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Abstract 
In this paper we define a combination of Object-Z and CSP called CSP-OZ. 
The basic idea is to define a CSP-semantics for every Object-Z class. Special 
care is taken to capture the characteristics of input and output parameters 
properly and to preserve the expected refinement rules. 

CSP-OZ is well suited for the specification and development of communi­
cating distributed systems. It provides powerful techniques to model data­
and control-aspects in a common framework. The language is easy to use for 
Z and Object-Z users. 
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1 INTRODUCTION 

For the definition of the semantics of parallel, object-oriented languages, two 
things must be considered: On the one hand structuring features like inheri­
tance are very important (internal view) and on the other hand the dynamic 
behaviour of objects executed in parallel has to be defined (external view). 
It is convenient to separate these aspects because an external observer of the 
dynamic behaviour of an object should not be able to look into the internal 
structure. This paper solely deals with the external view of an object; i.e. the 
dynamic semantics of objects. 

Object-Z [6] is an object-oriented extension of Z [22] for the predicative 
specification of objects. An Object-Z class consists of the specification of a 
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state space and operations on this state space. The process algebra CSP [12] 
has been developed to describe the dynamic behaviour of a system and covers 
aspects like parallel composition, hiding and divergence. 

The basic idea we follow in this paper was suggested by Smith [21]: We 
define the dynamic semantics of an Object-Z class using the semantic model 
of CSP. Thereby all CSP-operators like parallel-composition and hiding can 
be applied to objects. 

This work is in the same line as [7], where CSP and Z are combined in 
a similar fashion. A major difference between [21] and [7] is the handling of 
input and output parameters of an operation. In [21] no semantic difference 
is made between input and output parameters, whereas in [7] the difference 
between input and output is captured semantically, but the mixture of input 
and output parameters is not considered yet. 

The contribution of this paper is to define a CSP failure-divergence seman­
tics of Object-Z integrating the views of [21] and [7] and extending them to 
mixtures of input and output parameters. This combination of Z, Object-Z 
and CSP is called CSP-OZ. 

The rest of this paper is organised as follows. The ideas of the semantics 
are presented in the next section with an example. The version of Object-Z 
used here and the semantic model of CSP are introduced in the subsequent 
sections. In section 5 the failure-divergence semantics of CSP-OZ is defined. 
Finally, a conclusion is drawn and connections to related work are discussed. 

2 ILLUSTRATING EXAMPLE 

To illustrate the approach, we present a system for the management of free 
and used process identifiers (PIDs): PID == 1 .. maxP where maxP: N1 is a 
global variable. The Object-Z specification of the system is the class P/Dmngr. 

,_PIDmngr ____________________________________________ __ 

I used : lP' PID 

reqP _________ _ 

~(used) 
nu?: N 
fr!: lP' PID 

fr! n used = 0 
used'= used U fr! 

Init __________________ __ 

[used= 0 

relP _________ _ 

~(used) 
rel? : lP' PID 

used' = used \ rel? 

#fr! = nu? V (nu? > #(PID \used) A fr! = 0) 
[#S is the number of elements of the set S.] 

The unnamed schema in the left corner defines the state space of the class. We 
use the keyword State to refer to this schema. The variable used stores the 
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set of PIDs that are used by some process in the environment of P/Dmngr. 
The schema !nit specifies the initial values of used. The class has two opera­
tions: reqP and relP. The variables declared in the delta list (.6.(used)) can be 
changed by the operation. The parameters of reqP are nu? and fr!. The deco­
rations ? and ! are used for inputs and outputs, respectively. The schema reqP 
describes how the state of P/Dmngr changes when reqP is applied. The un­
decorated variable used corresponds to the state before the operation and the 
dashed variable used' is-the final value. Hence reqP computes a set of unused 
PIDs containing nu? elements. If there are not enough free PIDs available, 
the empty set is returned. 

The basic idea of CSP-OZ is to define the semantics of a class using the 
semantic model of CSP. Thereby all CSP-operators - especially hiding and 
parallel composition- can be used to combine objects, and CSP and Object-Z 
syntax can be mixed. 

The CSP-semantics is based on the alphabet of a process; i.e. the set of 
events the environment can observe. The observable events of a class are 
the operations with their parameters [20, 21, 7]. For example, (reqP, {nu f-+ 

3, fr f-+ {2, 4, 5}}) and (relP, { rel f-+ {2, 5, 6}}) are possible events of P/Dmngr 
(provided maxP ~ 6). The set {rel f-+ {2,5,6}} denotes the function where 
rel is mapped to the set {2, 5, 6}. 

To make these events explicit, we extend Object-Z with the declarations of 
channels. The schema names of the operations corresponding to a channel are 
prefixed with the keyword com (more keywords will be introduced later). The 
CSP-OZ specification of P/Dmngr is the following class: 

S-P/Dl-----------------------------------------­
channel reqP : [ nu : N; fr : IP' PID] 
channel relP : [ rel : IP' PID] 

PIDmngr[com.._reqP /reqP, com.._relP frelP] 

The specification S-PID1 inherits all schemas of P/Dmngr, but reqP and 
relP are renamed to com__reqP and com....relP, respectively. The declaration of 
P/Dmngr in S-PID1 can textually be replaced by the definition of P/Dmngr. 

