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Abstract 
A methodology for the description of system requirements and the deriva­
tion of formal specifications from system requirements are presented. We will 
specifically deal with the issues (1) mathematical treatment of system require­

ments and their relationship with formal specifications represented as state 
transition systems, (2) a sound and complete system with respect to a system 
requirement, i.e. a standard system of the system requirement specified as a 
unique model of the system requirement, (3) derivation of standard systems 
from system requirements, (4) a support system and an application example, 
and (5) some comparative discussions on the methodology with partial logical 
Petri Nets, Production systems, and so on. 
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1 INTRODUCTION 

For a complex and sophisticated system, operational descriptions might be too 
tedious to handle for rapid prototyping and analysis of a system's behavior. 

In such cases, it is more convenient to express the system on a higher level, 
somehow in a functional manner. This approach yields formal specifications 
that emphasize the system's general behavioral properties rather than its 
operational details. Moreover, it has a practical significance if the desired 
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384 Part Seven Languages and Applications 

description can be derived or synthesized in a systematic way from the user 
requirements on system functions. 

This paper proposes a new methodology for the description of system re­
quirements and the synthesis of formal specifications from system require­
ments. The formal specifications can be taken as models of the system re­
quirements. More generally, the main objective is to be able to derive an 
implementable or operational system description from a given high-level de­
scription on system functions. The proposed methodology can be fully au­
tomated, hence mayjcan improve both productivity and quality of system 
development. We have implemented a support system based on our approach 
and applied several practical system designs such as a telephone service, a 
communication protocol, a cable TV system, etc. 

In the literature on communicating systems, Formal Description Techniques 
(FDT), e.g. SDL (5], Estelle (3] and LOTOS (6], have been proposed as high­
level specification languages. The conventional state machine oriented ap­
proaches such as SDL and Estelle and algebraic approach such as LOTOS are 
suitable for the purpose of description and investigation of the total behavior 
of systems. But, these approaches might be not suitable for rapid prototyping 
and flexible software development. Because we must enumerate and/or deter­
mine all system behaviors from an early stage of system design. Our objective 
is to give theoretical foundations and proposal of a flexible approach on the 
synthesis of formal specifications from user requirements written in an early 
stage of system design. 

From objectives, our work has some connection with an STR (State Tran­
sition Rule) method, which is a specification method based on a production 
system proposed by Hirakawa and Takenaka in (10]. But, the methodology 
proposed here differs from their approach mainly in theoretical discussions 
such as soundness and completeness and formal treatment, rather than prac­
tical methodology for description and use. Another related work is a synthesis 
of communicating processes from temporal logic specification by Manna and 
Wolper in (11]. Their approach is based on tableau-like method and com­
pletely different form ours from technical point of view. Besides those works, 
no other related works could be found in the literature. 

The outline of this paper is as follows: In section 2 after giving some pre­
liminaries, we deal in detail with the issue of system requirements and for­
mal specifications. In section 3, we discuss the key notions, soundness and 
completeness. Section 4 provides an equivalent transformation on system re­
quirements with the result of determinacy on the resulting transition systems. 
Section 5 gives an automatic transformation technique from system require­
ments to formal specifications. Section 6 gives an overview of the support 
system with an application example followed by the discussions in section 7 
and the concluding remarks in section 8. 
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2 REQUIREMENTS AND FORMAL SPECIFICATIONS 

Requirements of a system can be described as expression based on proposi­
tional logic. To begin with we will give some preliminaries on propositional 
logic needed for the description of a system requirement. Let P be a set of 
atomic propositions. Each atomic proposition describes a specific property of 
the intended system under the target of design. A partial interpretation I is 
a partial mapping I: P -t {true, false}, where true and false are the truth 
values of propositions. If the truth value of a proposition f under I is defined 
to be true then we say that I satisfies J, denoted by I I= f. I ~ f denotes 
that the truth value off is defined to be false and we say I does not satisfy 
f. These can be defined inductively as follows: 

(1) I I= A (I ~ A) if I is defined on A and I(A) = true (I(A) = false), 
where A E P. 

