
6

Solving Large Systems of Differential Equations
in Parallel Using Covers and Skeletons

M. Sudholtt, C. Piepenbrock*, K. Obennayer* and P. Pepper

t Projet Lande, INRIA/IRISA-Rennes, France, sudhoUOirisa..fr
* Fachbereich lnfonnatik, Institut fii.r Kommunikations- und Softwaretechnik,
TU Berlin, Germany, {piep, oby, pepper}&lcs.tu-bertin.de

Abstract
The design and implementation of parallel algorithms for distributed memory
architectures is much harder than the development of sequential algorithms.
This is mainly due to the communication and synchronization that is neces­
sary to manage distributed data correctly. This paper applies a methodology
for the transformational derivation of parallel programs using data distribu­
tion algebras that enable an abstract description of data distribution issues.
Algorithms are formulated using skeletons, that is, specialized higher-order
functions with particular parallel implementations. The methodology is ap­
plied to a the solution of a system of ordinary differential equations where
convolutions can be computed using the Fast Fourier transformation. The ex­
ample illustrates the practical optimization problems for a development model
of the visual system that involves large scale neural network simulations. Fi­
nally, this algorithm is compared to an implementation of the same system of
equations in the programming language C* on a CM-5.

Keywords
Functional programming, parallel programming, numerical algorithm, pro­
gram transformation, skeleton, data distribution algebra

1 INTRODUCTION

The numerical solution of large systems of differential equations is one of
the most challenging problems in the field of scientific computing. For many
problems such systems are so large that only parallel computers possess the
computational power necessary to solve the equations. Unfortunately, effi­
cient parallel algorithms cannot simply be developed as extensions of their
sequential counterparts. The spatial aspect of parallel algorithms-that is,
the distribution of processes and data across the processing units of the par­
allel computer-constitutes a salient characteristic that is not encountered in
the design of sequential algorithms.

Parallel algorithms that operate on distributed data have to communicate
data at suitable synchronization points, which means that the temporal as­
pects of parallel algorithms are also much more complex than in the sequential
case. Parallel programming in general is therefore much more error-prone, and
©IFIP 1997. Published by Chapman & Hall

Solving differential equations using covers and skeletons 133

it is considerably more difficult to verify and validate parallel than sequential
algorithms. Moreover, the (commercial) availability of a multitude of parallel
architectures complicates the development of portable parallel methodologies.
Automatic program derivation by program transformation promises to yield a
solution: transform high-level abstract specifications manually f automatically
via less abstract intermediate specifications to efficient executable programs.

We see our approach as a step towards a compiler that performs an au­
tomatic transformational development of parallel algorithms in a functional
setting. The essential ideas can be characterized as follows. We emphasize
the distribution aspect from the very beginning of the design. The basic
catchwords for this part of our approach are data distribution algebras
describing so-called covers. Both the spatial distribution and the temporal
evaluation are specified by abstract, high-level, functional language concepts,
and the pertinent catchword here is skeletons. Finally, there is an under­
lying concept of program deduction that leads from high-level specifications
to lower-level implementations. Instead of interactive program synthesis sys­
tems, however, we see powerful compilation techniques that can take over at
a very early stage of the deduction process.

In contrast to imperative approaches, equational reasoning can be applied
in a functional setting (semi-)automatically-a procedure that ensures the
correctness of an implementation by the use of correctness-preserving trans­
formations. Moreover, it supports portability across different target architec­
tures by architecture-dependent transformations.

Our approach is based on a number of design decisions. Before dwelling on
the technical details, we briefly discuss the considerations that motivate them .
. The programmer must be in control of the distribution of the data over

the local memories. The predominant parallel architectures on the market
nowadays are MIMD machines with distributed memory (such as the CRAY

T3E or the IBM SP2). There are strong indications that they will remain the
forerunners in the future. In these architectures the distribution of the data
over the local memories is the main factor that determines the communication
amount. Experience has shown that in most cases the really "good" distri­
butions rely on the properties of the application at hand-which a compiler
cannot detect.

The programmer's control over the data distribution must be expressible
in abstract mathematical terms, (ideally) without any explicit reference to
communication features. As a consequence, we develop a description technique
for data structures that amalgamates two viewpoints:

• In one view, data structures are standard mathematical objects that are
amenable to standard functional treatment.

• But at the same time, data structures induce another view, which reflects
a distribution over processors and the corresponding communication.

134 Algorithmic Languages and Calculi

This requirement leads us to the introduction of so-called "covers", which are
treated in detail in Section 3.2.

The programming model has to reflect the homogeneous nature of the un­
derlying processors. Parallel (MIMD) computers are homogeneous in the sense
that they consist of processors of the same kind, which, moreover, are con­
nected in a regular way. Even though the technicalities of the processors and
their connections should not concern the programmer, but be left to the com­
piler, the distinction of a homogeneous environment (as opposed to a network
of heterogeneous machines) should be reflected in the programming model.
As a consequence, our "covers" have to be described in terms of regular
data structures, thus leading to the notion of "data distribution algebras"
(discussed in Section 3.3) which are used to define skeletons implementing a
SPMD programming model. In particular, this regular design explicitly sup­
ports the scalability of algorithms defined on such data structures.

1.1 Notation

Constructive calculi for program development in a functional setting fea­
ture quantifier- and index-free notations that rely on suitable concrete rep­
resentations of data structures. For instance, the geometric representation
of matrices used throughout this paper is defined as follows (cf. Pepper &
Moller 1991, Bird 1989).

DEFINITION 1
The geometric representation of two-dimensional matrices is defined as
STRUCTURE Matrix(a)

SORT a
SORT matrix
FUN 0 : matrix -- empty matrix
FUN [!] _ : a -+ matrix -- one-element matriz
FUN _ (] _ : matrix x matrix -+ matrix -- horizontal composition
FUN _ 8 _ : matrix x matrix -+ matrix -- vertical composition
FUN _ _ EEl _ _ : matrix x matrix x matrix x matrix -+ matrix
AXM (a 8 b)(] (c 8 d)= a c EEl b d =(aiDe) 8 {bCDd)

GENERATE matrix BY 0 [!] (] 8
GENERATE matrix BY 0 [!] EEl

The notation is based on concepts from the functional language OPAL. It
should be essentially self-explanatory.

The above structure introduces a module for matrices over elements of a
(parameter) sort a (to argue about the height, width and dimension of matri­
ces, we use the functions height, width and dim, respectively.) F\mctionalities
are introduced by the keyword FUN. Notations such as _ rn _ introduce infix

Solving differential equations using covers and skeletons 135

operators, where the placeholders '_, indicate the parameter positions. The
corresponding function definitions marked by DEF are given in this article us­
ing only standard constructs that are customary in functional programming,
such as function composition (denoted by the composition operator 'o') and
the like. We will also state some derivable equivalences, which are introduced
by the keyword THM.(Free) type definitions that are introduced by TYPE are
used to define product types and to define constructor und selector functions
on the free type.

The structures used in our approach are defined by (parametrized) algebraic
specifications because this formalism is best suited for transformations based
on equational reasoning. The above definition enables the formulation of laws
in a much simpler and comprehensive way than with other formulations:

THM Monoid[matrix, 0, [Dj
THM height(a B b) = height(a) + height(b)

The specification function cost is used to express properties about the
communication costs of parallel algorithms.

Our remaining notations are standard: functions are specified using first­
order predicate formulae. Function application - curried and/or uncurried
-is bracketed, and standard operations on lists and related data types (e.g.
vectors) are used: '#' denotes the length of lists or vectors, '::' prepends an
element, 'ft' yields the first element, 'rt' the rest, and 'front' all elements
except the last one.

2 MODELLING RECEPTIVE FIELD DEVELOPMENT IN THE
VISUAL CORTEX

2.1 Visual Cortex

We now introduce a problem that involves solving large systems of differ­
ential equations. It is a massively parallel neural network simulation for the
development of simple cell receptive fields in the visual cortex. Models and
simulations in the neurosciences often involve large networks of neurons that
require powerful tools for parallel computation. In the following sections we
will demonstrate our approach of data distribution algebras using the math­
ematical model underlying this example.

In this section we briefly describe (i) how the brain can extract simple
features from visual images; (ii) how the neurons involved in this process
may have initally developed proper connections between each other; and (iii)
how this development process of a large number of neurons may be modelled
mathematically. The resulting model (see equation I) is the basis for our
implementations.

Images in the visual field are picked up by photoreceptor cells in the retina.
Neurons transmit the image information to the cortex where it is interpreted.
In a first step, the cortex extracts simple features from the images such as

136 Algorithmic Languages and Calculi

the position and orientation of edges and the eye from which a stimulus origi­
nates. Such feature detector cells can be found in layer IV c of the visual cortex
Vl. Hubel & Wiesel (1962) characterized them as simple cells and proposed
a model for the neuronal connections in the primary visual pathways leading
from the eyes via the lateral geniculate nucleus (LGN) to the visual cortex (see
figure 1, left). They hypothesize that a cortical neuron becomes orientation
selective if it receives input from alternating patches of light contrast (ON)
and dark contrast (OFF) sensitive cells. In consequence, the neuron would
respond maximally to an oriented light bar pattern that matches these recep­
tive field patches (see Figure 1left). At the same time each cortical neuron
receives input signals mostly from only one of the two eyes and thus exhibits
ocular dominance.

