
18 
Friendly Testing as a Conformance 
Relation 

David de Frutos-Escrig, Luis Llana-Diaz and Manuel Nunez 
Dept. de Sistemas Informaticos y Programaci6n 
Universidad Complutense de Madrid. E-28040 Madrid. Spain. 
e-mail:{defrutos ,llana, manuelnu}<Ddia. ucm. es 

Abstract 
In this paper we present a new kind of testing, namely friendly testing, which 
has been developed to obtain a satisfactory conformance relation sharing the 
good properties of the more popular conformance relations, that is must­
testing and conf, while avoiding their respective problems. In particular, our 
friendly tests cannot punish a process when it is able to execute some action, 
while classical testing did it. This was a clear drawback of must testing when 
considered as a conformance relation. Finally, We prove that the preorder 
induced by friendly testing is just the transitive closure of conf . As a conse­
quence we obtain an interesting characterization of this closure, from which 
we derive several its properties. 

Keywords 
Semantical foundations, Conformance testing, Formal methods. 

1 INTRODUCTION AND RELATED WORK 

Conformance is the term used by system analyzers to describe the situation in 
which an implementation is adequate with respect to a given specification. In 
order to properly define this notion, and thus to have the formal basis for the 
process of testing, there has been a considerable effort, that in particular has 
been the seed for the joint ISO /ITU-T working group on "Formal Methods 
in Conformance Testing''. In a recent paper (Cavalli, Favreau & Phalippou 
1996], some members of this group have presented a short, but nice, summary 
of the work carried out by the group, that was included in their working 

Research supported in part by the CICYT project TIC 97-0669-COJ-01. 

Formal Description Techniques and Protocol Specification, Testing and Verification 
T. Mizuno, N. Shiratori, T. Higashino & A. Togashi (Eds.) © 1997 IFIP. Published by Chapman & Hall 



284 Part Five Conformance Testing 

documents [JTC1/SC21/WG1/54.11995b, JTC1/SC21/WG1/54.11995a]. In 
the same special issue of "Computer Networks and ISDN Systems" devoted 
to testing where (Cavalli et al. 1996] appeared, there is a longer paper on 
conformance testing which will be our main reference for definitions and main 
results (Tretmans 1996]. There, the reader is pointed out for a clear and rather 
intuitive presentation of the subject. In addition, a complete list of references 
is provided and therefore we will omit in this paper most of them. 

In order to formalize the notion of conformance, two are the most extended 
methods: by means of an implementation relation or by requirements. We 
will concentrate ourselves on the first approach, that is the one in which 
more work has been developed. An implementation relation relates imple­
mentations from a given set Imp with specifications from another set Spec. 
We are interested in the case in which both sets are somehow formalized, 
and more specifically, in the case in which both sets are the same. Thus, 
we will explore relations imp ~ Proc x Proc, for some classes of processes 
Proc. The most known implementation relation is conf (Brinksma, Scollo & 
Steenbergen 1986, Brinksma 1988]. This relation is defined from traces and 
refusals of processes in the following way: 

i conf s iff V t E Tr(s) : Ref(i, t) ~ Ref(s, t) 

This relation is derived from the plain refusal ordering (Hoare 1985], which 
is obtained by removing the constraint Tr(s) in the universal quantification 
above. As it is well known, when restricted to non-divergent processes, the re­
fusal ordering is an alternative characterization of the must testing preorder 
(Hennessy 1988]. Once the (must) passing of tests is defined (a detailed defi­
nition can be found at the beginning of Section 2), we can define the preorder 
!;must as follows: * 

s !;;;must i iff V T (s must T => i must T) 

Since conformance relations are defined to establish the framework in which 
to formally define testing, it seems that to define one of them by means of 
passing of tests is a very natural choice. Unfortunately, and even if the (must) 
testing relation has many pleasant properties, it proves to be too strong to 
adequately formalize the implementation process. For instance, if we use the 
notation in (Hennessy 1988] (where there are two choice operators: external, 
denoted by+, and internal, denoted by EB.), we have a ~must a+ b. This does 
not seem very reasonable, because if we are restricted to execute only the 

*There is some notation disagreement between the testing (Hennessy 1988) and the confor­
mance communities. We have adopted the conventions of the first one to define [;;must, since 
in a testing scenario it seems natural to consider that a process is better than another one 
when it passes more tests, and it is usual to read greater than relations as better than. On 
the contrary, in (Tretmans 1996] testing ordering ~ •• is represented by i ~ •• s, probably 
to maintain the left to right convention between the implementation and the specification 
in the conformance relation. Finally, it is easy to check that the reduction relation red 
(Brinksma et al. 1986, Leduc 1992], which can be defined by i red s iff i conf s and 
Tr(i) ~ Tr(s), is equal to ~ •• above. In fact, this could be seen as a more convincing jus­
tification of the use of the left to right notation for the ordering, since in this alternative 
definition of the relation there is no reference to tests, and instead the stress is put on the 
conformance relation conf . 



