw channeLdown : poweron 1\ ..., crrce 1\ ..., zzer ==> -
tenkey

channeLchange: poweron 1\ -,jcrrce 1\ -,buzzer ==> -
mute mute_on : ...,muteon 1\ -,buzzer 1\ -,jcrrce 1\ poweron ===> muteon

mute_off : muteon 1\ -,buzzer 1\ -,jcrrce 1\ poweron ~ -,muteon
jtune

force_tune: -,poweron ==> fcrrce 1\ poweron
jtune

force_tune: poweron ==> fcrrce
f bu power J force_cancel : crrce 1\ ..., zzer 1\ poweron ==> ..., crrce

buzzer_on: -,buzzer b~r buzzer

buzzer_off: buzzer a~y -,buzzer

In the above description the symbol "-" indicates its own precondition of
a function. So, e.g. the channel-up function

chup
channeLup: poweron 1\ -,jcrrce 1\ -,buzzer ===>-

is the abbreviation of the regular description

channeLup : poweron 1\ -,jcrrce 1\ -,buzzer~ poweron 1\ -,jcrrce A -,buzzer.

This means that there are no state change by the channel-up function. The

394 Part Seven Languages and Applications

formal specification derived from the requirements is depicted in Figure 3,
which is the real output (eps file) of the support system sated in the previous
section. In the output function names are used instead of input symbols as
labels of transitions.

Figure 3 The Derived Formal Specification of the CATV System

7 DISCUSSIONS

The derived state transition system T(n) from a system requirement n can
be proved to coincide with the reachability graph of a Partial Logical Petri
Net. A Partial Logical Petri Net, where inhibited arcs (inhibitor arcs) are
allowed in both inputs and outputs of transitions, and two kinds of tokens are
provided. The Partial Logical Petri Net is an straight extension of a Logical
Petri Net proposed by Song and et al [17] .

Definition 71 (Partial Logical Petri Net)
A Partial Logical Petri Net is a tuple PN = (P, T, I , 0, Mo}, where

(1) P is a set of places;
(2) Tis a set of transitions;
(3) I= (Ip, In} is a pair of input functions Ip, In : T--+ 2P such that Ip(t) n

In(t) = 0 for all t E T;
(4) 0 = (Op,On} is a pair of output functions Op, On : T--+ 2P such that

Op(t) n On(t) = 0, for all t E T;
(5) Mo : P --+ {0, 1, *} is an initial marking. D

A methodology for the description of system requirements 395

A Partial Logical Petri Net can be represented as a bipartite graph in the
almost same way as a usual Petri Net [13] . However, in a Partial Logical Petri
Net, we have the following extensions and restrictions.

• There are two kinds of arcs, called positive arcs and negative arcs. If p E
Ip(t) (p E Op(t)), we make a positive arc, depicted as -+,from p tot (from
t top). If p E In(t) (p E On(t)), we make a negative arc, depicted as ---<>,
from p tot (from t top).

• There are two kinds of tokens, a positive token • and a negative token o
which represent truth constant true and false, respectively.

• Marking functions are restricted to the functions with the range {0, 1, * },
where 0, 1, and * means that the associated condition with the place is
"not satisfied", "satisfied", and "undefined", respectively.

The graphical representation of a Partial Logical Petri Net is given in Figure
4 (a).

0 0
(a) (b)

Figure 4 Partial Logical Petri Nets

In a marking M, a transitions t is fireable (executable) if the following con­
ditions are satisfied:

(1) M(p) = 1 for all p E Ip(t).
(2) M(p) = 0 for all p E In(t).

If t is fireable, then t suddenly fires and the marking is changed into the
marking M' defined by

M'(p) = { !
M(p)

if p E On(t)
if p E Op(t)
if p E (Jn(t) u Ip(t)) n On(W n Dp(t)c
otherwise

396 Part Seven Languages and Applications

The transition in the net (a) in Figure 4 is fireable. After firing, the marking
is changed into the one (b) in the figure.

Let R = (R, /o) be a requirement in canonical form. We can obtain a Partial
Logical Petri Net (P,T,I ,O,M0) from R as follows:
1. P = P : Places correspond atomic propositions.
2. T = R: Transitions correspond function requirements.
3. Let P : AI 1\ . . . 1\ An 1\ -.Bl 1\ ... 1\ -.Bm ~ Cl 1\ . . . 1\ Ci 1\ -.Dl 1\ ... 1\ -.Dk
be a function, where capital letters denote atomic propositions. Then, define
input functions I= (Ip, In) and output functions 0 = (Op, On) by

Ip(p) = {A1, .. . ,An}

In(P) = {B1 , . . . , Bm}

Op(p) = {CI, ... ,Ci}

On(P)= {D1, .. . ,Dk.}

4. The initial marking M 0 is defined by

Mo(A) ~ { ! if A appears negative in /o
if A appears positive in /o
otherwise

Example 71 If we apply the above transformation to the canonical form in
Example 41 of the requirement in Example 32, we obtain the Partial Logical
Petri Net in Figure 5. The resulting reachability graph of the net coincide
with the transition system (b) in Figure 1. This can be guaranteed in general
by the next proposition. D

A

B

Figure 5 The transformed Partial Logical Petri Net

A methodology for the description of system requirements 397

Proposition 71 Let M be a standard system of a requirement R. Then, the
reachability graph of the Partial Logical Petri Net derived from R is isomor­
phic toM. 0

The derived transition system T(R) can be characterized by Production
Systems as well. To be more precise, if R is a requirement in canonical form,
then each function requirement p : fin =* !out can be regarded as a production
rule fin -+ lout· Then, we have the following result.