(2) IF •/ (I~ •f) if I~ f (IF f). 
(3) I I= fAg (I~ fA g) if I I= f and I I= g (I~ for I~ g). 
(4) I I= I v g (I~ I v g) if I I= for I I= g (I~! and I~ g). 

Note that truth value of a proposition under an interpretation is not always 
defined since we are concerned with partial interpretations. For propositions 
f and g, f => g denotes the assertion that for any partial interpretation I, 
I I= f implies I I= g. 

Definition 21 Let f and g be propositions. 

(1) f is consistent if I I= f for some partial interpretation I. 
(2) f is inconsistent iff is not consistent. 
(3) f is dependent on g if either g => f (in positive) or g => •! (in negative). 
( 4) f is independent of g iff is not dependent on g. D 

A literal is an atomic proposition A of the negation of an atomic proposi­
tion •A. Let 1, 1' be consistent conjunctions of literals. It is clear from the 
definition that 1 => 1' iff£{!) ::> £{!'), where £{!) denotes the set of all 
literals appearing in I· This implies the following proposition. 

Proposition 21 Let 1 be a consistent conjunction of literals. An atomic 
proposition A is independent of 1 iff A does not appear in 1 at all neither 
in positive nor in negative. The negative literal •A is independent of 1 iff A 
is independent of I· D 

A system can be essentially specified by its fundamental functions and their 
related constraints for execution. To be more precise, a system function may 
be invoked by a specific input provided that its pre-condition to be satisfied 
before execution can hold in the current state. Then, the function is executed, 
possibly producing some appropriate output. After the execution the current 
state is changed into the new one. In the new state, other functions (including 
the same function as well) can be applicable. Taking account into this intuition 
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of system specifications, a function requirement is formally defined in the next 
definition. 

Definition 22 A function requirement is a tuple p = (id, a, fin , o, !out}, where 

(1) id is a name of the function; 
(2) a is an input symbol of the function; 
(3) fin is a pre-condition of the function to be satisfied before execution, 

which is represented as a consistent proposition using atomic propositions 
in P; 

( 4) o is an output symbol of the function; 
(5) !out is a post-condition of the function to be satisfied after execution, 

which is represented as a consistent conjunction of literals by atomic 
propositions in P. 0 

For simplicity, in what follows we omit the names and the output symbols 
from the description of function requirements because they do not play the 
central roles on the theoretical treatment in this paper. A function requirement 
p = (a, fin , !out) is often abbreviated asp : fin ~ !out • 

Definition 23 A system requirement is a pair n = (R, 'Yo), where R is a 
set of function requirements and 'Yo is an initial condition represented as a 
consistent conjunction of literals in P. 0 

In this paper, state transition systems are considered as formal specifica­
tions. In the literature, a state transition system is an underling structure of 
Formal Description Techniques, e.g. SDL [5], Estelle [3] and LOTOS [6], and 
used to give the operational semantics of concurrent processes in process cal­
culi [12], based on the paradigm of SOS (Structural Operational Semantics) 
by Plotkin [14] . 

Definition 24 A state transition system is a quadruple M = (Q,~,-,q0 ), 
where Q is a set of states, ~ is a set of input symbols, - is a transition relation 
defined as - C Q x ~ x Q, and q0 is an initial state. 0 

The transition relation defines the dynamical change of states as input 
symbols may be read. For (p,a,q) E - , we normally write p ~ q. Thus, 
the transition relation can be written as - = {~I a E ~}. p ~ q may be 
interpreted as "in the state p if a is input then the state of the system moves 
to q" . Now, we assume that for an atomic proposition A and for a state q E Q 
it is pre-defined whether or not A holds (is satisfied) in q if the truth value of 
A in q is defined. q f= A indicates that the truth value of A in q is defined and 
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A holds in q. Let us define the partial interpretation associated with a state 
q in M, denoted by I(q), in such a way that 

{ 
true 

I(q)(A) = false 
undefined 

if q I= A 
if q ~A (q I= -,A) 
otherwise 

for all atomic propositions A. Thus, a state transition system can be treated 
as a Kripke structure [2], where the interpretation of atomic propositions vary 
over states. Let 

Sat(q) = { ll the truth value of a literall is defined in q and q I= l}. 