Friendly testing as a conformance relation 285 

action a, it should not matter if we are also able to execute the action b. It is 
the case that the relation conf solves this problem; actually, a + b conf a. 
But this relation does not possess good formal properties. Probably, its most 
important weakness is that conf is not transitive, and thus neither an order 
relation. For example, it is easy to check that we also have a conf a EB (b; c) 
but not a+ b conf a EB (b; c), since after the possible execution of b by the 
specification, the implementation cannot execute the expected c, while this b 
plays no role when comparing a and a EB (b; c). 

G. Leduc has thoroughly worked on the theoretical study of conformance 
relations [Leduc 1991, Leduc 1992]. He has studied the equivalence induced 
by an implementation relation, which is defined by: 

81 imp-eq 82 iff Vi: (i imp 81 -¢=::::} i imp 82) 

Whenever imp is an order relation, it is immediate to prove that imp-eq is the 
usual equivalence relation induced by it, thus we have imp-eq = imp n imp - 1. 
But if imp is not an order relation, we only have imp-eq ~ imp n imp - 1. 
This is the case for conf , for which we have 

81 conf-eq 82 iff 81 conf 82 1\ 82 conf 81 1\ V t E Tr(81}- Tr(82): L E Ref(81, t) 
1\ V t E Tr(82)- Tr(81} : L E Ref(82, t) 

where L denotes the full alphabet of observable actions. The last two condi­
tions above are necessary indeed, as the following example shows: Let 81 = a 
and 82 = a; (STOP EB (b; c)); we have 81 conf 8 2 and 82 conf 81, but not 
81 conf-eq 82. As a matter of fact, conf n conf - 1 is not an equivalence 
relation, as the following example shows: Let 83 =a; (STOP EB (b; d)); we have 
81 conf 83 and 83 conf 81, but neither 82 conf 8 3 nor 83 conf 82. Finally, 
conf-eq is weaker than must-equivalence, since for 8 4 = a; (STOP EBb) we 
have 81 conf-eq 84, but 81 !lmust 84. 

Since conf is not an order relation, we need a stronger relation if we want 
to follow a refinement process to obtain implementations from specifications. 
Thus, confrestr is introduced, which is the strongest order relation weaker 
than conf which preserves that relation, that is, conf o confrestr = conf . 
The relation confrestr can be defined in any of the following alternative 
ways: 
• 81 confrestr 82 iff Vi : (i conf 8t => i conf 82). 
• 81 confrestr 82 iff 81 conf 82 1\ V t E Tr(82) - Tr(8t} : L E Ref(82, t). 
It is easy to check that conf-eq = confrestr n confrestr - 1. 

Based on these somehow negative facts about the two most extended rela­
tions, that is !;;;must and conf , we have looked for a compromise between them 
which could inherit the good properties of both, while avoiding their prob­
lems. As we already said, we think that to maintain a testing interpretation 
for a relation that will be the basis for the testing framework seems to be very 
desirable. So, we have tried to find a new notion of test, and of the passing 
of tests mechanism, by means of which the desired ordering could be defined 
following the usual testing way: an implementation is better than (or ade­
quate with respect to) a specification, relatively to our desired conformance 
relation, if it passes more tests than this last one. 



286 Part Five Conformance Testing 

It is clear that any relation defined in this way is an ordering. As an im­
mediate consequence we have that the conformance relation cannot be char­
acterized in this way. Thus we concluded that the adequate starting point for 

our new notion of testing was not the conformance relation conf , but the 
classical testing scenario defining !;;;;must. So we concentrated ourselves on how 
tests, and the passing of tests, are defined. 

As we will define in detail in the following section, tests are just processes 

over the alphabet of actions Act extended with a special action w to express 
successful passing of tests. We apply a test T to a process P by considering the 
system P II T; then, a computation succeeds whenever it reaches a point where 
the action w can be executed. If we consider must passing of tests as defined 
in [de Nicola & Hennessy 1984, Hennessy 1988), we have found that tests have 
the power to punish processes being able to execute actions. So, a !k a + b, 

since the former process passes the test (1 ; w) + (b; STOP), while the latter 
does not.* We are interested on a testing framework in which tests cannot 

punish processes when they are able to execute some action. This is why we 

call friendly testing to our new testing scenario, and we denote by ~fr the 
induced preorder. Intuitively, friendly tests can just reward with success when 
the desired traces are executed, but not to punish with a failure when some 
other traces are executable by the tested process. A possible interpretation 
of this fact leads to the conclusion that the problem comes because we allow 
both successful (w) and unsuccessful (STOP) terminations in tests, but this is 
not the case. In fact, if we restrict the set of tests to always successful tests, i.e. 
tests whose leaves are always labeled by w, nothing is gained, since we could 
always assume the existence of a new action reject, to be read as failure, such 
that any STOP (failure) termination in the original tests could be simulated 
by a reject ; w termination. 