The semantics of a CSP-process is given in terms of the failures and the 
divergences. A failure is a tuple (tr, X) consisting of a trace tr of events the 
process may perform and a set of events X the process can refuse to engage 
in after tr. The divergences are a set of traces after which future behaviour 
of the process is unpredictable. 

A class C can engage in the trace ( e1, ... , en} of events ei = ( opi, Pi) if the 
successive application of the operation opi with parameter Pi transfers some 
initial state of C into some reachable state. The trace 

tr1 = ( (reqP,{nuf--+3,/rf--+ {2,4,5}}), (1) 
(reqP, { nu f-+ 1,/r f-+ {8}} ), (relP, { rel f-+ {2, 4, 8}} )} 
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transfers the initial state of S-PID1 into the final state used= {5}. 
The crucial question we deal with in this paper, is the definition of the 

refusals of a class. To understand the problem, we have to look at the CSP­
refinement relation. A process P1 refines (or correctly implements) a process 
P2 if :F(PI) ~ :F(P2) (Pt is more deterministic) and V(PI) ~ V(P2) (P1 is 
less divergent; i.e. more defined), where :F and V denote the set of failures 
and divergences of a process, respectively. CSP-refinement is compositional, 
i.e. whenever P1 refines P2 then C(PI) refines C(P2) for any system context 
C ( ·). We expect that the following class is an implementation of S-P ID1 . 

r- ~PID_·-----------------------------------------
channel reqP : [ nu : N; fr : JP> PID] 
channel relP : [ rel : JP> PID] !nit ~ [Vp: PID • u(p) = 0] 

u : PID --+ {0, 1} [u is used to store the status of every PID.] 
next : 1 .. maxP + 1 [next is a pointer to the smallest free PI D.] 

next= min({p: PID I u(p) = 0} U {maxP +I}) 

,.- com_reqP 
6(u, next) 
nu?: N 
/r!: JP> PID [/r! is the set of free PIDs starting with next.] 

nu? ~ maxP + 1- next=> (#Jr! = nu? A 
minfr! =next A \7'p: Jr! • u(p) = 0 A u'(p) = 1 A 
maxfr! =next' -1 A \7'p: PID \fr! • u'(p) = u(p)) 

nu? > maxP + 1- next=> (#Jr! = 0 Au'= u) 

_com_relP 
6(u, next) 
rel? : JP> PID 

Vp: rel? • u'(p) = 0 A Vp: PID \ rel? • u'(p) = u(p) 

The behaviour of I-PID differs from S-PID1 in one aspect: A request for 
new PIDs is answered with the set of PIDs starting with next, not with an 
arbitrary set of free PIDs. E. g. if no PIDs are used, any request for three 
PIDs is answered with the set {1, 2, 3}, whereas S-PID1 could send back any 
set of three numbers. 

This is an acceptable behaviour of an implementation because fr is declared 
as an output parameter. The specification S-PID1 makes a nondeterministic 
choice between different values of fr. Any implementation can reduce this 
nondeterminism. Following this idea, S-PID1 can refuse the following sets of 
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events initially (i.e. before engaging in any event): 

R1 ={X: IP' Event (V n : 0 .. maxP • 3 f : 1P' P ID • # f = n 1\ 

(reqP, {nu t-t n,fr t-t !}) f/. X) 1\ (2) 

('1:/n > maxP • (reqP, {nu I-t n,fr I-t 0}) f/. X) 1\ (3) 

(V e: X • first( e) =f. relP) } (4) 

To understand this definition, think of the events S-PID1 must engage in. 
Consequently (2) - (4) says something about events that cannot be refused. 
In (2) the property is captured that S-PID1 must deliver some set of PIDs if 
n is not larger than maxP. The existential quantification 3/ : IP' PID captures 
the nondeterministic choice of possible output parameters. Line (3) deals with 
n exceeding maxP. Then S-PID1 does not have a choice for fr; the empty set 
is always returned. Finally, S-PID1 can never refuse a communication on relP 
for every choice of the parameter rel (4). The function first computes the first 
component of the tuple e (i.e. the channel of e). 

Recall that we just considered initial refusals, but the calculation of the 
refusals after some trace tr is similar. The initial refusals of I-PID are 

R1 ={X: IP' Event (V n : 0 .. maxP • 
(reqP, {nu t-t n,fr t-t {1, ... , n}}) f/. X) 1\ (5) 

('1:/n > maxP • (reqP, {nu t-t n,fr I-t 0}) f/. X) 1\ (6) 

(V e: X • first( e) =f. relP) }. (7) 

Line (6) and (7) are the same as (3) and (4), but the existential quantification 
in (2) is removed in (5). This models the fact that the nondeterminism is 
removed in I-PID. It initially always returns {1, ... , n} when n PIDs are 
requested. The initial refusals of I-PID are a subset of the initial refusals of 
S-PID1 as expected. This is also true for the refusals after engaging in any 
possible trace. Thus I-PID is an implementation of S-PID1 in the failure­
divergence semantics. 