Proposition 22 q I= f iff f is implied from Sat(q) - every interpretation 
satisfying Sat( q) also satisfies f, for each proposition f. 

Proof: The proof is by structural induction on propositions f. 0 

By the completeness of propositional logic, we have that q I= f iff Sat(q) f­
f, f is provable from Sat(q). 

Two states p and q in Mare logically equivalent iff I(p) = I(q). A transition 
system M is logically reducible if there exist distinct logically equivalent states 
in M. Otherwise, the system is logically irreducible. To the rest of this paper, 
unless stated otherwise, a transition system means a logically irreducible sys­
tem. Thus, p = q iff l(p) = I(q) (Sat(p) = Sat(q)) . By this assumption, note 
that a state q in a (an irreducible) transition system M can be equivalently 
represented as a consistent set X of literals, where q I= A (q I= -,A) iff A EX 
(-,A EX). 

3 SOUNDNESS AND COMPLETENESS 

Definition 31 A state transition t = {p ~ q} satisfies (is correct w.r.t.) a 
function requirement p: fin ~ fov.t, denoted as t I= p, if the following condi­
tions hold: 

(1) PI= fin, a= b, and q I= fov.t· 
(2) The partial interpretations I(p) and I(q) are identical if atomic proposi-

tions independent of f ov.t are only concerned. 0 

The condition (1) means the precondition and the postcondition must hold 
in the current state and the next state, respectively. The condition (2) states 
that for an atomic proposition A independent of fov.t, p I= A iff q I= A. 
This means that the truth value of independent atomic propositions w.r.t. 
the postcondition remain unchanged through the state transition. 
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Example 31 Consider the system requirement 

R1 = ({Pl :A::! -.A, P2: B ~A}, A A B) 

and the transition system M1 given in (a) in Figure 1. Now, consider the 

transition t 1 = (q0 ~ q1) and the function requirement p1 : A ~ -.A. Since 
q0 f= A and q1 f= -.A the condition (1) in Definition 31 holds for t 1 w.r.t. 
p1. The atomic proposition independent of -.A is B. Since the truth values 
of B in q0 , q1 are defined and q0 f= B, q1 f= B the condition (2) in Definition 
31 holds. Thus, the transition t 1 satisfies the function requirement p1. In the 

exactly same way, we can easily check that the transitions q0 ~ q0, q1 ~ q0 

satisfy the function requirement p2 : B ~ A. 0 

a 

(a) 

Figure 1 Transition Systems M 1 and M2 

Example 32 As a more involved example, let us consider the system require-
ment 

R2 = ( { P1 : A ~ -.A A -.B, 

P3: -.c ~ c, 
AA-.B A -.C) 

b 
P2 : -.A A -.B V A A C => -.C, 

P4 : C ~A}, 

and the transition system M 2 given (b) in Figure 1. In the same way as in 
Example 31, it is easily checked that: 

• the transitions Qo ~ Q1, Q2 ~ q3 satisfy P1; 
th t •t• b b b • f 

• e rans1 1ons ql - q1, q2 - qo, q3- ql satls y P2; 
• the transitions qo ~ q2, q1 ~ q3 satisfy p3; 

h . . d d . f 
• t e transitions Q2 - q2 , q3 - q2 satis y P4· 0 
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Let 'Y be a consistent conjunction of literals. We define a partial interpre­
tation I (-y) based on "f by 

I('Y)(A) = false if A appears negative in"(, { 
true if A appears positive in 1 

undefined otherwise 

for all atomic propositions A. 

Definition 32 A state transition system M = (Q, I:,-->, qo) is sound with 
respect to a system requirement R = (R, 'Yo) if the following conditions are 
satisfied: 

(1) I(qo) = I('Yo); 
(2) for any transition t in M there exists a function requirement p E R such 

that t I= p. D 

Note that the transition systems M1 in Example 31 and M2 in Example 32 
are sound with respect to the system requirements R 1 and R2, respectively. 