We could think that if we are working with a language including an internal 
choice operator, as it is EB in (Hennessy 1988), then internal actions are not 
needed in order to have nondeterministic choices in tests. But, even in the 

presence of internal choices, the possibility of having internal actions increases 
the discriminatory power of tests, which does not seem to have a clear intuitive 
justification. Then it could be thought that all our problems would be solved 
just by considering tests without internal actions, and indeed this was our 
first attempt, but this is far from being true. We would get that STOP is the 
minimum element (if we do not allow divergent processes) since STOP only 
passes trivial tests. Moreover, a; STOP !;;;;rr a; P and so on; but unfortunately 
when there are choices among several observable actions, the problem still 
remains. For instance, a+ b would not be better than a because the test 
(a; w) + (b; reject; w) is passed by the latter process but not by the former. 
This means that we cannot just restrict the family of tests to reach our goal, 

*In (Hennessy 1988] the symbol 1 is used to denote internal actions. Other alternative 
notations are r and i. 



Friendly testing as a conformance relation 287 

but also the definition of test passing must change, if we desire to obtain 
a !;;;rr a+ b. 

In the following section we will show the adequate changes leading to our 
new notion of testing. Moreover, we will show that !;;;rr is indeed related with 
conf , as it was our intention. Actually, we have proved that !;;;rr is just the 
transitive closure of conf, namely conf*, which is the strongest order relation 
weaker than conf where, as usual, we say that !;;;1 is stronger that !;;;2 iff 
S1 !;;;1 Sz implies S1 !;;;z Sz. This is, in our opinion, a nice alternative to the 
original conformance relation conf , which solves most of its problems, and 
thus represents the searched compromise between conf and ~must, even if it 
is not somewhere between them, but instead it is weaker than both. Thus, 
we have followed the opposite direction that led to confrestr . The reason is 
very simple: when we studied the examples showing that conf is not an order 
relation we found no problem on taking conf* instead of conf , thus having, 
for instance, a+ b conf • a EB ( b; c). We think that the only reason because this 
is not allowed under conf is that conf was defined looking for an elegant 
solution in terms of traces and refusals, even if the obtained relation did not 
posses some good properties (for instance, being an order relation). 

The relation conf* was introduced in [Leduc 1992) where also some of its 
properties were studied. In particular, two interesting results are: conf* = 
conf o conf and conf* = ext o red . Both results will be somehow used in 
our proof of the fact that !;;;rr is equal to conf* . From this characterization 
one can find many interesting properties of this relation, which would be 
more difficult to obtain directly using its definition. For example, by means 
of this characterization we have defined a complete axiomatization which is 
obtained by adding a single axiom to that for must testing. Moreover, we 
also have obtained an explicit characterization based on acceptance sets (or 
equivalently on refusals). All these results contribute to get a justification and 
support offriendly testing (equivalently conf*) as a satisfactory conformance 
relation. 

The rest of the paper is structured as follows. In Section 2 we present our 
new notion of testing. We first introduce friendly testing for a particular class 
of processes that we call normal forms. Next, we define friendly testing for ar­
bitrary processes in our language. In Section 3, an alternative characterization 
of the friendly testing relation, based on a modification of acceptance sets, is 
defined. Section 4 is devoted to prove that !;;;rr is equal to conf*. Finally, 
in Section 5 we present our conclusions and sketch some of the results on 
friendly testing that we have obtained, including the complete axiomatization 
announced above. 

2 FRIENDLY TESTING: BASIC DEFINITIONS 

Since its introduction in [de Nicola & Hennessy 1984, Hennessy 1988) Testing 
Semantics has been broadly studied and used as a natural way to define an 



288 Part Five Confonnance Testing 

observational semantics with a reasonable power to distinguish semantically 
different processes. It is defined by observing the operational semantics of 
processes by means of tests. Tests are just processes which may execute a new 
action w reporting success of the test application. To define the application of a 
test to a process, we consider the different computations of the experimental 
system which is obtained by composing in parallel the test and the tested 
process. We say that a computation is successful if there exists a step in the 
computation such that the associated test can execute the action w. Since it 
is possible that some, but not all of the computations may succeed, we can 
distinguish three families of tests for each process: those whose computations 
are all unsuccessful, those for which some computations are successful, and 
those whose computations are all successful. From the last two classes of tests 
we define two different semantics which are called may and must semantics. 
A process P may pass a test T (in short P may T) if the composition of 
P and T has at least a successful computation, while P must pass T (in 
short P must T) if every computation is successful. By combining these two 
semantics we can obtain a third one: the may-must semantics. Two processes 
are (may, must) equivalent iff they pass (in the corresponding sense) the same 
tests. In addition to these equivalences, we obtain respective partial orderings 
between processes: Q is better than P if any test passed by P is also passed 
by Q. As a matter of fact , the previous equivalence notions are just the ones 
induced by the preorders, which could also be studied by themselves. 

