
15
Validating Protocol Composition for Progress by
Parallel Step Reachability Analysis

Gurdip Singh*
Dept. of Computing and Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, KS 66506, singh@cis.ksu.edu

Hong Liu
Bellcore Applied Research, MCC 1J-222R
445 South Street, Morristown, NJ 07960, lhong@bellcore.com

Abstract
In this paper, we propose a parallel step exploration technique for protocol validation in the
context of protocol composition. A protocol is modeled as a network of extended communicating
finite state machines (ECFSM's). A composite protocol is defined as an interleaved execution of a
set of component protocols subject to a set of constraints such as &ynchronization, ordering and
inhibition. By encoding the constraints into the component protocols and the analysis algorithm,
our method keeps each process in the component protocols as a separate entity and performs
validation without constructing the composite protocol explicitly. We show that our technique not
only achieves significant state reduction but also preserves the progress property of the composite
protocol in the reduced state space. To our best knowledge, this is the first attempt to adapt
existing state reduction techniques to the validation of protocol composition.

1 INTRODUCTION

Designing a correct protocol is a challenging task due to the complex interactions among com­
municating entities. One way to tackle the complexity in protocol design and analysis is through
compo&ition, where one divides the functionality of a protocol into subfunctions, develops com­
ponent protocols for the subfunctions, and then combines them to obtain the composite protocol
for the original problem. (CGL85, CM86, LT93, S94a] discuss methods for constructing a mul­
tiphase protocol,whereas (Lin88, Lin91, S93, S94bj study techniques for constructing protocols
which performed multiple functions at the same time.

All these techniques impose sufficient conditions on the component protocols so that properties
of the composite protocol can be inferred from those of the component protocols (which are
smaller in size and therefore easier to analyze). While the analysis of the composite protocol is
avoided, the sufficient conditions restrict the class of protocols that can be composed - one might
still be able to construct correct protocols from a set of component protocols which do not satisfy
those conditions. In this setting, the composite protocol needs to be validated for correctness.

Many techniques have been proposed to tackle the &tate ezplo1ion problem in protocol validation
by eliminating redundant interleaving of independent transitions in different processes during state
exploration. (Informally, two transitions are independent if they cannot enable or disable each

*This work wu aupported by NSF under grant• CCR9211621 and CCR9602606.

Formal Description Techniques and Protocol Specification, Testing and Verification
T. Mizuno, N. Shiratori, T. Higashino & A. Togashi (Eds.) © 19971FIP. Published by Chapman & Hall

240 Part Four Verification Technique

other; otherwise they are dependent.) The portial order based techniques [V90, HGW92, GW93,
GW94, P93, P94, LM96c) select a representative sequential execution for each set of equivalent
transition sequences, while other techniques allow more than one process to make progress in a
single step [YG82, RW82, 1183, GH85, ZB86, CR93, OU94, LM96a, LM96b, LM96c, SU96].

In this paper, a protocol ia modeled as a set of extended communicating finite state machines
(ECFSM's). A composite protocol is then modeled as an interleaved execution of a set of compo­

nent protocols subject to a set of constraints such as &ynchronization, ordering and inhibition.
The ordering constraint was used for sequential composition in [S94a], while the synchronization
constraint was used for parallel composition in [593, S94b] . These constraints can be combined to
produce a variety of composite protocols, such as serial-parallel compositions. Other than those
constraints, we impose no additional restrictions on the component protocols.

Although existing techniques can potentially reduce the state space drastically, they might not
be most effective if applied to the composite protocol directly. Suppose we construct R from two
component protocols P and Q, and a set of constraints by composing P; and Q; into R; at each
site i. By definition, independent transitions can only come from different processes. However, in
constructing R; from P; and Q;, we are in fact putting many originally independent transitions
between P; and Q; into R; to make them artificially dependent for subsequent validation.

To achieve greater state reduction, we propose a modification to the parallel step reachability
analysis [OU94] that keeps P; and Q; as separate entities so that both can make progress in
parallel during state exploration. This provides us with a much larger set of independent actions
and allows us to exploit concurrency between actions in the component protocols. By encoding the

constraints into each process and the validation algorithm, we are able to enforce the composition
constraints on-the-fly. We show that our technique significantly reduces the state space explored
while preserves the progress property of the composite protocol.

The rest of the paper is organised as follows: Section 2 introduces the extended communicating
finite state machines as the model for protocol specification; Section 3 formally specifies the
composition constraints and presents a algorithm to construct a composite protocol. Our parallel
step reachability analysis technique is described in Section 4. An example is given Section 5.
Conclusion and future work are given in Section 6. Due to apace limitations, we only outline the

algorithms and omit the proofs of theorems. Please refer to the full paper [SL97) for details.

2 THE ECFSM MODEL

A communication protocol P is modeled as a network of n ~ 2 e%Unded communicating finite
•tote rn4Chine• (ECFSM'a), denoted as P = P1IIP2 jj •. • UP,.. Each P; is a finite state machine
with local variables, denoted as (A;, V;, X;, T;, z?), where A; is a finite set of actiom, V; is a finite

set of local variGble1, X; is a finite set of local 1tatu, T; is the tromition relation, and z? is the
initial local state. Processes exchange messages via uni-directional FIFO channel.. The channel
from P; to P; is denoted as C;;, bounded by a positive integer B;;. The content of C;; is denoted
as Cij· Cij = € if C;; is empty. Define fir•t(c;;) = m if Gj = m · C:;; first(c;;) = E if Gj = € .