Proposition 72 Let R be a requirement in canonical form. If we take a func­
tion requirement p: /in =* lout as a production rule fin -+lout, then the state
transition system of the resulting production system is isomorphic to the stan­
dard transition system T(R). 0

8 CONCLUDING REMARKS

A formal methodology for the description of system requirements and the
synthesis of formal specifications from them have been presented. We have
specifically dealt with the issues (1) mathematical treatment of system re­
quirements and their relationship with formal specifications represented as
state transition systems, (2) sound and complete systems, i.e. standard sys­
tems, (3) derivation of standard systems from system requirements, (4) a sup­
port system and an application example, and (5) some discussions on partial
logical Petri Nets, Production systems, and so on . The proposed framework
provides theoretical and practical tools for system design.

To conclude the paper, we state some further comments on our methodol­
ogy.

Extension to Predicate Logic The underlying logic of this paper may be
easily extended to first order predicate logic. For example, the function of
channeLup in the CATV system is expressed more precisely by the function
requirement

channeLup : '[XYIJ.Jeron 1\ •force 1\ -,fruzzer 1\ ch(x) ~ '[XYIJ.Jeron 1\ ch(x + 1)

In the above description, the first order variable x is quantified universally.

Branching Time Temporal Logic A function requirement p: fin ~!out
can be expressed as a proposition 0(/in :::> {a}fout) in an extended branching
time tern poral logic.

398 Part Seven Languages and Applications

REFERENCES

(1] Chellas, B.F., Modal Logic: An Introduction, Cambridge University
Press, 1980.

(2] ISO., Estelle: A Formal Description Technique based on the Extended
State Transition Model, ISO 9074, 1989.

(3] ISO., Information Processing Systems - Open System Interconnection
- LOTOS - A Formal Description Technique based on the Temporal
Ordering of Observational Behavior, IS 8807, 1989.

(4] CCITT., SDL: Specification and Description Language, CCITT Z.100,
1988.

(5] Bolognesi, T., Brinksma, Ed., Introduction to the ISO Specification Lan­
guage LOTOS, in the Formal Description Technique LOTOS, Elsevier
Sci. Pub., pp.23-73, 1989.

(6] Emerson, E.A., Temporal and Modal Logic, Handbook of Theoretical
Computer Science, Elsevier Science Publishers B.V., pp.995-1072,
1990.

(7] Gotzhein, R., Specifying Communication Services with Temporal Logic,
Protocol Specification, Testing and Verification, XL, pp.295-309,
1990.

(8] van Glabbeek, R.J., The Linear Time- Branching Time Spectrum, Lec­
ture Notes in Com put. Sci. 458, Springer-Verlag, 1990.

(9] Hirakawa, Y., Takenaka, T., Telecommunication Service Description us­

ing State Transition Rules, Proc. 6th Int. Work. Software Specifica­
tion and Design, pp.14Q-147, 1991.

(10] Manna, Z., P. Wolper, Synthesis of Communicating Processes from Tem­
poral Logic Specifications, ACM Trans. on Programming Languages
and Systems, 6-, 1, pp.68-93,1984.

(11] Milner R., Communication and Concurrency, Prentice-Hall, 1989.
(12] Murata, T., Petri Nets: Properties, Analysis and Applications, IEEE

Proc. Vol.77, No.4, pp.541- 580, 1989.
(13] Plotkin, G.D., A Structural Approach to Operational Semantics, Com­

puter Science Department, Aarhus University, DAIMI FN-19, 1981.
(14] Shapiro E.Y., Algorithmic Program Debugging, Ph.D. Thesis, The MIT

Press, 1982.
[15] Shiratori, N., Sugaware, K., Kinoshita, T., Chakraborty, G. , Flexible

Networks: Basic Concepts and Architecture, IEICE Trans. Commun.,
Vol.E77-B, No.11. pp.1287- 1294, 1994.

(16] Song, K., Togashi, A., Shiratori, N., Verification and refinement for sys­
tem requirements, IEICE Trans. on Fundamentals of Elec., Comm.
and Comput. Sci. , Vol. E78-A, No.ll, pp.1468-1478, 1995.

[17] Togashi, A., Usui, N., Song, K., Shiratori, N. A derivation of System
Specifications based on a Partial Logical Petri Net, Proc. ofiSCAS95,
1995.