It is well known that, for divergence-free processes, the different testing 
preorders and equivalences are related in the following way: 

• P ~must Q ===> Q ~may P 
• p :=:::may-must Q ¢::::::> p :=:::must Q and p :=:::must Q ===> p :=:::may Q 

As a consequence, the axiom P ~must P + Q is not fulfilled at all, and so the 
testing preorder does not capture the notion of conformance. 

In order to present our proposal, we will concentrate ourselves on a syntactic 
definition of processes, considering a process algebra, instead of using arbitrary 
transition systems. 

Besides we will follow a step by step approach, considering incrementally 
more general languages, because we think that this process contributes to 
a better understanding of the definition itself, and also of its properties. To 
make the comparison with classical testing semantics easier, we will work with 
the same signature considered in [Hennessy 1988), which is defined by: 

Definition 2.1 The set of finite processes, denoted by Proc, is defined as the 
set of expressions given by the following BNF -expression: 

P ::= STOP I a ; P I P + P I PEEl P 

where a E Act. For the sake of clarity we will omit trailing occurrences of 
STOP. 0 

Operator + corresponds with the external choice operator 0 in CSP, and also 



Friendly testing as a conformance relation 289 

with the same operator + in CCS when internal actions are not involved in 
the choice. Besides, EB corresponds with the internal choice operator n in CSP. 
All the actions in Act are assumed to be visible. 

In order to introduce friendly testing, we will first consider finite processes 
in normal form. They are defined by the following BNF expression: 

NFP ::= EB PA, where PA E DP ::= L (a; Pa), and Pa E NFP 
AEA aEA 

where A~ P,(Act), A is non-empty, and E9 and I: are the obvious gener­
alizations of EB and + to an arbitrary (but finite) number of arguments. By 
convention E9 AE{0} represents the process STOP. 

As usually, tests will be just processes over the alphabet Act U { w}. For the 
same reasons that for processes, we will consider a restricted version of tests: 
those finite deterministic tests with acceptance actions at the end of each 
trace. We will show that this family of deterministic tests is a set of essential 
tests, in the sense that whenever two processes are not friendly equivalent 
then there exists a deterministic test distinguishing them. Deterministic tests 
are defined by the BNF expression: 

DT::=wl L a;DT 
aEA~Act 

In Figure 1 we give a graphical representation of (a) normal forms and 
(b) deterministic tests. Note that we could see deterministic tests as a par­
ticular case of normal forms for which JAJ = 1. 

Definition 2.2 Given a normal form process Panda deterministic test T, 
we say that P friendly passes T iff 

1. T = w, or 
2. P = EBAEA PA, and for each A E A, PA friendly passes T, or 
3. P = L:aEA(a;Pa), T = L:bEB(b;Tb), and there exists some a E AnB such 

that Pa friendly passes Ta. 
0 

Note that this definition, although recursive, is sensible since it is well 
founded as far as we only consider finite tests. Let us note that the first 
two cases of this definition are equivalent to those for classical must testing. 
The differences appear in the last case. If we are testing a generalized ex­
ternal choice, and the test offers several of the actions in the choice, we do 
not impose that all the possible computations must succeed; on the contrary, 
we only impose that the computations starting with one of the (common) of­
fered actions succeed. In Figure 1 (c) we illustrate this definition. In order to 
friendly pass the test, it is enough that all the computations that are obtained 
by following the arrows succeed. Next, we compare our definition with the 
plain must testing by means of an illustrative example. 



290 Part Five Confonnance Testing 

Figure 1 Normal Forms, Deterministic Tests, and P friendly passes T. 

Example 2.3 Let us consider the following processes P1 = a; Pa, P' = 
(a; Pa) + (b; Pb), P2 = P1 EB P', and P" = (a; Pa) EB (b; Pb) · LetT = 
(a; w) + (b; STOP). It is easy to check that under the classic notion of testing 
we have P1 must T but not P2 must T. The reason for this is that in order to 
get P2 must T all the computations of P2ll T must be successful. In particular, 
this must be true for the computations of P' II T. But when we apply a test 
like T, offering several actions that could be executed by the tested process, 
it does not matter if the involved choices in this process are either internal or 
external. So, for this kind of tests we have P' must T iff P" must T. • Such a 
behavior could be justified by the assumption of testing being the only way 
to observe the behavior of the tested process. As a matter of fact, and even 
if that would have no effect in its definition of passing tests, [Hennessy 1988] 
does not label the transitions of experimental systems of the form P II T. 
As a consequence, the computations tree corresponding to both P' II T and 
P" II T are equivalent. On the contrary, we consider that the test is not the 
final way to observe the behavior of the process. Thus, we do not hide the 
synchronization actions, and so we maintain some information which allows 
us to distinguish P' II T and P" II T. This is indeed the case, because if we 
apply the classic (expansion) axioms for the parallel operator we obtain on 
the one hand P' II Act T ~(a; (Pa II Act w)) + (b; (Pb IIAct STOP)), while on the 
other hand P" IIAct T ~(a; (Pa IIAct w)) EB (b; (Pb IIAct STOP)) . So, under our 
notion of friendly testing we have that P' and P" can be distinguished by the 

*It is clear that P' and P" can be distinguished under plain must testing by a test like a;w. 
In fact, if this would not be the case, they could neither be distinguished under friendly 
testing. However, it is interesting to observe that P' and P" cannot be distinguished under 
must testing by a test like T that offers both a and b; on the contrary, under friendly testing 
we are able to distinguish P' and P" by such a test. 