It is remarkable that for light bar stimuli at all angles that are flashed any­
where in one of the two eyes, a neuron can be found in V1 that responds
optimally to this stimulus. Furthermore, neighbouring simple cells specialize
on similar stimuli and form ordered feature maps (e.g. an ocular dominance
map and an orientation selectivity map). Such cortical maps are a funda­
mental principle of cortical organization and can be found in many parts of
the brain.

The complex neuronal wiring patterns from figure 1 are not completely
genetically determined. Instead, their development depends on cell activity­
they are "learned from experience". Based on a simple Hebbian learning mech­
anism a number of models have been put forward to explain the emergence
of orientation selectivity and ocular dominance in simple cells and cortical
map formation (Linsker 1986, Miller 1994, Obermayer et al. 1992, Erwin et
al. 1995). The Hebbian rule simple states that a synaptic connection between
two neurons becomes stronger if they are concurrently active. Here, we intro­
duce a successful correlation based learning model

2.2 Mathematical Model

The model uses simple connectionist-type neuron models: their activity is
represented by a value that corresponds to the mean firing rate, i.e. a short
time average over its cell membrane potential. This cell output depends on
the activity of all the connected input neurons weighted by their connection
strength. Neurons connect via synapses, and the connection strength is a value
that includes the number of synapses between two neurons as well as their
efficiency.

In our model (see figure 1, right), a neuron of LGN population i at location
a connects to a cortical neuron at location x with synaptic strength S~.z· Ac­
tivity patterns from the retinas (V~) are projected to the LGN (activities P~)
and from there on to the cortex (Oz). All locations a, x are measured in retinal
coordinates because all the projections are at least roughly topographic.

Solving differential equations using covers and skeletons 137

ON 0 0 0 · 0 0 0 0 0 0 0 0 ON
OFFe • • • • • • • • • • • OFF

left eye

~rresponding orientation preference

right eye

Figure 1 Left: Schematic drawing of the primary visual pathways and the
Hubel and Wiesel model for simple cells. The synaptic connections for one
cortical cell are shown as black and white patches. The neuron has left-eye
ocular dominance and responds best to a light bar stimulus of the shown
orientation. Right: The correlation-based learning model for simple cells (as
on the left, the one-dimensional layers of neurons have to be implemented as
two-dimensional sheets).

The correlation-based learning model assumes that orientation selectivity
and ocular dominance of cortical simple cells are properties of the LGN-to­
cortex connection strengths S~.z (Linsker 1986, Miller 1994}. Learning starts
after the retina, the LGN and the cortex have developed their layered struc­
ture and after the formation of topographic but otherwise unspecific connec­
tions S~.z· Then the connection strengths S~.z change from the stimuli in the
retina by a Hebbian learning rule and orientation selectivity and ocular domi­
nance emerges. The Hebbian principle yields the (linearized) correlation-based
learning model (Miller 1994, Piepenbrock et al. 1996, Erwin & Miller 1995}.

:tsixa,z(t) = 17Aa,z L lz,yC~.{Js~.y(t)- -yS~.z(t), 0 ~ s~.z(t) 2: 1 (1)
j,{J,y

00

lz,y = ~)Bn}z,11 (2}
n=O

The parameter 17 is the learning rate. The synaptic arbor function Aa,z
conserves the topographic mapping and represents the maximum number
of synapses between an LGN neuron at a and a cortical neuron at x (it is lo­
calized and thus zero for large distances la-xl). The intra-cortical interaction
function I includes the effects of all connections among the cortex cells and
ensures the emergence of the cortical maps (the cortical cells excite each
other at short and inhibit each other at larger distances lx - yl). The two­
point correlation functions C incorporates the driving force of the learning
process: the activity patterns in the LGN that originate in the retinas. The
term --yS~.z(t) constrains synaptic growth and keeps the S~.z non-negative

138 Algorithmic Languages and Calculi

and the total synaptic connection strength for each cortical neuron constant
(a nonlinear operation).

To implement this model, we choose constant functions A and I and initial­
ize the synaptic connection strengths S~,z unspecifically. (This means random
values multiplied with A to establish the initial topographic mapping.) Then
we compute the correlation functions C by generating a sequence of sample
stimuli V~ on the retina and propagating them to the LGN (Piepenbrock et
al. 1996). The retinal stimuli V~ may consist of spontaneous noise-like activ­
ity (Miller 1994) or wave-like patterns (Piepenbrock et al. 1996).

To simulate the development of the simple-cell receptive field, we only have
to integrate Equation 1 numerically, in the simplest case using the Euler
method. Note, however, that the location indexes a and x each denote two­
dimensional position vectors, i.e. s~.z is a five-dimensional data object.

The problem of numerically integrating a system of differential equations
like Equation 1 is a very common problem in neural network modelling as
well as in engineering in general. It is the size of the system that makes the
problem difficult in practice. To simulate a large number of cortical neurons
(e.g. 128 by 128), we need a parallel computer to make the computations
feasible.

Equation 1 has been implemented in C* on a CM-5 parallel computer.
In Section 4.4 we discuss this implementation and show that the most dif­
ficult part of a traditional imperative solution consists of the management
of distributed data and algorithms. These data distribution issues are the
motivation for this paper and an efficient solution may be derived using our
methodology. This is the main reason for employing the methodology pre­
sented in this paper.

2.3 Fast Fourier Transformations and Data Distribution

To simulate the neuronal development, we numerically integrate a difference
version of Equation 1 step by step. This can be quite straightforwardly im­
plemented using Fast Fourier transformations because the summation at the
core of Equation 1 simply represents a high-dimensional convolution (over the
indexes (3, y, and j). Here, we use the convolution theorem which states that
a convolution of two functions is equal to the inverse Fourier transform of the
product of their Fourier transforms. This reduces the number of necessary op­
erations from O(n2) for a convolution by simple summation to O(nlogn) for
an implementation using the Fast Fourier Transform (FFT) (where n is the
number of cortical or LGN neurons). Using Fourier transformations (denoted
by subscription) and a data-parallel multiplication operation (denoted by'·'),
this sum can therefore be implemented in a functional setting as a matrix
expression

Solving differential equations using covers and skeletons 139

where the subscripts denote the axes along which the annotated matrix
expressions are transformed - i.e. Ca (Ca-•) denotes the (inverse) Fourier
transformation of C along (the dimension represented by the) axis a:. In the
remainder of this paper we consider expressions of this kind as functional
programs.

In this paper we are not interested in the functional algorithm for the paral­
lel computation of Fourier transformations. Instead, we assume that a suitable
parallel algorithm (called FFT below) for Fourier transformations is part of a
library of basic skeletons, which in turn is a part of the so-called skeleton
hierarchy (cf. Darlington et al. 1993, Pepper & Siidholt 1997). What we are
interested in, however, is the interplay between the distribution of the matrix
data and the computation of convolutions using Fourier transformations.

Typical implementations of Fast Fourier transformations on MIMD archi­
tectures expose several characteristics that interact with data distribution
issues. As a paradigmatic example for our methodology, we use the charac­
teristics of the Fast Fourier sub-routines of the library of Thinking Machine's
CM-5 (TMC 1993). Some aspects of these characteristics depend on the under­
lying machine architecture. A skeleton-based approach is quite suitable in this
case because it enables the portable implementation of machine-dependent
features using architecture-specific transformations.

The efficiency of the computation of convolutions using Fourier transfor­
mations on the CM-5 critically depends on two properties that interact with
the underlying data distribution (Here we only consider the parameters of the
Fourier transformation that are necessary for the derivation of the commu­
nication statements. A complete implementation of the FFT library function
would obviously necessitate taking into account scaling, multiple instances
along different axes, etc.):

1. The matrix elements belonging to an axis along which the matrix is trans­
formed should be local to a processor because the Fourier transformation
can then be performed as a purely local operation. The composition of
transformations of different matrices and along different axes can therefore
be sped up by suitable data redistribution operations that ensure that all
transformations can operate locally.

2. The elements of the input and output matrix of a Fourier transformation
may be ordered using two different address orderings. A Fourier transfor­
mation is executed more efficiently if the address orderings of elements of
an axis along which the transformation takes place are different. The ad­
dress orderings of elements of an axis that is not transformed, however,
must be equal.

We account for the first condition by specifying the distribution of matrices
using covers and deriving low-level skeletons that implement cover transfor­
mations used to "localize" data elements. This issue is the subject of Sec­
tions 3.4 and 4.3, respectively.