An action a E A; is ofthe form en(a) --+a, where en(a) is a boolean function on v;, called the
enabling condition of a, and a is the associated computation consisting of a non-empty sequence of

1tatement. separated by ";". A statement is either a local statement involving only local variables,
a 1end statement P;!m appending m at the end of channel C;;, or a receive statement P;?m
removing m from the head of channel C;; if /irat(c;;) = m. We assume that each action contains

Validating protocol composition for progress 241

at most one send or receive statement. We omit the enabling condition if it is identically true.
The transition relation T; consists of tuples of the form (.t;, a,.t;), also denoted as .t; ~ .t: or
.tucc(.t;, a) = "':. T; is assumed to be deterministic but can be partially defined. We usually refer
to transition (.t;, a, .t:} as transition a defined at .t;, or transition a if .t; is clear from the context.

Let < v; > be the tuple of values of the local variables of V;. A 1tate of P; is defined as
.t; = (z;,< v; >).The initial state of P; is denoted as .t? = (z?,< v? >),where< v? >are the
initial values of the local variables. We assume that each local variable has a finite domain. So
each P; has a finite number of states. A global 1tate of P is defined as Sp = (< .t; >, < e;; >),
where '' denotes the state of P; and c;i denotes the content of channel Cii · The initial global
state of P is denoted as SJ, = (< s? >, < t;; >), where t;; denotes e;; = E.

Given a global state Sp = (< .t; >, < c;; >) and a transition a defined at .t;, let .ttmt be
a statement of a . .ttmt is enabled in Sp iff {1) en(a) is true in Sp; {2) if .ttmt = P;!m then
lct;l < B;; in Sp; and (3) if .ttmt = P;?m then c;; = m · cj; in Sp . Transition a is enabled in Sp
if all the statements in a are enabled in Sp; otherwise it is di.tabled in Sp. The set of enabled and
disabled transitions in Sp are denoted as enabled(P;, Sp) and di.tabled(P;, Sp), respectively.

The execution of a in Sp is assumed to be atomic. If a is executed, it will result in a global
state Sj, of P such that (1) •: = .tucc(.t;, a); (2) c:; = e;; · m if a contains a send statement
P;!m; {3) c;; = m · cj; if a contains a receive statement P;?m; and {4) the rest of the elements
in S~ remain the same as those in Sp. We sayS~ is directly reachable from Sp via a, denoted

as Sp ~ Sj, or S}. = .tucc(Sp,a). Sj, is directly reachable from Sp, denoted as Sp >-+ Sj,, iff
Sj, = .tucc(Sp,a) for some action a. Denote >-+• as the reflexive, transitive closure of>-+. Sj, is
reachable from Sp iff Sp >-+• S~. When Sp = SJ,, Sj, is a reachable global state. A reachable
global state Sp is non-progre.t.t if there is no transition enabled in Sp. The set of reachable global
states of P is denoted as Rp.

Suppose Sp >-+• SJ,, an ezecution .tequence from Sp to S}. is a finite sequence ez ~ ~ ..!!...
Z), ~ . .. ~ z;,k? 0, such that Z~ = Sp,z; = S~, and Vh,1 ~ h ~ k : Z} =
.tucc(z~-l, t,.). When Sp = SJ,, ez is called an execution sequence for Sj.. The length of ez
is defined as the number of transitions in ez, denoted as iezl = /; ? 0. The set of execution
sequences from SJ, is denoted as beh.avior.t(P).

Two transitions a and bare independent in a global state Sp if: (1) If a is enabled in Sp, then
b is enabled in Sp iff it is also enabled in .tucc(Sp, a); and (2) If b is enabled in Sp, then a is
enabled in Sp iff it is also enabled in .tucc(Sp, b); and (3) If both a and bare enabled in Sp, then
.tucc(.tucc(Sp,a),b) = succ(.tucc(Sp,b),a). Otherwise, a and bare dependent. By definition, all
transitions in the same process are dependent.

Since we assume that each local variable in P; has a finite domain, each channel has a finite
capacity, and a send statement is blocked if the destination channel is full, it follows that Rp is
finite. As a result, it is decidable whether P has the required progress property.

3 COMPOSITION OF PROTOCOLS

The composite protocol R from P and Q is defined as an interleaved execution of P and Q at each
site subject to a set of constraints. Without Joss of generality, we make the following assumptions:
(1) P and Q have the same number of processes, with P; and Q; running at site i. R; is constructed
from P; and Q; and a set of constraints on their actions. (2) The send and receive statements

242 Part Four Verification Technique

from P; and Q; operate on the same set of channels in R;. So each send statement P;!m (Q;!m')
from P; (Q;) is renamed as R;!m (R;!m'), and each receive statement P;?m (Q;?m') from P;
(Q;) is renamed as R;?m (R;?m'); (3) The message sets of P; and Q; are disjoint, and so are the
local variable sets. This can be ensured through proper renaming; (4) The bound on a channel in
R is the sum of the bounds on the same channel in P and Q.