Friendly testing as a conformance relation 291 

test T. Thus we have P2 friendly passes T, and in fact it is the case that for 
any test T' we have P1 friendly passes T' iff P2 friendly passes T'. 0 

Then, our justification of the way friendly test passing is defined is that the 
observer maintains the control, even after a test is applied, as far as external 
choices remains, as it is the case for process P' in the example above. In such 
a case the observer can select the action to be executed taking into account 
when a success (or more exactly, when a set of successful computations) will 
be reached. The existence of such an action is enough to pass the test. In this 
way the computations leading to a failure could possibly be avoided, and a 
test that is not passed in the classic way could be friendly passed. 

The reader could think this new notion of passing tests is much more in­
volved than the classic one, but we advocate that this is not the case. Actually, 
if we consider a recursive definition of the classical notion of must test passing 
for normal form processes, we see that it can be obtained from our definition 
of friendly test passing just by changing the existential quantification in the 
third condition of Definition 2.2 by a universal quantification. Anyway, one 
could insist on the fact that to impose that all the computations have to be 
successful is simpler than to check our (apparently) more complicated condi­
tion, but this is not the case. In order to check any of these notions we must 
(in the worst case) explore the full tree of computations; sometimes to check 
must testing will be faster (when the test fails) , and sometimes it is faster to 
check friendly testing (when the test is successfully passed) . Next we present a 
collection of examples showing the strength and properties of our new notion 
of testing. 

Example 2.4 

1. PtBQ~rrP. This is because we already had PtBQ~mustP, and in general we 
have P~mustQ ==> P~rrQ. As a particular case we have atB(a+b)!;;;;:rra+b. 
On the contrary, we have (a;c) tB (b;c)grra+b, since the test (a;c;w)+(b;c;w) 
is friendly passed by the former process but not by the latter. 

2. a ~fr a+ b. Note that under our notion of testing we cannot punish the 
second process when applying a test like (a; w) + (b; c; w). Even if the 
computation executing b will not succeed, we can select instead the com­
putation executing a, which immediately succeeds (note that this test is 
not passed by the second process in the must sense). Actually, we have 
P ~fr P + Q whenever the sets of actions that can be executed by P and 
Q in their first steps are disjoint . 

3. a tB (a+ b) ~fr a, because on the one hand we have a tB (a+ b) ~fr a, again 
as a particular case of the property asserted in 1. On the other hand, note 
that a tB a ~fr a and then we can apply the fact that all the operators of 
the language are monotonic with respect to the friendly testing relation. 

0 



292 Part Five Conformance Testing 

2.1 Friendly Testing for arbitrary finite processes and tests 

In this section we will consider arbitrary finite processes and tests generated by 
the syntax given in Definition 2.1. The operational semantics of the language 
is defined as in [Hennessy 1988]: 

P~P' 
P+Q-4P' 

a;P-4P 

Q-4Q' 
P+Q~Q' 

P$Q>---?P 

P>---+P' 
P+Q>---+P1+Q 

The following conventions will be used: 

P$Q>---?Q 

Q>---+Q' 
P+Q>---+P+Q' 

P 2...t stands for 3P': P ~ P', P ..!!:..;+for ~P' : P 2...t P', 
P-It for ~P',a : P ~ P', 
P ~ for 3P' : P ~ P', P >-/+ for ~P' : P ~ P', and 
~· for the transitive and reflexive closure of~-

Moreover, for s = a 1 , ... , an we write P ~ P' if there exist P1 , ••• , Pn, 
P{ , .. . , P~ such that P ~· H ~ P{ ~· P2 · ··Pn ~ P~ ~· P'. 

Tests are just finite processes over the alphabet Act U { w}, and the pre­
vious operational semantics is also valid for tests. We define the operational 
semantics of experimental systems, P II T, by 

P -4 P' 1\ T -4 T' 

PIIT -4 P' liT' 
p >--+ P' 

p II T >--+ P' II T 
T >--+ T' 

p II T >--+ p II T' 

Let us remark that , in contrast with the classical testing semantics, we do 
not hide the actions that experimental systems execute. Now, we introduce 
some auxiliary concepts for the definition of friendly testing. 

Definition 2.5 Let P be a process. We say that Pis stable if P >-f+. More­
over, given a test T we say that a configuration P II Tis stable if P II T >-/+. 