140 Algorithmic Languages and Calculi

For referring in implementations to the axes along which Fourier transfor­
mations take olace we introduce three auxiliary types:

TYPE control == control(op: operation, inOr: adrOrd, outOr: adrOrd)
TYPE operation == nop forward inverse
TYPE adrOrd == normal bi traversed

The types control, operation and adrOrd represent the parameters that
define the transformation along an axis, i.e. which kind of Fourier transfor­
mation has to be performed along an axis and the address ordering of the
input and output data elements. Control parameters are thus the program­
ming means used to "implement" the axis annotations _a, -z in Equation 3.

The second condition can be formalized algebraically using a function fft
which embeds the library function FFT and conceals the details of its low-level
implementation.

DEFINITION 2 (FOURIER TRANSFORMATION)
The Fourier transformation is specified by
FUN fft: matrix(a] X seq(eontrol] -+ matrix(a] 1
SPC fft(M, e) == M' -- FFT (M, c) -- M 1 2
~~oo=~~ a

(fft(M, e') == M' 1\ e '# e' ~ 4
'v'O $ i $#(e) : (op(e!i) '# nop ~ 5

inOr(e!i) '# outOr(e!i) V inOr(e'!i) = outOr(e'!i)) 6
1\ (op(e!i) = nop ~ 7

inOr(e!i) = outOr(e!i) V in0r(e1!i) '# outOr(e'!i)) 8
)) ::::::? eost(fft(M, e)) ¢: eost(fft(M, e')) 9

POST M' = FFT(M, e) 10

The first antecedent of the precondition (Line 3} states that there has to
be a control parameter in c for each dimension of the matrix H. The second
antecedent (Lines 4-8} formalizes the restriction imposed above on address
orderings: the Fourier transformation fft(M, c) is computed more efficiently
than a different transformation fft(M, c') (computing the same result matrix)
if the input and output orders of all axes along which a tranformation takes
place are different (Lines 5-6}. All elements that belong to dimensions whose
axes are not transformed have to use the same input and output ordering
(Lines 7-8). Note that the relation between the different costs of the evalua­
tion of fft(M, c) and fft(M, c') can be quantified- we only use the relation
'«:' here for simplicity - based on the implementation of FFT. The post­
condition (Line 10}, finally, states that fft{M, c) actually computes a Fourier
transformation using (a specification of) the library function FFT.

3 DATA DISTRIBUTION

As outlined in the introduction, it is mandatory that our programming model
takes distribution issues into consideration. This is already the case today to
some extent in certain extensions of FORTRAN (such as HPF, HPF Forum

Solving differential equations using covers and skeletons 141

1.3 2.7

*

Figure 2 A matrix as a bundle of arrows

1993) and Cjc++ (such as Split-C, Culler et al. 1993) and C* (Tichy et
al. 1992). But we feel that most of these additions are not very systematic
and that they are frequently introduced at much too low a level (see C* ex­
ample in Section 4.4). The goal of our approach is to provide a programming
model whereby distribution issues can be described at a high and abstract
level geared towards the needs of application domains as opposed to low-level
hardware features. In accordance with the prevailing paradigm for the design
of parallel software, we restrict ourselves (in this paper at least) to regu­
lar communication structures and do not consider arbitrarily communicating
processing systems.

3.1 Representing Data Structures

As a first problem, we encounter the necessity for an abstract notion of what
we mean by "data structures". Intuitively, we may characterize this idea by
pointing to typical examples such as sequences, trees, matrices, vectors and
graphs. On the basis of a given programming language, such as Pascal or
FORTRAN, we may characterize the available data structures by considering
all type constructors of the language. But in generic settings, such as algebraic
specifications, it is less clear how data structures like lists can be distinguished
from atomic data like floating-point numbers.

In mathematical terms, we sketch our viewpoint as follows:

DEFINITION 3 (DATA STRUCTURE)
A data structure (such as a matrix or a tree) over a setS of elements is a
bundle of arrows from a one-element set into S (see Figure 2}.

This slightly clumsy use of arrows (The terminology we employ here is bor­
rowed from category theory. The word "bundle" is used as a synonym for set.
At first sight this looks very much like we are talking about pointers, but -
as will be seen in a moment - this is only one possible implementation of
the abstract concept.) is necessitated by the well-known difficulty of distin­
guishing multiple occurrences of the same value in a data structure. Using
this abstraction, we can extract representation issues. For example, in the

142 Algorithmic Languages and Calculi

matrix in Figure 2 the arrow * -+ 2. 7 would be represented classically by the
index pair (1,2). But in a more geometric setting, it might be represented by
a selector north-east, or in a recursive definition (similar to the specification
Matrix in Section 1.1) by the composition of selectors top o right.

3.2 Covers

In connection with data distributions, the concept of substructures is obvi­
ously fundamental. In our setting, its definition is trivial.

DEFINITION 4 (SUBOBJECT)
A subobject B of a structure A is a subset of the bundle of aJTOws. We denote
the corresponding inclusion morphism by B <-+ A.

Our goal is, of course, to split a given data structure into subobjects and to
distribute these subobjects over the available processors. We therefore have
to provide the means for expressing such splittings. Traditionally, one uses
partitionings (that is, all subobjects are disjoint) for this purpose. However,
we came to the conclusion that this restriction is inadequate. Indeed, allowing
the subobjects to overlap is - as will be seen later on - the clue to a much
more comprehensible programming style. This motivates the introduction of
structures of overlapping substructures, the so-called covers.

DEFINITION 5 (COVER)
Semantically, a cover C of a structure A is a set C = { Bi I i E I} of sub­
objects Bi <-+ A of A such that their union yields A again, that is, U C =
Ue1 Bi = A. (Recall that structures are sets of aJTOws.) Moreover, the fol­
lowing requirements have to be met:

• Every subobject Bi E C is partitioned into an own part and a foreign part.
• The own parts of the Bi form a partitioning of A.

Forming the union of two subobjects is often called gluing, thus emphasizing
the fact that their overlapping parts are identified. Gluing will be denoted here
as AIQ)B.

A partitioning, therefore, is a special case of a cover where the subobjects
Bi E C are pairwise disjoint; in other words, the foreign parts are all empty.

These definitions also entail that the foreign part of each Bi is contained in
the own part of some (possibly several) B;.

Before we proceed with the presentation of our basic concepts, we will
briefly review the motivation behind the approach: if we have to compute
some function f on a data structure A, that is, B = f(A), then we want
to find covers C.A and Cs such that the corresponding subobjects Bi and Ai

Solving differential equations using covers and skeletons 143

can be computed by Bi = f'(Ai) for some suitable function f'. (Actually,
the situation is slightly more complex, because there are variations of this
simplistic paradigm. But this is exactly what skeletons will be used for later
on.)

The purpose of this design is evident: we expect to have Bi and the own part
of Ai on the same processor. But for calculating Bi we also need the foreign
part of Ai - which determines the communication overhead. So the concept
of covers enables an abstract specification of communication requirements.

Note the restriction we apply here: write access can only be applied to
the own data of a processor, i.e. remote accesses are only read commands.
(If concurrent write accesses were allowed, the consistency of independent
computations performed on overlapping covers could be ensured - regardless
of any restrictions- by a sheaf-theoretic semantics (Pepper & Siidholt 1997).)

But - as mentioned earlier - this restriction is fulfilled in many appli­
cations. Moreover, it is weakened to a large extent by the flexibility of the
underlying transformational approach to program development: during differ­
ent stages of the derivation of a parallel program different covers (and domains
of possible write access with them) can be considered.

Semantical Framework. Although a complete definition of the formal se­
mantics of data structures, covers and cover operators is beyond the scope of
this paper, a short sketch should be helpful for the reader.

The methodology is based on three concepts that are specified algebraically:
data structures, covers and skeletons. The algebraic specifications are given a
loose semantics.The constituent properties of covers thus cannot be ensured
by construction, but are treated as proof obligations. Because loose specifi­
cations are often unwieldy, we use the abstract representation introduced in
Section 3.1 to distinguish particular models of the specifications. Besides, this
model can be naturally used to define other notions that are important in
constructive program development, such as the shape and contents of a data
structure or the equivalence of different concrete representations of the same
data structure (see Pepper & Siidholt 1997).

3.3 Cover Operators and Data Distribution Algebras

Covers do not necessarily support homogeneous computations. Arbitrary col­
lections of arbitrarily shaped subobjects may form a cover, but clearly we can
only work decently with well-structured covers that exhibit some homogeneity.

Example: A typical situation is illustrated in Figure 3. A matrix is to be
distributed over (in this example) q = 3 processors. In the light of the prop­
erties of the application, we opt for an overlapping row-block cover consisting
of q - 2 (hence, in our illustration, only 1) inner row blocks plus a top and a
bottom borderline block. Each of the inner row blocks consists of

144 Algorithmic Languages and Calculi

---------------· I I
I e e e e e e e e e e e I

-' ·~ ~ !.•-·-·~ ~ !.• •-north
1 • ooooooooooo '~"" n = 1 I: eeeeeeeeeee :I
I L Jl.•-~! Jl.·-~! Jl.·-~ J I

1 • • • • • • • • • • • I h = 5 1'nter1·or •••••••••••
I i .-.-. i .-.-. i .-.-. i I
I: 00000000000: I 8 = 2
Lo OQQQ.O_O_OQQQ.O ,j''south
•••••••••••••
I e e e e e e e e e e e I

L--------------J

Figure 3 An overlapping row-block cover with 3 blocks

• the own part, that is, of h interior rows, and
• the foreign part, that is, of n "northern" and s "southern" rows. (Such

situations, where there are foreign parts both to the north and the south,
only work deadlock-free, when certain computational patterns hold for the
detailed algorithm.)