3.1 Specifying the Constraints

We first define a erose product operator x for P; and Q;. Let P; = (pA;,pV;,pX;,pT;,pz?)*
and Q; = (qA;,qV;,qX;,qT; ,qz?) Then G; = P; x Q; is an ECFSM (gA;,gV;,gX;,gT;,gz?)
such that gA; = pA; UqA;,gV; = pV; UqV;,gX; = {(pz;,qz;)l(pz; E pX;) A (qz; E qX;)} and
gz? = (pz?, qz?) . A state of G; is denoted as ga; = (gz;, < v; >).The initial state of G; is denoted
as ga? = (gz?, < v? >). ga; and ga? can be rewritten as (ps;, qa;) and (pa?, qa?), respectively. gT;
consists of tuples of the form (g.t;, c, g.ti), where ga; = (p.t;, q.t;) and g.t: = (ps:, q.ti), such that if
c EpA;, then (ps;,c,p.t;) E pT; and q.ti = qs;; if c E qA; , then (qa;,c, qs;) E qT; and pai = p.t; .

Let G = G1i1Glll· .. IIGn be the resulting protocol, denoted as G = P x Q. The set of
constraints on P; and Q; are imposed on the set of behaviors of G . We have identified three
types of constraints: synchronization, ordering and inhibition. These constraints are specified
as pairs of actions (a, b) or (b, a), where a and b are actions of P; and Q;, respectively. Let

ez ~ .5& .i4 S}; .!4 ... ~ S~ be an execution sequence of G, where .5& is the initial global
state of G. Let az and bz be the z'" occurrence of a and b in ez, respectively; and 1. and lb be
the number of occurrences of a and bin ez, respectively.

• ez satisfies the synchronization comtraint (a, b) between P; and Q; if (1) lla- I• I S 1; and
(2) V z,l S z S min(l.,l.): Let t,. = az and t1 = bz, if h < l then both a and bare enabled
in s~-l and V j, h < j < l : t; is not an action of P; or Q;. A similar condition must hold if
l < h; and (3) If !0 > lb and the last occurrence of a inez is t,., then both a and bare enabled
in s~- 1 and V j, h < j S lc : t; is not an action of P; . or Q;. A similar condition must hold for
lb > l0 • The set of synchronization constraints of P; and Q; is denoted as synch(P;, Q;).

• ez satisfies the ordering constraint (a, b) from P; to Q; if 0 S Ia - l& S 1 and V z, 1 S z S l&:
(1) If bz = t,. then 3tr,l < h: tr = az; and (2) if az = t,. and z > 1 then 3tr,l < h: tr = bz- 1 •

The set of ordering constraints from P; to Q; is denoted as order(P;, Q;). The set of ordering
constraints from Q; toP;, denoted as order(P;, Q;), can be defined similarly.

• ez satisfies the inhibition comtraint (a, b) from P; to Q; if the following condition is satisfied:
If t,. = a 1 then there is no t1 such that l > h and tr = bz for any z > 1. The set of inhibition
constraints from P; to Q; is denoted as inhibit(P;, Q;). The set of iiiliibition constraints from
Q; to P;, denoted as inhibit(Q;, P;), can be defined similarly.

Let conatraint&(P;, Q;) be the set of constraints imposed on site i. Then constraint(P, Q) =
U:=l constraint.t(P;, Q;) is the set of constraints for composing P and Q. Even though they are
defined with respect to (w .r .t) a finite execution sequence, they also apply to infinite behaviors
of G. We say an infinite execution sequence satisfies a constraint if every prefix of the sequence
satisfies the constraint. Note that while the set of synchronization constraints is a symmetric
relation, the sets of ordering and inhibition constraints are not. For the latter two types, we need
to distinguish the cases where P; takes precedence over Q; from those where Q; takes precedence

*We add a prefix p lo alllhe elemenla of prolocol P. The aame convention appliealo prolocola G, H, Q and R.

Vulidating pmtocol compo.~ition j(n·pmgrl'ss 243

over P;. We impose the following four requirements for corutrainti(P;, Q;) to be well-1pecijied
for site i: (1) The set of synchronisation, ordering and inhibition constraints be mutually disjoint.
(2) Each transition of P; be synchronized with at most one transition of Q; and vice versa. This
restriction avoids casea during execution where a transition of P; (Q;) has to be synchronized
with more than one transition of Q; (P;) in the same global state of the composite protocol. (3)
If a and b are synchronized, they should not both contain receive statements expecting messages
from the same channel, since at any global state of G, only one of the two receive statements will
be enabled. (4) There be no cyclic dependency in the sets of ordering constraints and inhibition
constraintst. con6traint.(P, Q) is well-1pecijieditr each con6trainti(P;, Q;) is well-specified. In the
rest of the paper, unleBB otherwise specified, we assume that constraints(P, Q) is well-specified.

3.2 Constructing the Composite Protocol

The construction of R; from P;, Q; and constrainti(P;, Q;) is composed of three steps. The first
step introduces a set of new variables for each constraint. The next step adds new conjunct&
and/or local statements to the transitions in P; and Q;. The last step computes R; from P; x Q;
by deleting and modifying those transitions involved in the synchronization constraints.

Step 1: we introduce a new local variable for each constraint (a, b) or (b, a) on P; and Q; as fol­
lows: (1) ll(a, b) E 6ynt:h(P;, Q;), add .fyn:6 ; (2) ll(a, b) E order(P;, Q;), add ord:6 ; (3) V (b, a) E
order(Q;, P;), add ordr"; (4) II (a, b) E inhibit(P;, Q;), add inh:6; (5) V (b, a) E inhibit(Q;, P;),
add inhr". Except for .fyn:•, which is a three value {0, 1, 2} variable with initial value 0, all other
variables are boolean variables with initial value faJ.tJe.