Given a process P and a E Act, we define the process P after the execution 
of the action a, denoted by Pja, as Pfa = E9{P' I P d:;. P'} . 0 

Definition 2.6 (Friendly Test Passing). Given a process Panda test T , we 
say that P friendly passes T if the following conditions hold: 

• If P II T is stable, then either T ~, or there exists some a E Act such 
that P II T ~ and (P/a) friendly passes (T/a). 

• If P II T is not stable, then for each P', T' such that P II T ~ P' II T' we 
have P' friendly passes T' . 

0 



Friendly testing as a conformance relation 293 

Let us remark that the first condition in the previous definition is equivalent 
to the following one: If P II T is stable, then either T ~ , or there exist 
P', T', a E Act such that P II T -!4 P' II T', and for all P", T" such that 
P II T -!4 P" II T", we have P" friendly passes T" . Thus it is easy to check 
that the definition above is an extension of the one for normal forms. 

Next we present some properties of the general definition of friendly testing. 
The proofs, by structural induction, are easy. 

Proposition 2. 7 Let P, P1 , P2 be processes, and T, T1 , T2 tests. We have 

1. P friendly passes w. 
2. P friendly passes Tt EB T2 iff P friendly passes both Tt and T2. 
3. Pt EB P2 friendly passes T iff both Pt and P2 friendly pass T . 

4. If Pt, P2 are stable, and {a I P1 -!4} n {b I P2 --4} = 0 then for any 
test T we have P1 + P2 friendly passes T iff P1 friendly passes T or 
P2 friendly passes T. 

5. If P must T then P friendly passes T. 

Definition 2.8 Let P, Q be processes. We write P ~fr Q iff for all test T 
we have P friendly passes T implies Q friendly passes T. Besides, we write 
P :::::ifr Q iff P ~fr Q and Q ~fr P. 0 

Concluding this section we state a result showing that deterministic tests 
constitute indeed a set of essential tests. 

Proposition 2.9 Let P, Q be processes. Then we have P ~fr Q iff for any 
deterministic test T whenever P friendly passes T we also have that Q friendly 
passes T. 

3 ALTERNATIVE CHARACTERIZATION OF ~rr 

In this section we provide an alternative characterization of the friendly testing 
preorder given in Definition 2.8. This characterization is based on a modifi­
cation of acceptance sets [Hennessy 1988]. These adapted acceptance sets are 
called friendly acceptance sets. The last result of the previous section will be 
very helpful in order to prove that the preorder induced by the alternative 
characterization is equivalent to ~fr· 

Definition 3.1 Let P be a process, and s = a1 , ••• , an a (possibly empty, 
denoted by t) sequence of actions. We define the following concepts: 

• Initial actions of P: S(P) ={a I P ~ }. 

• Acceptance sets of P after s: A(P,s) = {S(P') I P ~ P'}. 



294 Part Five Conformance Testing 

• friendly acceptance sets of P: F( P) = {A E A( P, t:) I~A' E A(P, t:) : A' <; A} 
D 

Note that we have defined friendly acceptance sets of a process only for the 
empty trace. Anyway, friendly acceptance sets for each trace s = a1, ... , an 
could be defined as the friendly acceptance sets of the process ((P/a1 ) ···)/an. 
By comparing the friendly acceptance sets of processes we can obtain a new 
preorder. This preorder is obtained by adapting the preorder for acceptance 
sets to the new setting. 

Definition 3.2 Let P, P' be processes. We write P«crP' iffor all A' E F(P') 
there exists A E F(P) such that A~ A', and for all a E A, Pja «cr P' fa. D 

Now we will prove that the preorders !;rr and «rr coincide. We split the 
proof in two parts. 

Theorem 3.3 Given P and P' be processes, we have P!;;;;crP' implies P«crP'. 
Proof: The proof will be done by the contrapositive, and structural induction. 
Let us suppose P ~fr P', then there exists some A' E F(P') such that one of 
the following conditions hold: 

e VA E F(P) : A g; A', or 

e VAEF(P): (A~ A'==? 3aAEA: P/aA~crP'/aA)· 

As a matter of fact the first case is just a particular case of the second, but 
we think that by considering first this particular case we contribute to make 
the proof more understandable. 

In the first case we construct a set S including for each A E F(P) one 
action in A- A' . Then, if we consider the deterministic test T = EaeS a; w, 
we get P friendly passes T but P' does not . 

In the second case, by induction hypothesis we can assume that for each 
A ~ A' there exists TaA such that P /a A friendly passes TaA, but P' /a A does 
not. Besides, for each A" E F(P) such that A" g; A' we take a A" E A" - A', 
and we consider the deterministic test 

T= L: 
A C A' 
A E :F(P) 

L: 
A"!;?; A' 
A" E :F(P) 

It is easy to check that P friendly passes T but P' does not, since each P /a A 

does not friendly pass the test TaA. D 

Theorem 3.4 Given P and P' processes, we have P «rr P' implies P !;rr P' . 
Proof: Let T be a deterministic test such that P friendly passes T. We will 
prove, by induction on the depth of T, that P' also friendly passes T. 