For the top and the bottom block, the northern and southern rows, respec­
tively, are missing.

As mentioned earlier, the idea behind this design is that the own part
will be assigned to the processor's local memory, whereas the foreign parts
provide the compiler with the information necessary to derive the appropriate
communication patterns. (In the situation shown in Figure 3, where we assume
n = 1, s = 2 and h = 5, two rows need to be communicated from the bottom
processor to the middle processor, and one row from the top processor to
the middle processor.) The actual computation of the middle processor is
described as if it were working on a matrix with n + h + s = 8 rows - without
any mention of communication. (End of example}

This example clearly illustrates the basic ingredients needed for defining
covers. We are dealing with three kinds of data structure:

• the original structure: matrix[real];
• the structure of the substructures: block ~ matrix(real]
• the covering structure: vector[block] = vector(matrix[real]]

In addition, we have to specify the way in which the original matrix is viewed
as a vector of matrices, defining in particular the size of the vector and the
overlapping parts. But before we tackle this in detail, we want to settle the
question of the overall framework.

Recall that a data structure is a bundle of arrows into some base type; hence,
all our data structures are generic which we denote, for example, by matrix[a]
or vector(,B], or simply by matrix[_] when the name of the parameter sort is
not needed. As explained above, the definition of a cover involves three generic
structures: the original sort obj [_], the subobject sort sub(_] and the cover

Solving differential equations using covers and skeletons 145

sort cover[_]. (Remember that the different occurrences of the placeholder
'_, may refer to different expressions.)

Moreover, we employ a pair of functions split and glue for defining the
relationship of the cover to the original object. Semantically speaking,

• split defines how the original bundle of arrows is mapped onto a set of (not
necessarily disjoint) bundles which cover the original bundle, and how this
set is made into a data structure itself.

• glue defines how the original object can be recovered from its parts.

DEFINITION 6 (COVER SPECIFICATION)

A cover is a refinement of the following specification
COVER Cover

SORT obj[-J
SORT sub[-]
SORI' cover[-]

-- the original object
-- the subobjects in the cover
-- the structure of the cover

FUN split: obj[-]-+ cover[sub[-11
FUN glue: cover[sub[-11-+ obj[-]
AXM glue o split = id

The row-block cover, for example, can be defined by two functions
FUN split: matrix[a)-+ vector[matrix[a])
FUN glue: vector[matrix[a]] -+ matrix[a]
The geometric representation of matrices defined in Section 1.1 enables us to

specify distributions in a very concise manner, as illustrated by the following
definition (cf. Figure 3):

DEFINITION 7 (ROW-BLOCK COVER)

The (overlapping) row-block cover is defined by
COVER RovBloek(q,n, a) 1

FUN q,n, I: nat 2
REFINES Cover USING obj(-) == matrix(-) 3

sub[-) == matrix[-) 4
eover[-) == veetor[-) 5

AXM split(Mat) =Vee => I(Vee) = q 6
A height(Vee.i) = height(Vee.j) ± 1 7
A top(Vee) COVERED BY IS(s) 8
A (BE inner(Vee) => B COVERED BY NIS(n,s)} 9
A bottoa(Vee) COVERED BY NI(n) 10

AXM glue(Vee) =@!vee 11
FUN _IQ)_ : matrix[o] x ll&trix[o) -+ matrix[o) 12
AXM height(N) ::::: D A height(S) = s 13

=> (A8N8S)@ (N8S8B) = (A8N 8S8B) 14

where '/'denotes the skeleton "reduce" introduced in Section 4.

Because this definition should be mostly self-explanatory, we only men­
tion the following details: the row-block cover covers matrices with vectors

146 Algorithmic Languages and Calculi

of matrices (Lines 3-5) and has as many components as there are proces­
sors (Line 6). Consequently, the size of the components is not fixed, but the
components are approximately the same size (Line 7). The inner blocks are
partitioned as specified by NIS[n, s] (see below).

This specification characterizes all relevant aspects of the concept of row­
block covers. Together with the axiom glue o split= id, we can follow, for
instance, that two adjacent blocks of the cover consist of contiguous parts of
the original matrix. But, for the sake of readability, we have refrained from
excluding all pathological border cases. Assume, for instance, that the size n
of the northern part is larger than the inner size h (see Figure 3). In this case
the communication of the elements of a northern foreign part would involve
more than the southern neighbouring component.

For the sake of completeness, we also show the cover specification of NIS
the other two are defined analogously).
COVER NIS(n, s)

FUN n,s: nat
REFINES Cover USING obj(-J == matrix(-)

sub[-] == matrix[-]
cover[-] == triple[-]

TYPE triple(-) -- (FOREIGN north: matrix(-),
OWN inner: matrix[-],
FOREIGN south: matrix[-]}

AXM split(Mat) = triple(N, I, S) => height(N) = n A height(S) = s
AXM glue(triple(N, I, S)) = N BIBS

The covers of a given data structure (such as matrices in this paper) form
an algebra, which we call the data distribution algebra. Such an algebra
introduces further operations on covers, such as "mapping" covers over covers.
(This definition only makes sense if the covers, i.e. theasplitting and gluing
functions, have suitable types. This condition can be met by defining covers
using partially defined subobjects. With this technique, all covers of a data
type D[a] can be defined to be of type D[D[a]] (cf. Pepper & Siidholt 1997).)

DEFINITION 8 (COVER COMPOSITION)

Let C1 , C2 be covers, such that ob h [_] = sub1 [_]. Then the composed
cover C2 * C1 is defined by (where '*' below denotes the map skeleton in­
troduced in Section .. p!)
split= (split2 •) o split1

glue= glue2 o (glue1 •)

The foreign parts of the composed cover are determined by
foreign(C2 * C1) = foreign(Cl} U foreign(C2)

Here, the set of arrows belonging to the foreign part of a cover is defined by
foreign(C) =Usee foreign(s). The condition on the foreign part implicitly
also determines the own part of the composed cover.

Solving differential equations using covers and skeletons 147

f f f

f 0 f .. - inner_east

f f f

Figure 4 Own and foreign parts of a tile

3.4 Higher-Dimensional Matrix Covers

The cortex equation (Equation 1 on page 6) uses four-dimensional coefficient
matrices, because only the position vectors denoted by o: and x are relevant
here. In Section 2.3 we indicated that we capture some of the characteristics
concerning the efficiency of the Fourier transformations using suitable covers,
i.e. we examine the following functional algorithm

ldS=norm*(J;. (C~· 8~)0 -t):z:):z:-t (4)1
where the calligraphic letters I, C and S denote the covers of the corre­

sponding matrices. norm is the functional implementation corresponding to
the term "(8 in Equation 1 which normalizes the matrix elements as described
in Section 2.2.

An important observation, motivated by the deliberations in Section 2.3,
is that the Fourier transformations are only performed along two dimensions,
instead of along four dimensions. Consequently, we do not define genuine
four-dimensional covers, but "lift" suitable two-dimensional covers to four
dimensions. This is also the reason why we do not need constructors for higher­
dimensional matrices here. All relevant aspects can be specified using the
constructors for the two-dimensional case defined in Section 1.1 and the lifting
operator defined below.

For simplicity, we choose tiling covers as the basic two-dimensional covers.
Instead of defining the tiling cover in an ad hoc manner, we "superimpose"
a row-block cover on a column-block cover. The column-block cover is struc­
turally equivalent to a row-block cover and can be defined algebraically using
a specification isomorphism:

COVER ColBlock[p, w, e] == im(RowBlock[q, n, s]) 1

WHERE im(p) == q, im(n) == w, im(s) -- e, 2
im(height) == width, im(B) == rn, 3
im(north) == west, im(south) == east 4

In Lines 2-3, the specification isomorphism im maps the parameters and
operations of the cover RovBlock onto those of ColBlock (note that the ob­
jects, subobjects and cover sort remain the same). In Line 4, the selectors of
the local covers are renamed so as to better fit identifiers.

148 Algorithmic Languages and Calculi

From the axiom (a b EB c d)= (a CD b)B(cCDd) that holds for the geometric
re resentation of matrices the theorem

THM RovBloc:k[r,n,s] *U ColBloc:k[c:,v,e] = ColBloc:k[c:,v,e] *u RovBloc:k[r,n,s]

follows. From the definition of the composition operator *u (Definition 8)
we can derive that each subobject here consists of a matrix (its own part)
surrounded by matrices forming the foreign part (see Figure 4). We use the
previous theorem to define the tiling cover.