Let synV;, ordV; and inhV; be the sets of synchronization, ordering and inhibition variables
introduced, respectively. Let 91yn; be the conjuction of the propositions synr = 0 for all synchro­
nization variables 1yn:6 created above. For each (a, b) E synch(a, b), let 91yn:6 be the proposition
that is formed by deleting conjunct 1yn:6 = 0 from 9"!/fli·

Step f: We modify each action in P; and Q; by adding conjunct(s) and/or localstatement(s)
to its enabling condition and computation. Specifically, for each a EpA; and bE qA;, we modify
a and b as follows:

(1) a (b) is not involved in any constraint in constraint6(P;,Q;). Then add 91yn; to en(a)
(en(b)) as a conjunct if it is not already there.

(2) (a, b) E 1ynch(P;, Q;). Then for a, add 91ynf and en(b) as conjunts to en(a) and add
statement "if .fynr = 0 then 1yn:• := 1 else syn:• := 0" to its computation. For b, add
91yn:6 and en(a) as conjunct& to en(b) and add statement "if 1ynj6 = 0 then synj6 := 2 else
1ynj6 := 0" to its computation.

(3) (a, b) E order(P;, Q;). Then for a, add conjunct -.ordj6 to en(a) and add statement "ordr :=
true" to its computation. For b, add conjunct ordj6 to en(b) and add statement "ordf :=

jal1e" to its computation. The case for (b, a) E order(Q;, P;) can be carried out similarly.
(4) (a, b) E inhibit(P;, Q;). Then for a, add statement "inhj6 :=true" to its computation. Forb,

add conjunct -.inhj6 to en(b). The case for (b, a) E inhibit(Q;, P;) can be carried out similarly.

Intuitively, item (3) enforces the ordering constraints; and item (4) implements the inhibition con­
straints. However, items (1) and (2) together only partly enforce the synchronization cooatraints.
The miBBing part will be filled in the next step.

t Pleue refer to the full paper for how theoe cyclic dependency can be otatically checked.

244 Part Four Verijicatioll Techllique

Step 3: We computeR. from P; x Q; aa follows: for each (a, b) E 1ynch(P;, Q;), for each transi­

tion t,. = (pz;, a, pz;) in P; and tb = (qz;, b, qz;) in Q;, let rzt = (pz;, qz;), rzl = (pz:, qz;), r:z:? =
(pz;, qz;), and rzt = (pz:,qz;), then except for these four states, t,. and tb are removed from any
other states in R; aa outgoing transitions. There are four cases to consider:

(1) (pz; = pz:) 1\ (qz; = qz:J. Both t,. and tb are self loops in P; and Q;, respectively. The two
corresponding transitions in R. are also self loops: (rzt,a,rzf) and (rzf,b,rzf). We add a
conjunct synt6 f. 1 to en(a) and a conjunct syn~6 f. 2 to en(b).

(2) (pz; f. pz;) 1\ (qz; = qz:). t,. is not a self loop in P; but tb is a self loop in Q; . The
corresponding transition fort,. in R; is (rzf, a , rzl) and en(a) is enhanced with a new conjunct
1yn~6 f. 1. The corresponding transitions of tb in R. are (rzl, b, rzt) and (rzl, b, rzl), both
of which are self loops. We add a conjunct 1yn~6 = 0 to en(b) of the first transition and a

conjunct 1yn~6 = 1 to en(b) of the second one.
(3) (pz; = pz:J 1\ (qz; f. qz:). t,. is a self loop in P; but tb is not a self loop in Q;. The

corresponding transitions for t,. in R. are (rzt, a, rzf) (rz?, a, rz?}, both of which are self
loops. We add a conjunct 1yni6 = 0 to en(a) of the first transition and a conjunct syni6 = 2
to en(a) of the second one. The corresponding transition of tb in R. is (rzt, b, rz?) and en(b)
is enhanced with a new conjunct lynf f. 2.

(4) (pz; f. pz:) 1\ (qz; f. qz:). Neither t,. nor tb is a self loop in P; or Q;, respectively. The
corresponding transitions oft. in R; are (rzt, a, rzl) and (rz?, a, rzt). We add a new conjunct
syni6 = 0 to en(a) in the first transition and a new conjunct 1yni6 = 2 to en(a) in the second
one. The corresponding transitions of tb in R. are (rzf, b, rz~) and (rzl, b, rzt). We add a new
conjunct syni6 = 0 to en(b) in the first transition and a new conjunct syni6 = 1 to en(b) in
the second one.

End of Algorithm

Let SR = (< rs; >, < c;; >) be a global state of R . Then r1; = ((p1;, q•;), < 1v; > , < ov; >
,< iv; >),where< 1v; >,< ov; >,and< iv; >are local variables values of synV;,ordV;, and
inhV;, respectively. The initial global state of R is denoted as ~ = (< rs? >, < f;j >). Here

r1? = ((p1?,q1?),< sv? >,< ov? >,< iv? >),where< sv? >,< ov? > , and< iv? >are initial
values of variables of synV; (all 0), ordV; (all fal•e) and inhV; (all jal1e), respectively. Let ez
be an execution sequence of R and eziR, be the projection of ez on rA;. Clearly, ez satisfies
con•trainti(P;, Q;) iff eziR, satisfies each constraint specified in constraint.(P;, Q;). It can be
shown that each R; thua constructed does ensure that R satisfies con•traint.(P, Q).