Definition 33 LetM = (Q,I:,-+,q0 ) andM' = (Q',I:,-+',q~) be state tran­
sition systems in common input symbols. A homomorphism from Minto M' 
is a mapping ~ : Q -+ Q' such that 

(1) ~(qo) = q~. 
(2) if p ~ q in M, then ~(p) ~ {(q) in M'. 
(3) pI= f implies {(p) I= f, for all states pin M and for all propositions f. 

D 

The third condition (3) in the above definition can be equivalently relaxed: 
(3') pI= l implies {(p) I= l, for all states pin M and for all literals l. 

If a homomorphism ~ : Q --> Q' is a bijection, a one-to-one and onto map­
ping, and the inverse function f 1 is a also homomorphism from M' to M, 
then ~ is called an isomorphism. If there is an isomorphism from M to M', 
then M and M' are isomorphic. 

Definition 34 Let M be a sound state transition system with respect to R. 
M is called complete with respect to R if, there is a homomorphism ~ from 
M' into M for every sound state transition system M' with respect to R. D 

Definition 35 A sound and complete transition system with respect to R is 
called a standard system (model ) of R . D 

Theorem 31 Let M, M' be standard systems of R, then M and M' are 
isomorphic. D 

Let M(R) denote a unique standard system of R up to isomorphism. 
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4 TRANSFORMATION AND DETERMINACY 

Without loss of generality, a proposition f can be equivalently expressed as a 
disjunctive normal form 11 V · · · Vln, where li are conjunctions of literals. Now, 
consider the following transformation rules on sets of function requirements: 

rule 1 R U {11 V · · · V In ~ 1} => R U {11 ~ I, ... , In ~ I}. 

rule 2 R U { 11 1\ A 1\ 12 ~ 1} => R U { 11 1\ A 1\ 12 ~ 1 1\ A} 
where neither A nor -.A appears in I· 

rule 3 R U { 1'1 1\ -.A 1\ 12 ~ 1} => R U { 1'1 1\ -.A 1\ 1'2 ~ 1 1\ -.A} 
where neither A nor -.A appears in 'Y. 

Lemma 41 We have the following results on the transformation rules: 
(1) A transition t is correct w.r.t. a function requirement 11 V · · · V 'Yn ~ ')' 

iff it is correct w.r.t. some function requirement 'Yi ~')',for some i. 
( 2) A transition t is correct w. r. t. a function requirement 1'1 1\ A 1\ 12 ~ 1 iff 

it is correct w.r.t. the function requirement -y1 1\ A 1\ 1'2 ~ 1 1\ A, where 
neither A nor -.A appears in 1 . 

(3) A transition t is correct w.r.t. a function requirement -y1 1\ -.A 1\ -y2 ~ ')' 

iff it is correct w.r.t. the function requirement 11 1\ -.A 1\ 1'2 ~ 1 1\ -.A, 
where neither A nor -.A appears in ')'. 

Proof: Obvious from the transformation rules. 0 

Let R = (R,-y0 ) be a system requirement. Let n = (R,-y0 ) denote the 
resulting system requirement by applying the above transformation rules to 
R as much as possible. We call ft the canonical form of R. 

Theorem 41 Let R be a system requirement. Suppose that state transition 
systems M and M are standard systems of R and n, respectively, then M 
and M are isomorphic . 0 

Example 41 If we apply the above transformation rules to the requirement 
R2 in Example 32, we obtain the following requirement R2 . 

n2 = ({ P1 :A~ -.A 1\ -.B, P2: -.A 1\ -.B ~ -.c 1\ -.A 1\ -.B, 

P2 : A 1\ C ~ -.C 1\ A, P3 : -.C ~ C, 

P4 : C d} A 1\ C}, A 1\ -.B 1\ -.C) 
By Theorem 41, both requirements have the isomorphic standard transition 

systems. 0 

Definition 41 Let M be a transition system. M is called deterministic if 
there are no transitions p ~ q1 and p ~ q2 for any states p, q1, q2 and for any 
input symbol a such that q1 =f. q2 . 0 
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Proposition 41 Let R be a system requirement. If there are no functions 
P1 : It ~ f~, pz : fz ~ f~ with the input symbol in common such that It A fz 
is consistent, then the standard system of R is deterministic. 