Friendly testing as a conformance relation 295 

If depth(T) = 1 then T = w and the result is trivial. Otherwise we have 
T = L:iEI ai ; Ti . Then, in order to check that P' friendly passes T we have 
to show that for each A' E A(P', t:) there exists some a' E A' with a' = ai, 
for some i, and such that P /a' friendly passes Ti. Since for any A' E A( P', t:) 
there exists A" E :F(P') such that A" ~ A', it is enough to prove the previous 
property for the sets in :F(P'). 

Given that P«r.P' , we have that for any A' E :F(P') there exists A E :F(P) 
with A ~ A' such that for all a E A : P /a «rr P' /a. By hypothesis P friendly 
passes T, and thus there exists a E A, with a = ai for some i, such that 
Pfa friendly passes Ti · Therefore we can take a' =a= ai, and by applying 
the induction hypothesis we obtain P' fa' friendly passes Ti, and thus we 
conclude P' friendly passes T. 0 

Corollary 3.5 Let P, P' be processes. Then P «rr P' ~ P ~fr P'. 

4 RELATION BETWEEN conf* AND ~fr 

In this section we will prove that the relations conf* and ~fr are the same. 
First, to make easier the comparison with the conformance relation conf , 

we give a characterization of ~fr in terms of refusals. We have obtained an 
explicit non-recursive characterization by introducing the notion of friendly 
admissible sets of tmces which gathers the information about the traces that 
must be taken into account to friendly compare two given processes. 

Definition 4.1 Given two processes P, P' we define the family of friendly 
admissible sets of tmces for them, denoted by :Fat(P, P') , as the class of sets 
S verifying the following conditions: 

•t:ES 
e t E S ~ V R' E Ref(P', t) 3R E Ref(P, t) : (R' ~ R 1\ V a fl. R: ta E S) 

0 

Theorem 4.2 Given two processes P, P' we have: 

P ~fr P' iff 3 S E :Fat(P, P') Vt E S: Ref(P', t) ~ Ref(P, t) 

Let us remark that the condition on the traces of S in the formula above 
is already coded in the definition of friendly admissible sets of traces and 
thus could be removed here, but we include it in order to make easier the 
comparison with conf . 

Corollary 4.3 P' conf P => P ~fr P'. 
Proof: We only have to notice that for any S E :Fat(P, P') whenever we have 
t E S we also have t E Tr(P'). 0 



296 Part Five Conformance Testing 

Let us note that t E Tr(P), too. This means that only common traces have 
to be explored. This makes possible P' being friendly better than P when the 
former has either more or less traces than the latter. 

The following two theorems prove the desired equivalence between conf* 
and l;rr· 

Theorem 4.4 Let P, P' be processes. We have P conf* P' ~ P' !;rr P. 
Proof: Trivial, just noticing that conf* is the transitive closure of the relation 
conf, that P conf P' ~ P' l;rr P (Corollary 4.3), and that l;rr is an order 
relation. D 

Theorem 4.5 Let P, P' be processes. We have P [;cr P' ~ P' conf* P. 
Proof: We will present the proof for normal form processes. In order to extend 
it to arbitrary processes, we would use the result in [Hennessy 1988] saying 
that any finite process can be transformed into normal form up to must­
testing equivalence, and the fact that !;must is stronger than [;rr· 

Let P1, P2 be normal form processes such that P1 l;rr P2. We will prove by 
induction on the depth of P1 that we also have P2 conf* H. 

If depth(PI) = 0 we have P1 =STOP, and so we trivially get P2 conf* P1. 
Let depth(PI) = n + 1 with P1 = ED AEA P1 and P2 = ED BEB P~ such 

that P1 l;rr P2. Then we have that for any B E B there exists some AB E A 
such that AB ~ Band for all a E AB we have PI/a ~fr P2la. Then, if we 
take A' = { AB I B E B} we have that for any a E A' with A' E A', we also 
have P1 I a ~fr P2 I a. This means that if we consider P{ = ED A' EA' P1,, and we 

define P~ = EBBeB PJJ, where PJJ = EbeB P'~ and 

if 3 A' E A' : b E A' 
otherwise 

we have P~ conf P{. Besides, by applying induction hypothesis, we have that 
VA' E A',a E A' : P2la conf* PI/a. Given that conf is substitutive in 
the context of the arguments of normal forms, if we recover the original con­
tinuations of P2, by substituting those from P1 in P~ by those from P2, we 
conclude P2 conf* P{, and since obviously we have P{ conf P1, we finally 
obtain P2 conf* P1. D 

It is interesting to observe that it is just this final step of the proof which 
makes (in general) not possible to conclude P2 conf P1o since when relating P2 
and P1 by using an intermediate process P{, we have that P{ is a restriction 
of P1 (i.e. P{ red H) while P2 could extend P{ (i.e. P2 ext P{), and if we 
eliminate this intermediate process we could obtain some common traces that 
conf must explore, what !;rr only partially does. Let us note that we could 
make a more detailed proof to directly conclude !;rr = ext o red, but given 
that conf* = ext o red !Leduc 1992], it is enough to prove !;rr = conf* 
even if we were interested in the final characterization !;rr = ext o red. 