Theorem 1 Vez E behavior1(R) :Vi: eziR, satisfies constrainta(P;, Q;) .

4 PARALLEL STEP REACHABILITY ANALYSIS

There are two major sources that cause dependency between a transition a in P; and a transition
bin Q;: (1) If (a, b) or (b,a) belongs to constrainti(P;,Q;) , a and b cannot be executed in
arbitrary order except for synchronisation; (2) If both a and b involve sending a message to the
same channel, the channel content will differ by the order in which a and b are executed. To take
into account these dependency, we encode con1traint1(P; , Q;) into P; and Q;, as was done Step
1 and 2 in Section 3, except that for each (a, b) E 1ynch(P;, Q;), we add a conjunct 1ynf f. 1 to
en(a) and 1yni• I: 2 to en(b) . Then instead of constructing R; explicitly in Step 3, we view P;

Validating protocol composition for progress 245

and Q; as two thread. of process H; in a hypothetical protocol H = H1IIH3II· · ·IIH,. that share
the same set of channels and local variables. We then apply parallel step state exploration to
validate H, where both P; and Q; can make progress from a global state. Finally, we show that
the hypothetical protocol H and the composite protocol R have the same progress property.

4.1 The Hypothetical Protocol H

A global state of H is denoted as SH = (< h8; >, < c;; >), where h5; is of the form (p8;, q8;).
Since ha; has the same component structure as r5;, so are SH and SR. Define SH = a(SR) (or
SR = a- 1(SH)) iff SH and SR have the same component values. a is a one-to-one mapping from
the set of global states in R and the set of global states in H. Since a transition is enabled in
a(SR) if it is enabled in SR, a is a homomorphism from RR to RH w.r.t the reachability relation
t--t•. Let a(RR) be the image of RR in RH . Then a(RR) ~ RH .

Suppose SH = a(SR)· It can be shown that SH is reachable via an execution sequence ez in H
if SR is reachable via ez in R, by induction on lezl. However, the converse is not always true. The
main reason is that the additional conjuncts we put on actions a and b for (a, b) E 5ynch(P;, Q;)
are not sufficient to ensure that a (or b) occurs first iff b (or a) occurs next. For example, consider
case (4) in Step 3. At rz?, the conjunct added to en(b) is 3yn"6 f. 2 instead of 3yn:• = 1. When
11yn:6 = 0, b can be enabled at rz? in H without executing a at rzf.

To avoid the above situation, we select a subset of enabled(P; , SH), denoted as enabled,(P;, SH).
A transition a E enabled,(P;, SH) iff (1) a is not involved in any synchronization constraint, or (2)
(a, b) E 11ynch(P;,Q;) and bE enabled(Q;,SH), or (3) (a, b) E llynch(P;,Q;), enabled(P;,SH) =
{a}, enabled(Q;, SH) = 0, and 11yn:• = 2. a is called a valid transition of P; in SH. Similarly, a
transition bE enabled,(Q;, SH) iff (1) b is not involved in any synchronization constraint, or (2)
(a, b) E 11ynch(P;, Q;) and a E enabled(P;, SH), or (3) (a, b) E 11ynch(P;, Q;), enabled(P;, SH) = 0,
enabled(Q;,SH) = {b}, and 11ynt6 = 1. b is called a valid transition of Q; in SH·

Suppose SH = a(SR)· It can be shown that enabled,(P;, SH)Uenabled,(Q;, SH) = enabled(R;,
SR)· DefineR~ as the set of global states reachable from Sk via only valid transitions. If SH E R~
and ez is an execution sequence for SH composed of only valid transitions, then ez is also an
execution sequence for SR. On the other hand, if ez is an execution sequence for SR, then it is
also an execution sequence for SH with only valid transitions. Hence R~ = a(RR), i.e., a is an
isomorphism from RR toR~ w.r.t ,..... •. In particular, a non-progress global state SR is reachable
in Riff SH = a(SR) is reachable in H by valid transitions only. So to study the progress property
of R, it is sufficient to only generate R~. In the following, we are going to show that it actually
suffices to generate only a subset of R~ via parallel step state exploration.

4.2 Parallel Step State Exploration

We partition the set of transitions for P; defined in a global state SH as follows. First, the set of en­
abled transitions is divided into two seta: local..enabled(P;, SH) and global..enabled(P;, SH). Tran­
sition a E enabled(P;, SH) is locally enabled if a does not contain a send statement that sends a
message to the same channel as another transition bE enabled(Q;, SH); otherwise it is globally en­
abled. Then the set of disabled transitions ia also partitioned into two sets: local...di11abled(P;, SH)
and global_dillabled(P;, SH). A transition a E dillabled(P;, SH) is locally disabled if en(a)= fal11e,
or en(a)= true, a contains a receive statement P;?m, and {fir11t(c;;) = m' f. m) II (m' E pM;;);
otherwise it is globally disabled. Let local_enabledp(P;, SH) and global.. enabled,(P;, SH) be the

246 Part Four Verification Technique

set of locally and globally enabled valid transitions of P; in SH, respectively. The transitions for

Q; in SH can be partitioned similarly into these four sets.
To define parallel progress, we first compute U;, the set of valid tromition pairs for P; and Q; in

SH from transitions in enabledp(P;, SH) U global..disabled(P;, SH) of P; and enabledp(Q;, SH) U

global_disabled(Q;, SH) of Q) There are four cases to consider:

(1) For each a E enabledp(P;,SH) and bE enabledp(Q;,SH), (a, b) E U;, i.e. P; and Q; can
execute a and bin parallel if (i) (a, b) E synch(P;, Q;) and a and b do not send messages to the
same channel, or (ii) neither a nor b is involved in any synchronization or inhibition constraint.