Proof: Suppose the standard system M(R) is nondeterministic, then there 
exist transitions t1 = (p ~ qt), t2 = (p ~ q2 ) for some states p, Qb q2 and for 
some input symbol a such that q1 ::f. qz . Let p1 :It ~ f{, P2 : h ~ !2 be the 
functions such that t1 F Pl> _tz F pz. Then, p FIt and p F /z. Hence, It A fz 
is consistent. 0 

5 SYNTHESIS OF FORMAL SPECIFICATION 

Our target is to derive a sound and complete state transition system M from 
a given system requirement R = (R, 'Yo). Now, we state a transformation T 
from R into M. Let us define a transition system T(R) = (f, I:, -+,q0 ), where 

(1) f = b I 'Y is a consistent conjunction of literals in P} 
(2) I:= {a I P: fin ~ fout E R} 
(3) 'Y ~ "(1 iff there exists a function requirement p: /in ~!out E R such that 

(a) I('Y) F hn· 
(b) J('Y') F !out· 
(c) If an atomic proposition A is independent of lout' then I('Y) F A iff 

l('Y'H= A. 
(4) Qo ='YO· 

The partial interpretation associated with a state 'Y in T(R) is defined as 
I('Y). In other words, the states correspond possible partial interpretations for 
all atomic propositions in P. It is trivial from the construction that T(R) is 
irreducible. 

Theorem 51 The state transition system T(R) derived from a requirement 
description R = (R, 'Yo) by T is a standard system of R. 

Proof: Soundness: This direction is clear from the construction of the tran­
sition system T(R). 

Completeness: Let M = (Q, I:,--+, q0 ) be a sound state transition system 
with respect toR. Let define a mapping~ : Q --+ r by ~(q) = 'Y for q E Q, 
where 'Y is a consistent conjunction of literals such that l(q) = l("f). The 
mapping ~ is well defined. 

Now, we will show that~ is a homomorphism from M into T(R). It can 
be easily checked that e(qo) = 'Yo since M is a sound transition system and 
the initial state q0 in M satisfies only literals appearing in 'Yo. Let p ~ q 
be any transition in M. Suppose p : fin ~ lout be the function requirement 
in R satisfied by this transition. So, we have p F /;n and q F !out· Thus, 
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Diagnosis 
System 

Girl 

Graphical 
Representation 

0 0 Requirements 

~ ~ 
Acquisition Knowledge 

System Base 

~ 
System 

--4 Translator Requirements 

~ ~ 
Synthesizer ( Petri Nets ) 

~ ~ 
Transition 

"'I 
Analyzer Systems 

~ 
Compiler I I Verifier 

( Programs ) 

Figure 2 A Support System 

e(p) f= lin and e(q) f= /out, by the definition of e. The statement "e(p) f= 
A iff e(q) f= A, for all atomic proposition A independent of !out" 
can be implied by the statement "p f= A iff q I= A, for all atomic 
proposition A independent of !out". Therefore, we have a transition e(p) ~ 
e(q) in T('R). By the definition of e, p f= f implies e(p) f= f for all proposition 
f. Hence, e is a homomorphism from Minto T('R). o 

6 SUPPORT SYSTEM AND APPLICATION EXAMPLE 

The outline of a support system for the development of (communication) 
software is briefly stated. The system consists of Acquisition System of sys­
tem requirements with a help of Knowledge Base, Synthesizer of transition 
systems as formal specifications from system requirements, Compiler to c++ 
programs (executable codes) from transition systems (not fully implemented), 
Diagnosis System of system requirements with respect to transition systems 
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(not fully implemented), Verifier of specifications via Temporal Logic (not 
fully implemented), Translator of system requirements to partial logical Petri 
Nets, and Girl- Visualizer of transition systems on the X-window system -. 
Figure 2 shows the system structure of our support system. 