DEFINITION 9 (TILING COVER)

COVER Tile[r · c, n, s, w, e) == RowBlock[r, n, s) •u ColBlock[c, w, e) 1
FUN inner _ east : matrix[a) ~ matrix[a) 2

DEF inner _ east == inner o east 3

4

On Lines 2-3, inner _ east defines a selector used to access the tile forming
the middle-eastern edge of the foreign part. (The selectors inner and east
are defined as part of the covers RowBlock and ColBlock, respectively; the
analogous definitions for the north-eastern foreign part etc. are missing.) The
selectors are used in functions that are defined on the cover, such as the
Fourier transformation.

A suitable four-dimensional cover can be defined by lifting the tiling cover
to four dimensions using the (product) cover operator x. This operator can
easily be defined algebraically using projections on two dimensions:

Let C11 C2 be two-dimensional matrix covers. Then the product cover
C1 X C2 is defined by the requirement

AXM (Ct X C2)ldia(1,2) = Ct A (Ct X C2)1dia(3,4) = C2

We are now ready to define the covers used in Equation 4. Assuming that
the identifier x there refers to the plane determined by the first and second,
and a to the third and fourth dimension, the four-dimensional covers are
defined as the product,

DEFINITION 10
Let ide be the identity cover defined by split = glue = id.1

DEF X == id X Tile(t,,n,,s,,w,,e,)
DEF Y == Tile(t2, n2, s2, V2 1 e2) X id

where id denotes the identity cover, t 1 · t2 processors are available and
the parameters n1, ••• , e2 denote the overlap that depends on the underly­
ing algorithm computing the Fast Fourier transformation. (We come back to
this issue in Section 4.3.) The choice of identity cover ide is motivated by
the observation made in Section 2.3 that (the parallel implementation of the)
Fourier transformations are computed most efficiently if the elements along

Solving differential equations using covers and skeletons 149

the axes to be transformed are stored locally at a processor. Data distribu­
tion (indicated by the tiling covers) should therefore only be specified for the
dimensions that are not transformed.

The basic covers used in Equation 4 can then be defined by

DEFINITION 11 (BASIC COVERS)
Let X, Y be the covers defined in the last definition.

4 SKELETONS

As mentioned earlier, skeletons are certain higher-order functions that are
amenable to "good" parallel implementations. Such skeletons exist for all
kinds of data structures, but to give a first intuitive flavour we present some
of the simplest ones for the case of lists:

• The most basic skeleton is "map", which applies a function to all elements
of a list. This function is usually written in infix notation using the symbol
'•'.

FUN • : (a~ /3) ~ seq(a] ~ seq[/3]
DEF f • (at, ... ,a.)= (f(at), ... ,f(a.))

Its parallel implementation is trivial: the sequence elements are distributed
across the processing units and the function is applied separately at each
processor. Note that the number of processors can be smaller than the
number of sequence elements without additional complications. This par­
allel computation thus induces no communication (except for the initial
distribution) at all.

• A close relative of "map" is "zip", which combines two argument lists
into a result list by applying an operation to each pair of corresponding
elements:

FUN Y: (ax f3 ~ "Y) ~ seq(a] x seq[f3] ~ seq("Y]
DEF (at, ... a.) Ye (bt, ... b.)= (at E9 bt, ... , •• E9 b.)

This skeleton also requires no communication if the elements of the two
sequences have been distributed accordingly beforehand.

• Another basic skeleton is the "reduce" skeleton (denoted by the infix sym­
bol '/'), which reduces a non-empty list to a single value:

FUN / : (a x a ~a) ~ seq(a] ~a
DEF E9/(at, ... , a.)= at E9 ... E9 aa

This skeleton can be implemented efficiently (on suitable architectures) in
parallel by distributing the data logically in a tree-like fashion and com­
puting the reduction bottom-up from the leaves to the root. Note that ED
has to be associative.

150 Algorithmic Languages and Calculi

Besides these general skeletons, more specific ones have been derived from
algorithm design tactics (e.g. skeletons for divide-and-conquer or approxima­
tion algorithms) or lower-level characteristics such as near-neighbour commu­
nication.

Our approach to the transformational development of parallel programs is
in line with most other modern skeleton-based approaches in that it should
provide a universal set of skeletons that can be used (in principle) to express
all other skeletons. This is in contrast to the first approaches to programming
by skeletons (Cole 1989), where each skeleton was intended to be some sort
of indivisible entity not expressible by a combination of other skeletons - if
skeleton composition was not forbidden altogether.

4.1 Implementing the Cortex Equation Functionally

We are now ready to present the functional algorithm that solves the cortex
equation (Equation 1). The algorithm shown in Equation 4 introduces appro­
priate covers for the element matrices. The efficient computation of Fourier
transformations, however, necessitates data redistributions as discussed in
Section 2.3. We take this into account by inserting cover transformations (de­
noted by expressions ofthe form C2 ~ C1) into the final algorithm (remember
that X, Y denote the basic covers developed in Section 3.4).

dS =norm* ((X~ Y) o (I~· ((Y ~X) o (C: · s:)a-l))z)z-1 (5)

To complete this functional program, we have three things to do: define the
cover-parallel multiplication'·', define the map-skeleton'*' on (overlapping)
covers and implement the cover transformations X ~ Y and Y ~ X.

The cover- arallel multi lication can be defined usin the zi skeleton as
FUN ·: matrix[real] x matrix[real] -+ matrix[real]
DEF • == y hool)

where '·real' denotes the multiplication function on reals. In the next two
sections, we address the remaining issues.

4.2 The Generalized Map Skeleton

The algorithm shown as Equation 5 contains functions that are mapped onto
covered matrices. The function norm, for instance, is used to normalize all
elements of matrices that are covered by a tiling cover. In Section 2.2, it is
mentioned that the function norm has to constrain the total synaptic strength
of the elements belonging to the dimension x. This operation is local to the
dimension a: using the cover transformation X ~ Y in Equation 5, this
becomes a localized operation.

In addition to constraining the dS, it is also necessary to clip the values

Solving differential equations using covers and skeletons 151

of the S at every integration step, i.e. restrict them such that they fit in the
interval [0 ... 1]. (This task is denoted by norm' below.) This is obviously quite
a simple case, because this computation can be done using a disjoint cover
(although we have not intro~uced a partitioning in Equation 5 explicitly),
given that no communication is necessary.

The definition of the tiling cover as defined in Section 3.4 consists (in our
case) of matrices, of matrices of real values. The function norm should obvi­
ously normalize the "inner" real values, i.e. we have the following implemen­
tation in mind:

FUN norm' : matrix(real] -+ matrix(real]
DEF norm' (M) == normReal • M

where the function normReal is applied to the components of the covered
matrix, that is, matrices parameterized by basic types and the operator * is
the map-skeleton on matrices.

The map-skeleton can be defined as generalizing this pattern:

DEFINITION 12 (MAP SKELETON)

Realizing a function f based on the map skeleton is defined as:
SKELETON Map(f 1 g) OVER Cover

FUN f: obj(a] -+ obj(/J]
FUN g: sub(a] -+ sub(/J]
ENRICH Cover BY

DEF f(A) == glue(g * split(A))

As a prerequisite, the cover cover[_] must possess a map operator '* '.
Skeletons implicitly specify communication through the access (of g in Def­

inition 12, for instance) to the foreign parts of substructures of the underlying
cover. Thus, parameterizing skeletons with covers allows the derivation of
cost information based on the cover (and skeleton) definitions (although it
does not provide a solution to the monotonicity problem of transformational
program derivation (cf. Skillicorn 1993)). This information can be used to car­
acterize communication free computations as illustrated in the next section,
apply replication of foreign parts in order to avoid communication or directing
equations such that they become cost reducing transformations (cf. Pepper &
Siidholt 1997).

The above example norm' also illustrates a nice property that holds when
the overall object and the subobjects have the same type, and when f is
already defined using the map operator:

THM VA: obj(a]. g•A = glue(guplit(A))
This theorem states that a function g is mapped over an object A by first

splitting the original object, mapping g over the resulting cover and gluing
the resulting subobjects together to form the result object.

Coming back to our overall algorithm, the main program in Equation 5
can be augmented by the following instantiation of the map-skeleton, which
• • I

IMPORT Map(norm', normReal) OVER Tile(p, 0, 0, 0, 0)

152 Algorithmic Languages and Calculi

The zip-skeleton used in the definition of the function '·' above can easily
be defined in terms of a map over pairs of covers.

4.3 Deriving Low-Level Communication Code

The last gap that has to be filled in order to implement Equation 5 is the
definition of the cover transformations between the different convolution com­
putations.

{Non-)Local Fast Fourier Transformations. In Section 2.3, an important
property of Fast Fourier transformations (on the CM-5) was mentioned: they
are computed most efficiently (which means without communication in this
case) if the elements belonging to the dimensions that are transformed can be
accessed locally. This can be expressed as a property of the underlying data
distribution using a transposition function '_ 1 ':

THEOREM 1 (LOCAL FFT)
Let M be a matrix and c a control specification. Then we have

THM M COVERED BY C =>
(c:ost(fft(M, c:)) = 0 <==>
'v'O~i~l(c:): op(c:);fnop => 3seC: Mldta(i)~ovn(s))

where the specification function own yields the own part of a subobject.