Otherwise, (a,>.),(>., b) E U;, where >.is a null transition, indicating no progress.

(2) For each a E enabled,(P;,SH) and bE globaLdisabled(Q;,SH), (a,>.) E U; if a is not
involved in any synchronization constraint or a is the only enabled transition.

(3) For each a E global..disabled(P;, Sn) and bE enabledp(Q;, Sn), (>.,b) E U; if b is not involved

in any synchronization constraint or b is the only enabled transition.
(4) If global_disabled(P;, Sn) :f 0 and global..disabled(Q;, SH) :f 0, then (>., >.) E U;.

Note that when (a, b) E synch(P;, Q;) but both a and b send messages to the same channel,

only one of them can be executed. Suppose a (or b) is chosen, then in the following global state,

•yn.i• = 1 (or syn.r = 2). Hence gsyn.; =false, which implies that only b (or a) can be enabled.

In this case, even b (or a) is not paired with a (or b), it should still be chosen to execute. Also,

when (a, b) E inhibit(P;, Q;), even though both are enabled, only one of them can be executed.

Now let u be a 2n-tuple (< pu;, qu, >) such that (pu;, qu,) E U;. u is a parallel progrus vector

in Sn iff 3 i : (pu;, qu,) :f (>., >.). Hence in a parallel progress vector, at least one thread must

make progress. Since all the non-null transitions in u are independent of each other, the resulting

global state Sn is the same irrespective of the order of execution. In this case, we say that Sn
is directly parallel reachable from Sn via u, denoted as SH ~ SII or SII = succ(Sn, ii). With

this, we can define parallel reachability relations t-+p and >-+;, and parallel execution sequence

accordingly. Denote PRn as the set of parallel reachable states in H and beooviorsp(H) as the

set of parallel execution sequences from 5'k in H.
Let lin.ear(u) be the set of permutations on the non-null transitions in u . Let u 1 , iiz, . . . , ii~;,

lc ~ 0, be the sequence of progress vectors in a parallel execution sequence pez. Then linear(pez)

is defined as {E} if lc = 0; and as lin.eo.r(ul) · lin.eo.r(u2) .. ·lin.ear(u~;) if lc ~ 1, where · is

generalized to handle two sets of sequences, i.e., A· B = {a· bi(a E A) 1\ (b E B)}. Since

each ez E lin.ear(pez) is an execution sequence from Sn to Sn composed of only valid transi­

tions, PRn ~ R~. Moreover, pez satisfies con.strain.ts(P, Q) iff II ez E linear(pez) : ez satisfies

con.strain.t.(P, Q). Since each ez is also an execution sequence for Sn = a-1 (SH) in R, by The­

orem 1, ez satisfies constraints(?, Q) in R .

Theorem 2 II pez E beooviorsp(H) : pez satisfies con.straints(P, Q).

Now suppose Sn E R~, Sn is a pseudo non-progress global state iff it has no valid transitions.

From the above discussion, we know that Sn is pseudo non-progress global state in H iff a- 1(Sn)
is a non-progress global state in R. Hence we only need to focus on SNRn, the set of pseudo

non-progress global states in H. On the other hand, suppose Sn E PRn, Sn is a parallel non­

progress global state in H iff it has no parallel progress vectors. By construction, Sn has no parallel

progress vectors iff it has no valid transitions. Hence Sn is also a pseudo non-progress global state

in H. Let PNRH be the set of parallel non-progress global state in H. Then PNRH ~ SNRH.

tnue to space limitation, we only highlight the key point. here, plcue refer to the full paper {SL97] for detaila.

Validating protocol composition for progress 247

To show the converse, let ez be an execution sequence for a pseudo non-progress global state
Sa. Each transition in ez is a valid transition. Denote pe; = ezlp, and qe; = ezlq,. Then
(< pe;,qe; >) is a local execution sequence set for Sa. From (< pe;,qe; >), we construct a
parallel execution sequence pez for Sa as follows. Starting from S'Jt, in Step lc 2: 0, for each i,
we compute (pu~+l, qu~+l) for P; and Q; in global state S~ based on the transitions from pe;
and qe; in S~. Since ez has only a finite number of transitions, the algorithm must terminate
in a finite number of steps. Moreover, since each intermediate global state contains at least one
valid enabled transition, at the end of the algorithm, the final global state must be Sa. So pez
thus constructed is a parallel execution sequence for Sa. (Please refer to the full paper (SL97] for
details.) Hence we have SNRa ~ PNRa, and thus PNRa = SNRa. Since SNRH is exactly
the set of non-progress states in R, we have the following result on fault coverage of PRa.

Theorem 3 Given SR ERR, SR is non-progress global state in Riff Sa = o(SR) is a parallel
non-progress global state in H .

4.3 Discussion

The parallel step technique described in this section was adapted from the simultaneous reach­
ability analysis method in (OU94] to fit the context of protocol composition. Similar to (SU96],
we can use the "sleep-set" concept [GW93, GW94] to further eliminate redundant transitions in
computing the set of parallel progress vectors. We can also correlate transitions from different
processes, as was done in fair reachability analysis [RW82, GH85, LM96a, LM96b]. Doing so might
result in fewer global states, but the computation in each global sta.te becomes more elaborate.