As a more real example, we will apply our method to a small portion of a 
simplified CATV system. The terminal of the CATV system is connected with 
the host computer, we can take several services on TV programs by controlling 
the buttons of the remote switch of the terminal. A system requirement of 
the CATV system is briefly stated: Power button enables power on-off of the 
system alternatively at any time ([power on/off] function). By pushing the 
channel-up, channel-down, or ten-key button, we can select the next, previous, 
or intended channel directly, respectively ([channel-change] functions). As 
the usual TV systems, the CATV system has muting facility ([mute on/off] 
function). Force tuning and buzzering functions are the characteristics of the 
CATV system ([force-tune] and [buzzer on/off] functions). According 
to the brief description of the system, a system requirement of the CATV 
system is described by the the following system requirement: 

initiaLcondition: -,muteon 1\ -,jcrrce 1\ -,poweron 1\ -,buzzer 
power_off : poweron 1\ -,jcrrce 1\ -,buzzer p~r -,poweron 
power_on: -,poweron p~r -,muteon 1\ poweron 

chup 
channeLup : poweron 1\ -,jcrrce 1\ -,buzzer ===> -

f bu chdw channeLdown : poweron 1\ ..., crrce 1\ ..., zzer ==> -
tenkey 

channeLchange: poweron 1\ -,jcrrce 1\ -,buzzer ==> -
mute mute_on : ...,muteon 1\ -,buzzer 1\ -,jcrrce 1\ poweron ===> muteon 

mute_off : muteon 1\ -,buzzer 1\ -,jcrrce 1\ poweron ~ -,muteon 
jtune 

force_tune: -,poweron ==> fcrrce 1\ poweron 
jtune 

force_tune: poweron ==> fcrrce 
f bu power J force_cancel : crrce 1\ ..., zzer 1\ poweron ==> ..., crrce 

buzzer_on: -,buzzer b~r buzzer 

buzzer_off: buzzer a~y -,buzzer 

In the above description the symbol "-" indicates its own precondition of 
a function. So, e.g. the channel-up function 

chup 
channeLup: poweron 1\ -,jcrrce 1\ -,buzzer ===>-

is the abbreviation of the regular description 

channeLup : poweron 1\ -,jcrrce 1\ -,buzzer~ poweron 1\ -,jcrrce A -,buzzer. 

This means that there are no state change by the channel-up function. The 
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formal specification derived from the requirements is depicted in Figure 3, 
which is the real output ( eps file) of the support system sated in the previous 
section. In the output function names are used instead of input symbols as 
labels of transitions. 

Figure 3 The Derived Formal Specification of the CATV System 

7 DISCUSSIONS 

The derived state transition system T(n) from a system requirement n can 
be proved to coincide with the reachability graph of a Partial Logical Petri 
Net. A Partial Logical Petri Net, where inhibited arcs (inhibitor arcs) are 
allowed in both inputs and outputs of transitions, and two kinds of tokens are 
provided. The Partial Logical Petri Net is an straight extension of a Logical 
Petri Net proposed by Song and et al [17] . 

Definition 71 (Partial Logical Petri Net) 
A Partial Logical Petri Net is a tuple PN = (P, T, I , 0, Mo}, where 

( 1) P is a set of places; 
(2) Tis a set of transitions; 
(3) I= (Ip, In} is a pair of input functions Ip, In : T--+ 2P such that Ip(t) n 

In(t) = 0 for all t E T; 
(4) 0 = (Op,On} is a pair of output functions Op, On : T--+ 2P such that 

Op(t) n On(t) = 0, for all t E T; 
(5) Mo : P --+ {0, 1, *} is an initial marking. D 
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A Partial Logical Petri Net can be represented as a bipartite graph in the 
almost same way as a usual Petri Net [13] . However, in a Partial Logical Petri 
Net, we have the following extensions and restrictions. 

• There are two kinds of arcs, called positive arcs and negative arcs. If p E 
Ip(t) (p E Op(t)), we make a positive arc, depicted as -+,from p tot (from 
t top). If p E In(t) (p E On(t)), we make a negative arc, depicted as ---<>, 
from p tot (from t top). 

• There are two kinds of tokens, a positive token • and a negative token o 
which represent truth constant true and false, respectively. 