Performing a Fast Fourier transformation along a non-local axis is equiv­
alent on the CM-5 to transposing the matrix such that the axis is local,
computing the transformation and transposing the result. This gives rise to
the equivalence

THEOREM 2 (TRANSPOSED FFT)

Let M be a matrix and c a control specification. Then we have

I fft(M,c:) = (fft(Mr,c:nr

The communication costs of the transpositions are obviously not negligible.
While we illustrate below how algorithms defined as skeletons that operate
on covers provide hints how to calculate these costs, let us only assume for
the moment that cost(-AT) » 0.

Deriving the Cover Transformations. Because convolutions are calcu­
lated using Fast Fourier transformations (cf. Equation 5), the previous two
theorems can be used to derive properties of the implementation of convolu­
tions. Theorem 2 yields an alternative method for computing convolutions:

THEOREM 3 (TRANSPOSED CONVOLUTION)

Let M, N be matrices and c a control specification. Then we have

Solving differential equations using covers and skeletons 153

1 4 7 1 4 7

2 5 8 2 5 8

3 6 9 3 6 9

Figure 5 Two-dimensional transposition operation

Furthermore, Theorem 1 and the fact that transposition involves commu­
nication
(cost(_ AT) » 0) allow us to assign different costs to the lhs and rhs of
Theorem 3. This is, however, only possible if the compiler knows how the
input matrices are distributed. Since in our framework the covers defined in
Definitions 10 and 11 yield exactly the necessary information, the compiler
can choose between the two possible implementations. We can conclude that
the transformations have to be implemented as

FUN Y +- X, Y +- X : matrix -+ matrix
DEFY+- X == transpose(a)
DEF X+- Y == transpose(x)

where the function transpose: control -+ matrix -+ matrix transposes its
argument matrix such that the axes that are to be transformed (as given in
the control parameter) become local.

· The definition of the low-level skeleton transpose shows how covers can
be used to abstractly specify communication. Consider the two-dimensional
transposition operation shown in Figure 5. This transposition can be im­
plemented, for instance in a master-slave environment, by first collecting all
elements at the master and then redistributing them in a second phase. The
collection phase can be implemented by covering the argument matrix by the
tiling cover and using an access to the right overlapping part to accumulate
the elements that form a row:
trans* M WHERE M COVERED BY Tile(t, 0, 0, 0, 1)
FUN trans : matrix -+ matrix
DEF trans(t) == ... inner _ east(t) ...
The function trans is defined on a tiling cover that overlaps one column

to the east. It accesses the middle part of the overlap (the element to the
right) using a call to the selector function inner _ east. If this operation is
synchronized such that trans is applied to a tile t after it has been applied to
the left neighbour oft, all elements of a row are accumulated on a processor.
As shown in Pepper & Siidholt (1997) covers allow the concise specification
of this and similar classes of synchronized behaviour by recursive equations
on covers.

Because the other operations of the implementation shown in Equation 5
(except the cover transformations) are localized operations, we can further

154 Algorithmic Languages and Calculi

derive that the basic tiling covers can be defined as partitionings, i.e. that we
can define

DEF n1 = 81 = Vt = 81 = n2 = 82 = V2 = 82 0

in Definition 10.

4.4 Comparison with C*

We implemented Equation 1 on Thinking Machine's CM-5 and the core code
fragments are shown in table 1. The Connection Machine 5 is a massively
parallel distributed-memory computer and the data-parallel programming lan­
guage is C*, a dialect of C. Operations in C* are automatically performed in
parallel if they use special parallel data objects-the shapes. The number
of parallel processors, however, is not known until runtime when the data is
distributed according to rules that should minimize the communication over­
head.

This implementation is particularly well suited for a comparison with our
approach because C* is an imperative programming language designed to
provide some of the features that we suggest in our functional programming
methodology such as parallel code, automatic data distribution, and implicit
data communication between processing nodes.

The program uses four-dimensional shapes (Line 2) (and an array of such
shapes for the fifth dimension). The CM Scientific Software Library provides
a Fourier transformation that can be used to transform high dimensional
data. We define controls (Lines 6-8) for the FFT for forward and backward
transformation (i) along the two LGN di~ensions and (ii) along the cortical
dimensions.

First, we allocate the shape (Line 10-13), i.e. we tell the system how much
data the parallel variables will hold (32 x 32 x 32 x 32 elements) and how to
distribute the data across the system. The default rule for data distribution
assumes an equal amount of communication along each of the shape dimen­
sions. This default distribution would be optimal for an FFT along all four
dimensions. For our particular problem, however, it proved to be more efficient
to keep the two data axes local to a processor along which most operations
take place, and then transpose the data when necessary (just as we discussed
in the previous sections). Thus, to increase the performance we request a data
distribution where the the first two dimensions are evenly distributed accord­
ing to the default rule and the third and fourth dimension are arranged in
serial order (i.e. local to a processor). Once a shape is declared it can be used
to generate data objects (Lines 3, 4, 14).

The main loop of the program (Lines 18-49) then consists of Fourier trans­
forming the data along the a axes (Lines 20-24), then multiplying it with the
FFT of C (Lines 27-34) and transforming it back (Line 35). Then we redis­
tribute the data to make the x axes local (Line 38), convolve with I (Lines
39-42) and transpose back. Finally, the constraint normalizes the synaptic

Solving differellfial equations using covers and skeletons 155

1 /• declare parallel variable shape and pointers to parallel
2 shape [)[)[][]ModelMap;
3 double:ModelMap •S[4], •dS[4], •C_fft[4], •I_fft, •A;
4 CMSSL_double_complex_t:ModelMap •S_fft[4), SUM_fft;
5
6
7
8
9

CMSSL_fft_control_t
forvard_lgn_ctrl[4] = {no_fft, no_fft, fvd_fft, fvd_fft},
inverse_lgn_ctrl[4) = {no_fft, no_fft, inv_fft, inv_fft};

I• allocate parallel variable shape vith serial LGN axes •I

variables •I

10
11
12
13
14

ModelMap = allocate_detailed_shape (tModelMap, 4, {32, 32, 32, 32}, NULL,
{CMC_nevs_order, CMC_nevs_order, CMC_serial_order, CMC_serial_order},
NULL, NULL, NULL);

I• allocate all parallel variables; setup FFT •I
15 I• compute A; randomly initialize S; compute I and C and FFT them •I
16 ... code missing ...

for (iter = 0; iter < no_iterations; iter++) {
I• FFT S along LGN dimensions: S --FFT--> S_fft •I
for (i = 0; i < 4; i++) {

re (•S_fft[i]) = •S[i];
im (•S_fft[i]) = 0.0;

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

CMSSL_fft_detailed (S_fft[i],CMSSL_cmpx_to_cmpx,forvard_lgn_ctrl,id)
}

for (i = 0; i < 4; i++) {
re (•SUM_fft) = 0.0;
im (•SUM_fft) = 0.0;
for (j = 0; j < 4; j++) {

}

I• convolveS vith C means multiply S_fft vith~_fft •I
cind = ((il2==jl2) ? 0 : 2) + (i+j)X2; I• choose 1 of the
re (•SUM_fft) += re (•S_fft[j]) • C_fft[cind];
im (•SUM_fft) += im (•S_fft[j]) • C_fft[cind];

4 C's •I

35 CMSSL_fft_detailed (SUM_fft,CMSSL_cmpx_to_cmpx,inverse_lgn_ctrl,id);
36
37 I• transpose data; FFT; multiply v. I_fft; FFT back; transp. back •I
38 [pcoord(2)][pcoord(3)][pcoord(O)][pcoord(1)]re(SUM_fft)= re(SUM_fft);
39 CMSSL_fft_detailed (SUM_fft,CMSSL_cmpx_to_cmpx,forvard_lgn_ctrl,id);
40 re (•SUM_fft) •= I_fft;
41 im (•SUM_fft) •= I_fft;
42 CMSSL_fft_detailed (SUM_fft,CMSSL_cmpx_to_cmpx,inverse_lgn_ctrl,id);
43 [pcoord(2)][pcoord(3)][pcoord(O)][pcoord(1)]•d_S[i] = re(•SUM_fft);
44 •d_S[i] •= learn_step_size • •A;
45 }
46
47
48
49 }

I• compute constraint term (gamma) and update the veights •I
... code missing ...

Table 1 C* program for the computation of Equation 1

156 Algorithmic Languages and Calculi

weights for each cortical cell (Line 47 /48; code not shown) which is local to
the a axes.