Friendly testing as a conformance relation 297 

Corollary 4.6 Let P, P' be processes. We have P l;rr P' {:::::} P' conf* P. 

5 CONCLUSIONS AND FURTHER WORK 

We have presented a new kind of testing, friendly testing, which proves to 
behave as a conformance relation better than the classical must testing does. 
This is because we reduce the power of tests in such a way that processes 
cannot be punished when they are able to execute more actions than others. 
More exactly, we have proved that the order relation induced by friendly 
testing is just the transitive closure of the conformance relation, conf. As a 
consequence we have obtained an interesting characterization of this relation, 
from which many properties of it can be derived. 

In [Frutos-Escrig, Llana-Diaz & Nunez 1997] we have developed a full theory 
offriendly testing similar to that for classical testing (Hennessy 1988]. First, we 
have adapted the results in this paper to deal with general labeled transitions 
systems which in particular cover the case of recursive processes. Moreover, 
we have provided both a denotational model and a complete axiomatization. 
This axiomatization is obtained by adding to the set of axioms for must testing 
in (Hennessy 1988] the following one 

L a ; Pa :5£r L a ; Pa whenever A ~ A' 
aEA aEA' 

In order to obtain both, the denotational model and the complete axiomati­
zation we have found an important technical problem: as it was the case for 
conf , conf* is not substitutive for arbitrary contexts. More exactly, we have 
that l;rr is not a pre-congruence with respect to the external choice operator, 
as the following example shows: 

STOP E!) b ; P ~fr STOP 
(STOP 61 b; P) + b; Q ~fr b; (P 61 Q) ¢rr b; Q ~fr STOP+ b; Q 

The problem disappears if there are no interferences between the offerings of 
the two involved processes. 

In the axiomatization we only have to substitute the external choice sub­
stitutivity axiom for a more restrictive version covering the case where the 
involved processes do not offer any common action, to obtain a sound system 
for friendly testing which can be proved to be also complete by adequating 
the concept of normal form to the new framework, by means of the charac­
terization by friendly acceptance sets. 

Concerning the denotational semantics, it is obvious that we cannot obtain a 
fully abstract model, since the friendly testing equivalence is not substitutive. 
This leads to study the weaker pre-congruence l;rrext stronger than l;rr· 

We have seen that the relation l;rrext, which is the pre-congruence induced 
by l;rr, is somewhere between l;rr and !;must, but closer to the first than to 
the last. In fact, we still have that l;rrext is not stronger than conf (it is not 
weaker either).Thus if we work under l;rrext we still have a rather satisfactory 



298 Part Five Confonnance Testing 

behavior as expected for a conformance relation. Besides l;;;rr is almost a pre­
congruence and so we can, in most of the contexts, substitute a process by 
another related by that relation, with the guarantee that the relation will be 
preserved. 

REFERENCES 

Brinksma, E. [1988), A theory for the derivation of tests, in 'Protocol Speci­
fication, Testing and Verification VIII', pp. 63-74. 

Brinksma, E., Scollo, G. & Steenbergen, C. [1986) , LOTOS specifications, their 
implementations and their tests, in 'Protocol Specification, Testing and 
Verification VI' , pp. 349-360. 

Cavalli, A., Favreau, J. & Phalippou, M. [1996), 'Standardization of formal 
methods in conformance testing of communication protocols', Com­
puter Networks and ISDN Systems 29, 3-14. 

Frutos-Escrig, D., Llana-Diaz, L. & Nuiiez, M. [1997), Introducing friendly 
testing, Technical Report DIA 53/ 97, Dept. Informatica y Automatica. 
Universidad Complutense de Madrid. 

de Nicola, R. & Hennessy, M. [1984) , 'Testing equivalences for processes' , 
Theoretical Computer Science 34, 83-133. 

Hennessy, M. [1988), Algebraic Theory of Processes, MIT Press. 
Hoare, C. [1985), Communicating Sequential Processes, Prentice Hall. 
JTC1/ SC21 / WG1/Project 54.1 [1995a], 'FMCT guidelines on Test Genera-

tion Methods from Formal Descriptions'. 
JTC1/ SC21/ WG1/ Project 54.1 [1995b], 'Working Draft on "Framework: For­

mal Methods in Conformance Testing'". 
Leduc, G. [1991], Conformance relation, associated equivalence, and minimum 

canonical tester in LOTOS, in 'Protocol Specification, Testing and 
Verification XI', pp. 249-264. 

Leduc, G. [1992], 'A framework based on implementation relations for imple­
menting LOTOS specifications', Computer Networks and ISDN Sys­
tems 25(1), 23-41. 

Tretmans, J . [1996), 'Conformance testing with labelled transition systems: 
Implementation relations and test generation' , Computer Networks 
and ISDN Systems 29, 49-79. 