In this paper, we assume that the component protocols have the required progress property. If
the composite protocol has non-progress global states, then it is most likely that the composition
constraints are not consistent with each other. Hence in analyzing error scenarios, we should
focus on the set of constraints involved. Note that not all the non-progress global states are
semantically incorrect. For example, if one action inhibits the other and that action corresponds
to an exception in the protocol, the protocol may halt in response to that exception. So it is up
to the designer to decide whether a non-progress global state is acceptable or not. However, the
imposed constraints are not the only cause for non-progress in the composite protocol. This point
is more subtle. Recall that in our model, a send statement is blocked if the destination channel
is full. In the composite protocol, the bound on a channel might be enlarged. So it is possible
that a send action that is not enabled in the original component protocol becomes enabled in the
composite protocol. So a process may exhibit new behaviors after the composition. These new
behaviors, together with their interactions may also cause non-progress in the composite protocol.

Last but not least, even though we presented our technique in the context of two component
protocols P and Q, it can be easily extended to handle cases with more than two component
protocols. Furthermore, our technique does not require that all component protocols have the
same number of processes, nor does it require that the composition of processes be fixed w.r.t the
indices of the processes in each component protocol. All is required is that at most one process
from each component protocol can participate in each site in the composite protocol. However, not
every component protocol is required to participate in the composition for a site. What we need
is a composition schema that describes which process from which component protocol is needed
to participate at each site. Once the schema is given, we can define composition constraints for
each site with more than one process, and the rest of the work can proceed as described above.
In the next section, we will give an example in this general setting.

248 Part Four Verification Technique

5 EXAMPLE

Consider a network of four sites shown in Figure 1(a). We want to design a data transfer protocol
in which site 1 first establishes connection with sites 2, 3 and 4 and then transfers a sequence of
data items to them. Site 1 send the items directly to 2 and 4 and site 2 forwards the data items
to 3. We want a stop&wait protocol in which 1 sends the next data item only after all sites have
received the previous data item. Finally, site 1 may send a disconnect message at any time after
the connection establishment to break the connection.

3

4

(a)

Figure 1 Topology for the data transfer protocol.

R_iJ f
0

m:q_ iJ +
G

rTC.S_ij T

rcc_iJ r~-·J
0~ (a) nne_.__.

sroq_iJ: R_i.j I req
rrcq_i j : S_iJ 7 rcq
rn::s_i.j: S_iJ 1 c:ack
sres_ij: RJ J 7 cack
send_ij: ~ij I data(sj)
sinc_iJ : sj :• sj + I
rac:k_i .j: R_i.j 7 .c:k
roe_ij: S_ij 7 data(si)
rinc_ij: s i :• si + I
sack_i.j : S_i.j ! ack

o_;t
trccd_l.4

dis_1.2: 0_2 1 dis

dis_l.4: 0_4 I dls
rccd_t.2: D_l 7 dis
rccd_t.4: D_l 7 dis
dis_2.3: 0_3 1 dis
rccd_2.3: D_.2 7 dis G>

(b)

Figure 2 Data transfer component protocols.

Figure 2(a) gives a stop&wait protocol (Si,j, R;J) with S;,j at site i as the sender and Rt,; at site
j as the receiver. Figure 2(b) gives a disconnect protocol in which 1 simply sends a disconnect
message to 2 and 4, and 2 forwards it to 3. We will design protocols using four component
protocols: (S1,2, Rt,2) , (St,4, Rt,4), (S2,3, R2,3) and (Dt, D2, D3, D.) (see Figure 1(b)).

As a simpler case, we first compose (St,2• Rt,2) and (St,4• Rt,4) with a synchronization con­
straint (•end1,2, •end1,4) at site 1 to ensure that the first data item is sent after connection with

Validating protocol composition for progress 249

both 2 and 4 has been established, and subsequent data items are sent only after acknowledge­
ments from both 2 and 4 are received for the previous data item. For the composite protocol built
by the algorithm in section 3, the standard reachability analysis explores 126 states, the partial
order method in [HGW92) finds 81 states, whereas our method has only 9 reachable states (here
we view inco,; as an internal action; otherwise, the number of states are unbounded). In fact, our
method explores 9 states irrespective of the number of receivers.

The next protocol with all four sites is obtained by combining all four protocols with seven
more constraints: (1) An ordering constraint (rec1,l,.Jendl,J) on 2 to ensure that a data item is
forwarded to 3 only after it has been received from 1; (2) An order constraint (raclcl,31 6aclcl,l) on
2 to ensure the stop&:wait discipline w.r.t 1 and 3; (3) Two ordering constraints (6re.Jl,l 1 di61,l)
and (sru1,4,di.J1,4) on site 1 to ensure 1 can send a disconnect message only after connection
setup; (4) Three inhibition constraints (di61,l, send1,l), (dis1,4, send1,4) and (di6l,3, sendl,J) to
ensure no more data items are to be sent after the disconnect message is sent. These constraints
allow the messages that have already been sent to be received and acknowledged. Although the
final composite protocol is a complex one, our method explores only 47 reachable states.

6 CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of validating protocol composition for progress based on
the set of component protocols and a set of composition constraints. By encoding the constraints
into the processes of component protocols and the analysis algorithm, we are able to perform
parallel step state exploration for the composite protocol without constructing it explicitly. As
a result, we are able to perform validation for the composite protocol in a significantly reduced
global state space. As far as we know, this is the first attempt to adapt existing state reduction
techniques to protocol composition.