C* tries to conceal as much of the parallel architecture from the program­
mer as possible. Data objects can be declared and used without knowing
about the hardware which makes C* a portable language. However, the de­
fault shapes are designed for "average" communication needs, no mechanism
for (semi-automatic) data rearrangement depending on the communication
costs assessment is provided. Shapes have to be "hand made" (like in our
example, Line 11) when the default data distribution is not optimal for the
parallel problem at hand. Shape declaration, and by that means, data distri­
bution is an a-priori decision that is independent of the rest of the C* program.
Therefore it is not elegantly possible to redistribute data when appropriate
(see e.g. the shape transposition in lines 38 and 43 that is easily possible only
because all four shape dimensions have the same size. Alternatively, we can
redistribute a data object in memory by declaring a second shape of the same
size but with a different layout in memory and then casting the data.)

From this discussion it should be clear that the data-parallel constructs
of C* support only a very restricted programming model in comparison to
the methodology presented in this paper. Shapes, for instance, are a very
restricted subset of partitioned covers. Hence, the communication and syn­
chronization requirements have to be implemented exptlcitly and cannot be
derived as with our methodology. Furthermore, C* does not provide any
means to specify the constraints on address orderings as is done in Section 2.3
(These requirements are (rather informally) described in the library descrip­
tion (TMC 1993)).

5 CONCLUSION

In this paper we have presented an extension of the skeleton methodology
by covers. This abstraction enables us to declaratively treat two important
aspects of parallel programming that are commonly dealt with in an ad hoc
manner. First, data distribution algebras enable a high-level and precise spec­
ification method for data distribution issues. They have been shown to be
useful for providing the information necessary to derive communication state­
ments for data redistribution. This feature has been shown to largely simplify
the formulation of parallel algorithms in comparison to data-parallel impera­
tive methodologies.

Second, the methodology enables the concise definition of architecture­
specific features. This information can then be used for deriving the low-level
communication code.

Solving differential equations using covers and skeletons 157

5.1 Related Work

The derivation of sequential programs by program transformation has long
been a topic of research (Feather 1987, Bauer et al. 1985). More recently, this
research has focused on the application of constructive calculi for the deriva­
tion of parallel programs. While Cole (1989) introduced skeletons in an im­
perative framework, most work - starting with the work of Darlington et
al. (1993)- has concentrated on applicative calculi (Pelagatti 1993, Geerling
1996, Bratvold 1993), because the integration of skeletons into applicative pro­
gramming languages is very smooth and leads to descriptions that are quite
close to mathematical specifications. Considerable attention in the field of the
transformational derivation of parallel programs has also been given to the
so-called Bird-Meertens Formalism (Meertens 1986, Bird 1989). Skillicorn
(1992) works on categorial data types that provide a set of polymorphic types
together with a restricted class of functions, called catamorphisms, which are
relatively easy to parallelize. Skeletons can, however, also be integrated into
other calculi besides the Bird-Meertens Formalism. Geerling (1996), for in­
stance, uses skeletons in an assertion-based calculus formulated in a Dijkstra­
style logic framework. Most of this work- with the exception (to a certain
degree) of Bratvold (1993) and Skillicorn (1993) - does not explain how to
break down transformations for automatic compilation guided by appropri­
ately chosen cost functions. However, the research did yield a proliferation of
transformational derivations useful for practical problems (Pepper 1993, Pep­
per et al. 1993).

There are some approaches to the transformational development of par­
allel programs that rely on the concept of shapes (Jay & Cockett 1994).
Shapes represent containers for data elements and can be manipulated using
their polymorphic properties. While this approach requires analysis meth­
ods that are quite similar to ours, all the other approaches put forward up
to now only deal with disjoint shapes. Shapes have also been applied to non­
transformational imperative frameworks for parallel programming (see, for ex­
ample, work concerning the object-oriented language Sather (Schmidt 1992)).
Similar data distribution techniques are also diffusing (to a small extent) into
conventional imperative programming languages. One such example are the
distribution directives of High Performance Fortran (HPF Forum 1993).

REFERENCES

Bauer, F. et al. (1985), The Munich Project CIP. Vol. I: The Wide Spectrum Lan­
guage CIP-L, number 183 in 'LNCS', Springer Verlag, Berlin.

Bird, R. S. (1989), Lectures on constructive functional programming, in M. Broy,
ed., 'Constructive Methods in Computing Science', Vol. 55 of NATO AS!,
F, Springer, pp. 151-216.

Bratvold, T. A. (1993), A skeleton-based parallelising compiler for ML, in R. Plas-

158 Algorithmic Languages and Calculi

meijer & M. van Eekelen, eds, 'Implementation of Functional Languages', U.
Nijmegen. TR 93-21.

Cole, M. (1989), Algorithmic Skeletons: Structured Management of Parallel Compu­
tation, MIT Press.

Culler, D. E. et al. (1993), Parallel programming in Split-C, in 'Supercomputing'.
Darlington, J. et al. (1993), Parallel programming using skeleton functions, in

A. Bode, M. Reeve & G. Wolf, eds, 'PARLE '93', pp. 146-160.
Erwin, E. & Miller, K. (1995), 'Modeling joint development of ocular dominance

and orientation in primary visual cortex', Proc. of the CNS.
Erwin, E., Obermayer, K. & Schulten, K. (1995), 'Models of orientation and ocular

dominance columns in the visual cortex: A critical comparison', Neur. Comp.
7, 425-468.

Feather, M. S. (1987), A survey and classification of some program transformation
approaches and techniques, in L. Meertens, ed., 'Program Specification &
Transformation', North-Holland.

Geerling, M. (1996), Transformational Development of Data-Parallel Algorithms,
PhD thesis, Katholieke Universiteit Nijmegen.

HPF Forum (1993), 'High Performance Fortran', Scientific Programming.
Hubel, D. H. & Wiesel, T. N. (1962), 'Receptive fields, binocular interaction and

functional architecture in the eat's visual cortex', Journal of Physiology Lon­
don 160, 106-154.

Jay, C. & Cockett, J. (1994), Shapely types and shape polymorphism, in D. Sannella,
ed., 'Programming Languages and Systems- ESOP '94', LNCS, Springer
Verlag, pp. 302-316.

Linsker, R. (1986), 'From basic network principles to neural architecture: Emergence
of orientation selective cells', Proceedings of the National Academy of Science
USA 83, 839Q-8394.

Meertens, L. (1986), Algorithmics- towards programming as a mathematical ac­
tivity, in 'CWI Symposium on Mathematics and Computer Science', North­
Holland, pp. 289-334.

Miller, K. (1994), 'A model for the development of simple cell receptive fields and
the ordered arrangements of orientation columns through activity-dependent
competition between ON- and OFF-center inputs', Journal of Neuroscience
14, 409-441. .

Obermayer, K., Blasdel, G. G. & Schulten, K. (1992), 'A statistical mechanical
analysis of self-organization and patte rn formation during the development
of visual maps', Phys. Rev. A 45, 7568-7589.

Pelagatti, S. (1993), A Methodology for the Development and the Support of Mas­
sively Parallel Programs, PhD thesis, Universita di Pisa-Genova-Udine.

Pepper, P. (1993), Deductive derivation of parallel programs, in R. Paige, J. Reif &
R. Wachter, eds, 'Parallel Algorithm Derivation and Program Transforma­
tion', Kluwer Academic, chapter 1, pp. 1-53. Also as TR 92-23, TU Berlin.

Pepper, P. & Moller, B. (1991), Programming with (finite) mappings, in M. Broy,
ed., 'lnformatik und Mathematik', Springer Verlag, pp. 381-405.

Pepper, P. & Siidholt, M. (1997), Deriving parallel numerical algorithms using data
distribution algebras: Wang's algorithm, in 'Proc. of the 30rd Hawaii Inter­
national Conference on System Sciences'.

Pepper, P., Exner, J. & Siidholt, M. (1993), Functional development of massively
parallel programs, in D. Bjorner et al., eds, 'Formal Methods in Programming

Solving differential equations using covers and skeletons 159

and Their Applications. LNCS 735', Springer Verlag, pp. 217-238.
Piepenbrock, C., llitter, H.&; Obermayer, K. (1996}, 'Linear correlation-based learn­

ing models require a two-stage process for the development of orientation and
ocular dominance', Neural Processing Letters 3, 31-37.

Schmidt, H. W. (1992}, Data-parallel object-oriented programming, in 'Fifth Aus­
tralian Supercomputer Conference, Melbourne', 263-272.

Skillicorn, D. B. (1992), The Bird-Meertens Formalism as a parallel model, in 'NATO
ARW "Software for Parallel Computation"'.

Skillicorn, D. B. (1993), 'Deriving parallel programs from specifications using cost
information', Science of Computer Programming.

Tichy, W. F., Philippsen, M. & Hatcher, P. (1992}, 'A critique of the programming
language C*', Communications of the ACM 35(6), 21-24.

TMC (1993), CMSSL for C*, Thinking Machines Corp.

6 BIOGRAPHY

Mario Siidholt is a member of the declarative language group at the research
institute in computer science Irisa/lnria-Rennes, France. He received his Mas­
ters degree in computer science from the University of Coblence in 1992 and
will complete his PhD at the Technical University of Berlin, Germany, in June
1997. His research interests cover the formal derivation of sequential and par­
allel algorithms, (declarative) programming languages and formal models for
the description of software architectures.