• Marking functions are restricted to the functions with the range {0, 1, * }, 
where 0, 1, and * means that the associated condition with the place is 
"not satisfied", "satisfied", and "undefined", respectively. 

The graphical representation of a Partial Logical Petri Net is given in Figure 
4 (a). 

0 0 
(a) (b) 

Figure 4 Partial Logical Petri Nets 

In a marking M, a transitions t is fireable (executable) if the following con­
ditions are satisfied: 

(1) M(p) = 1 for all p E Ip(t). 
(2) M(p) = 0 for all p E In(t). 

If t is fireable, then t suddenly fires and the marking is changed into the 
marking M' defined by 

M'(p) = { ! 
M(p) 

if p E On(t) 
if p E Op(t) 
if p E (Jn(t) u Ip(t)) n On(W n Dp(t)c 
otherwise 
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The transition in the net (a) in Figure 4 is fireable. After firing, the marking 
is changed into the one (b) in the figure. 

Let R = (R, /o) be a requirement in canonical form. We can obtain a Partial 
Logical Petri Net (P,T,I ,O,M0 ) from R as follows: 
1. P = P : Places correspond atomic propositions. 
2. T = R: Transitions correspond function requirements. 
3. Let P : AI 1\ . . . 1\ An 1\ -.Bl 1\ ... 1\ -.Bm ~ Cl 1\ . . . 1\ Ci 1\ -.Dl 1\ ... 1\ -.Dk 
be a function, where capital letters denote atomic propositions. Then, define 
input functions I= (Ip, In) and output functions 0 = (Op, On) by 

Ip(p) = {A1, .. . ,An} 

In(P) = {B1 , . . . , Bm} 

Op(p) = {CI, ... ,Ci} 

On(P)= {D1, .. . ,Dk.} 

4. The initial marking M 0 is defined by 

Mo(A) ~ { ! if A appears negative in /o 
if A appears positive in /o 
otherwise 

Example 71 If we apply the above transformation to the canonical form in 
Example 41 of the requirement in Example 32, we obtain the Partial Logical 
Petri Net in Figure 5. The resulting reachability graph of the net coincide 
with the transition system (b) in Figure 1. This can be guaranteed in general 
by the next proposition. D 

A 

B 

Figure 5 The transformed Partial Logical Petri Net 
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Proposition 71 Let M be a standard system of a requirement R. Then, the 
reachability graph of the Partial Logical Petri Net derived from R is isomor­
phic toM. 0 

The derived transition system T(R) can be characterized by Production 
Systems as well. To be more precise, if R is a requirement in canonical form, 
then each function requirement p : fin =* !out can be regarded as a production 
rule fin -+ lout· Then, we have the following result. 

Proposition 72 Let R be a requirement in canonical form. If we take a func­
tion requirement p: /in =* lout as a production rule fin -+lout, then the state 
transition system of the resulting production system is isomorphic to the stan­
dard transition system T(R). 0 

8 CONCLUDING REMARKS 

A formal methodology for the description of system requirements and the 
synthesis of formal specifications from them have been presented. We have 
specifically dealt with the issues ( 1) mathematical treatment of system re­
quirements and their relationship with formal specifications represented as 
state transition systems, (2) sound and complete systems, i.e. standard sys­
tems, (3) derivation of standard systems from system requirements, (4) a sup­
port system and an application example, and (5) some discussions on partial 
logical Petri Nets, Production systems, and so on . The proposed framework 
provides theoretical and practical tools for system design. 

To conclude the paper, we state some further comments on our methodol­
ogy. 

Extension to Predicate Logic The underlying logic of this paper may be 
easily extended to first order predicate logic. For example, the function of 
channeLup in the CATV system is expressed more precisely by the function 
requirement 

channeLup : '[XYIJ.Jeron 1\ •force 1\ -,fruzzer 1\ ch(x) ~ '[XYIJ.Jeron 1\ ch(x + 1) 

In the above description, the first order variable x is quantified universally. 

Branching Time Temporal Logic A function requirement p: fin ~!out 
can be expressed as a proposition 0(/in :::> {a}fout) in an extended branching 
time tern poral logic. 
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