However, we have just scratched the surface in this direction. First, the composite protocol
construction algorithm given in Section 3 may not be the most efficient one, and the R; constructed
may not be the minimum state machine for the composite process. How to build a minimum
state composite process is an interesting problem that requires further study. Second, It would be
interesting to investigate other encoding schemes to fit the partial order techniques so that more
general properties can be validated. We also want to include more constraint types to allow more
flexible compositions. Finally, we plan to implement the parallel step method and experiment it
with complex examples.

Acknowledgement

The authors would like to thank Raymond E. Miller and Jun-Cheol Park for their constructive
comments on the earlier drafts of this paper.

REFERENCES

[CR93) L. Cacciari and 0. Rafiq, "On Improving Reduced Reachability Analysis," Proc.
FORTE'92, Perros-Guirec, France, October 13-16, 1992, pp. 137- 152.

250 Part Four Verification Technique

(CGL85] C.H. Chow, M.G. Gouda and S.S. Lam, "A Discipline for Constructing Multi-Phase
Communicating Protocols," ACM Trans. Comput. Syst., 3(4), 1985, pp. 315-343.

(CM86] T .Y. Choi and R.E. Miller, "Protocol Analysis and Synthesis by Structured Partitions",
Computer Networks and ISDN Systems, 11 , 1986, pp. 367- 381.

(GH85] M. Gouda and J.Y. Han, "Protocol Validation by Fair Progress State Exploration," Com­
puter Networks and ISDN Systems, 9, 1985, pp. 353-361.

(GW93] P. Godefroid and P. Wolper, "Using Partial Orders for the Efficient Verification of Dead­
lock Freedom and Safety Properties," Formal Methods in System Design, 2(2), 1993.

[GW94] P. Godefroid and P. Wolper, "A Partial Approach to Model Checking," Information and
Computation, 110(2), 1994, pp. 305-326.

[HGW92] G. Holzmann, P. Godefroid and P. Wolper, "Coverage Preserving Reduction Strategies
for Reachability Analysis," PSTV'92.

(1183] M. Itoh and H. Ichikawa, "Protocol Verification Algorithm Using Reduced Reachability
Analysis," Trans. IECE of Japan, E66(2), 1983, pp. 88-93.

[Lin88] H.A. Lin, "A Methodology for Constructing Communication Protocols with Multiple Con­
current Functions," Distributed Computing, 3{1), 1988, pp. 23-40.

[Lin91] H.A. Lin, "Constructing Protocols with Alternative Functions," IEEE Transactions on
Computers, 40(4), 1991, pp. 376-386.

(LT93] H.A. Lin and C.L. Tarng, "An Improved Method for Constructing Multiphase Communi­
cations Protocols," IEEE Transactions on Computers, 42(1), 1993, pp. 15-26.

[LM96a] H. Liu and R. Miller , "Generalized Fair Reachability for Cyclic Protocols," IEEE/ ACM
Transactions on Networking, 4(2), April 1996, pp. 192-204.

(LM96b] H. Liu and R.E. Miller, "An Approach to Cyclic Protocol Validation," Computer Com­
munications, 19(14), 1996, pp. 1175-1187.

[LM96c] H. Liu and R.E. Miller, "Partial-Order Validation for Multi-Process Protocols Modeled
as Communicating Finite State Machines," Proc. ICNP'96, Oct. 29- Nov. 1, 1996, pp. 76-83.

[OU94] K. Ozdemir and H. Ural, "Deadlock Detection in CFSM Models via Simultaneously Exe-
cutable Sets," ICCI'94, Peterborough, Ontario, Canada, May 1994, pp. 673-688.

[P93] D. Peled, "All from One, One for All: On Model Checking Using Representatives," CAV'93.
[P94] D. Peled, "Combining Partial Order Reduction with On-the-fly Model-Checking," CAV'94.
(RW82] J . Rubin and C.H. West, "An Improved Protocol Validation Technique," Computer Net-

works, 6, 1982, pp. 65-73.
[S93] G. Singh, "A Compositional Approach for Designing Protocols," Proc. ICNP'93, San Fran­

cisco, CA, October 19-22, 1993, pp. 98-105.
[S94a] G. Singh and M. Sammeta, "On the Construction of Multi phase Protocols," Proc. ICNP'94,

Boston, MA, October 25-28, 1994, pp. 151-158.
(S94b] G. Singh, "A Methodology for Constructing Communication Protocols," Proc. ACM SIG­

COMM'94, August 31 -September 2, 1994, London, U.K., pp. 245-255.
[SL97] G. Singh and H. Liu, "Validating Protocol Composition for Progress by Parallel Step Reach­

ability Analysis," in preparation.
(SU96] H.v.d. School and H. Ural, "Protocol Verification by Leaping Reachability Analysis," Proc.

IC3N'96, Rockville, MD, USA, October 16-19, 1996, pp. 334-339.
(V90] A. Valmari, "A Stubborn Attack on State Explosion," Proc. CAV'90.
[YG82] Y. T . Yu and M.G. Gouda, "Deadlock Detection for a Class of Communicating Finite State

Machines," IEEE Transactions on Communications, 30(12), 1982.
[ZB86] J .R. Zhao and G. v. Bochmann, "Reduced Reachability Analysis of Communication Proto­

cols: a New Approach," Proc. PSTV'86, pp. 243-254.