Christian Piepenbrock is a member of the Neural Information Processing
Group at the Department of Computer Science at the Technical University
of Berlin. He received his Masters degree in the interdisciplinary program in
·Computer Science and Biology from the University of Bielefeld in 1995. His
research interests are models for the structure and development of neuronal
networks in the visual system and the simulation of such parallel networks.

Dr. Klaus Obermayer is Professor for Neural Information Processing at
the Department of Computer Science at the Technical University of Berlin. He
received his Masters degree in physics in 1987 from the University of Stuttgart
and his PhD in 1992 from the Technical University in Munich, Germany. His
research interests cover the areas "computational neuroscience", statistical
physics of neural networks and the application of artificial neural networks in
signal processing and data analysis.

Peter Pepper received a Masters Degree in Mathematics and a PhD in
Computer Science from the Technical University Munich. Since 1985 he has
been Professor for Computer Science at the Technical University of Berlin,
where he holds a chair in Compiler Construction and Programming Lan­
guages. He is a member of GI, ACM, EATCS, IFIP working groups WG 2.1
and WG 14.3, and an affiliate of IEEE. His research interests cover functional
programming, algebraic specification, transformational program development,
formal derivation of parallel algorithms and software engineering for safety­
critical systems.

160 Algorithmic Languages and Calculi

DISCUSSION SESSION

MONDAY AFTERNOON

Jim Boyle: I would like to ask the last speaker, do you think that, assuming
you had the manpower to complete the derivation to C* code, would the result
be more or less efficient than the hand-written program that you showed?

Mario Siidholt: The efficiency of the final algorithm depends on the level
at which you let the user interact with the system. Another question is what
can we do with the transformation that accompanies the basic covers and
the skeletons relating them. We have several case studies where we get almost
optimal algorithms, but this depends on the specific communication behaviour
assigned to skeletons, which is different than that used in our paper. The
communication says, when access to a foreign part is required, does the owner
have to perform the computations before or after the access? With explicit
control over synchronization, you get optimal algorithms in many cases.

Peter Pepper: Parallel algorithms in the literature are usually presented by
some high-level informal description, followed by a program in which each
variable had probably two or three indices, followed by an efficiency analysis.
It is clear to me, since many of these indices contain mistakes, that in most
cases the efficiency analysis was based on the informal description, not on the
algorithm as presented. Numerical analysts think in terms of matrices, and
there is a huge gap between this level and the C* or HP Fortran code. Our
work is concerned to lift the level of the programming. At least in that area,
I don't think we have new algorithms, just' an easier way to describe good
algorithms. At the moment I would be happy if we can come up with the best
algorithms that peoples have invented already, but with a shorter description,
and one that enables variations of the algorithms to be programmed more
easily.

Jim Boyle: I want to direct the same question to Perrin, do you have any
indication of how the derived implementation in PEl would compare with a
hand-crafted one?

Guy-Rene Perrin: I would give the same answer as Peter Pepper. We are
only able to abstract what practitioners do, and to understand how they
do what they do, and how we can find variations on algorithms and data
distributions.

Wolf Zimmermann: This is to both speakers on data parallelism. You all
start from an initial data distribution. Why don't you assume initially that
you have to share the memory, then you don't need to worry about data dis­
tribution? So, for example, people who consider implementation of parallel
algorithms as a scheduling problem, first more or less schedule the computa­
tions and then derive from that the appropriate data distributions.

Discussion 161

Mario Siidholt: One answer to this question is that there are models for
shared memory programming that can be embedded into distributed archi­
tectures so that the algorithms are equally efficient. However, there are algo­
rithms that are not of this form. At present I have not seen a programming
methodology restricted to these pro-shared memory architectures that can be
applied in a generality that is sufficient for practical programming.

Guy-Rene Perrin: When you program a shared-memory machine, practi­
tioners say that what you measure is the efficiency of the machine, not the
algorithm. I think it is not useful to draw a strict difference between these
two points because if you have a shared-memory machine, you have a real
problem of locality if it is a non-uniform memory access machine. So its bet­
ter to say that the real work is about the locality of data in order to achieve
either a shared-memory machine with cache memory, or distributed-memory
machines.

Wolf Zimmermann: I agree with your answers, but somehow you misun­
derstood my question. I asked about the starting point, and I would say that
starting with a shared-memory program would be cheaper. What people in
scheduling theory do is to look at the operations being performed and model
them as a directed acyclic graph, and then schedule the operations so that
the execution time is minimized. In several cost models, they can even give
performance guarantees.

Peter Pepper: The initial specification shouldn't talk about machines at
all. When you are talking about parallelism, it is already a first step toward
implementation. Then you can make your mind up whether you first model
it as a shared or distributed-memory problem. My experience is that once
you start going towards the shared-memory model, its very hard to find the
way back to the distributed-memory model later on. The point is that data
locality is the decisive issue in distributed-memory machines. These are the
predominant machines in the market and I am pretty sure that they will
continue to be predominant in the future. I believe that one day we will just
see networks of workstations linked together. So, knowledge about locality
is application dependent. If you pretend that there is shared memory, the
compiler or runtime system is unable in most cases to figure out where the
data should be kept. My conclusion is that we should allow the user to express
his knowledge about locality as soon as possible and on as high a level as
possible. The trick, of course, is not to let this complicate the algorithmic
thinking, but to keep the solutions simple enough while still being able to
express locality issues.

Helmut Partsch: To change the topic, in previous working conferences we
had the benefit of having people outside the environment of WG2.1 because
they sometimes raised provocative questions. One of the referee's reports on
a (non-accepted) paper for this conference was that it was a very nice calcu-

162 Algorithmic Languages and Calculi

lation, but so what? If I interpret this right, there was a general kind of doubt
about the things we are doing here. Any comments on that?

Richard Bird: It seems desperately important to me that we do not rehearse
exactly the same worries and anxieties that we had 11 years ago at the Bad
Tolz meeting. What we should be doing is looking at progress. Have we made
any progress in 11 years? I think we have; there is a maturity about the
presentations today that just wasn't there 11 years ago. New young people
are coming into the field because the subject of program calculation is one
that excites and interests them. As long as the topic remains stimulating and
not stagnating for you, I don't think you should worry about relevance to
industry or technology transfer. We shouldn't ignore it, though. If there is a
knock on the door, then fling it open quickly. Interaction is extremely fruitful,
but soul-searching is not.

Peter Pepper: I would like to agree. There has been progress, and there is
clearer understanding of the things that remain to be done. It takes a while
for this progress to get into the industrial community. We have to wait 10 or
15 years before industry knocks at our doors.

Doug Smith: Industry is not going to knock on our doors in 10 or 15 years,
since most funding is for doing applied research now. No one is going to make
the stuff work for us, we have to bite the bullet and do it ourselves. It is
worthwhile conducting more elaborate experiments to provide evidence that
there is going to be some payoff. I am not saying that everyone should do
that, but we need more groups who can invest the effort in implementation.
The downside is that it is very expensive from the research point of view to
get immersed is a domain deeply enough to do something significant.

Tom Maibaum: I don't know how many of you remember Tapsoft '85 when
David Parnas stood up and said that you theoreticians have not told us which
languages and which methods to use to improve our software engineering.
Sometime later in the conference, Maurice Nivat stood up and said, of course
not, that's not what scientists do. There is a lot of evidence that over a suitable
time scale theoretical ideas do become everyday technology used in industry.
For example, consider relational database theory in the late 60s and early 70s;
nowadays nobody needs to know about the mathematics, they just use it in
management information systems. The same story is true of parsing. When I
was an undergraduate all the theory courses were about parsing and automata
theory. Nobody studies it any more because they can use the technology
without having to know the mathematics behind it. One day others will use
systems such as Kids not because they know the mathematics but because
enough knowledge will be encapsulated in the system. This is where I think
the algebraic specification people are going wrong. They won't affect industry
now because industry is not going to invest an enormous amount of money
in time and education with ignorant people to use these kinds of languages.

Discussion 163

It is only slowly over time that people will have the tools, both conceptual -
because of their education - and technical, to make it work.

Alberto Pettorossi: One reason we have made progress is that we have
concentrated on the simple but significant idea of equational reasoning. What
is lacking is the meta-level reasoning to drive such calculations. A challenge
for the future is to expose useful kinds of meta-level reasoning.

Peter Pepper: Just to add one more example to what Tom Maibaum has said
about ideas moving into areas where people just use the technology. Just re­
cently, Bruce Shriver during the HICSS conference addressed key technologies
for the future. I was surprised to see that number 2 on his list was optimizing
compilers. His argument was that many speed-ups were due simply to better
compiler technology. If I look at compilers I see many techniques developed by
this community being moved into compilers. This is an example where people
do not sit down and use our methods to calculate programs, but just write
higher-level programs than before and use the compiler to do the work for
them.