However, this is not the case if we follow the standard Object-Z semantics 
where no difference is made between input and output parameters [6]: Any pa­
rameter can be controlled by the environment and the system. Consequently, 
I-PIDis not an implementation of S-PID1 according to [21], because the choice 
between the different values for fr! would not be made nondeterministically. 

Nevertheless, the blocking view of an operation can be useful for other ex­
amples and we integrate it into CSP-OZ. In the following version of PIDmngr 
the parameter nu of reqP is used without decoration. We call this a simple 
parameter. Its value is under the control of the object and the environment. 

S-PID2------------------------------------------­
~ S-PIDI[redef co!ILreqP] 



428 Part Nine Formal Specification (II) 

com_reqP __________________________________________ _ 

~(used) 
nu: N 
jr!: lP' PID 

#fr! = nu 1\ fr! n used= 0 1\ used'= used U fr! 

The keyword redef indicates that S-PI~ inherits S-PID1 except for the def­
inition of com_reqP. Instead of sending an empty set of free process identifiers, 
any unrealizable request for PIDs is blocked in S-PID2. The initial refusals 
are the following sets of events. 

R2 = {X : lP' Event I (V n : 0 .. maxP • 3 I : lP' P ID • #I = n 1\ 
(reqP, {nu ~--+ n,fr ~--+!}) f/. X) 1\ 

(V e: X • first( e) =I relP} } 

The last question to address in this section is the guard of an operation, i. e. the 
condition when the operation is enabled. In Z operations are always enabled, 
but in Object-Z and a lot of interpretations of Z other views are adopted. To 
integrate these different views and to avoid confusion about the guard, we use 
an extra schema to determine the guard of an operation. This is neither in the 
tradition of Z nor of Object-Z, but it is in line with many different languages 
like action systems, B, VDM and MIX. The following specification can refuse 
to release PIDs that are not used. 

S-PID3-------------------------------------------­
S-P ID2 [ redef com_relP] 

~
enable_relP 

_ rel : lP' PID 

rel ~used 

effect_relP -------------­
~(used) 
rel: lP' PID 

rel =I 0 1\ used' = used \ rel 

We use the prefixed keywords enable for the guard and effect for the schema 
describing the state change of an operation. Communications outside enable 
are blocked. A communication that is not blocked, but that is applied out­
side the precondition of effect leads to divergence. Thus S-P/D3 refuses any 
communication on relP initially. If the empty set is released the system will 
diverge. 

Note that an operation effect_c without simple parameters and without an 
enable-schema (abbreviates the guard true) models the Z-view of an operation. 
Hence CSP-OZ integrates the non-blocking view traditionally adopted in Z 
and the blocking view of Object-Z. It even allows arbitrary mixtures of these 
aspects. Only in this special case the enable schema is necessary. 
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3 SYNTAX OF CSP-OZ 

Object-Z [6] extends Z with the notion of a class, specifying a state space 
and operations on this state space. In this paper we consider only a restricted 
version of Object-Z. The parallel and sequential composition operators are no 
longer used inside Object-Z (the corresponding CSP operators can be used 
instead); and we do not allow history invariants as they cannot be modelled 
properly in our semantic model. 

CSP-OZ extends Object-Z with the notion of communication channels and 
CSP-syntax. A CSP-OZ class has the following basic structure. 

Name[generic parameters]----------------­
channel definitions 
CSP-part 
type and constant definitions 
state schema 
initial state schema 
operations 

} Z-part 

The channel definitions declare the interface of the class. Every declaration 
has the form channel c : [PI : tyi; ... ; Pn : tyn) where c is the channel 
name, PI, ... , Pn is the possibly empty list of undecorated parameter names 
and tyi, ... , tyn are the type declarations of the parameters. 

The CSP-part is a set of equations of the form CSP-name = CSP-process 
where CSP-process is defined using the syntax of the CSP model checker FDR 
[9] extended with Z-types. The channels of every process in the CSP-part must 
be a subset of the channels declared in the interface. If the CSP-part is not 
empty a process with the keyword main must be defined. This process is used 
to determine the semantics of the CSP-part. Other CSP-processes can be used 
to enhance readability of the CSP-part. 

The type and constant definitions and the state and initial state schemas 
of the Z-part are the same as in Object-Z [20]. The schema, type and variable 
names used in the Z-part must be disjoint from the names used in the CSP­
part. 

For every channel c declared in the interface there must be either the schema 
effect_c and optional the schema enable_c or the schema named com....c, 
which is an abbreviation for 

effect_c ~ com....c 
enable_c ~ 3 State'; Ps+l? : tys+I; ... ; Pn! : tyn • com....c. 

All parameters of c must be declared in effect_c together with the possible 
decorations ? (input) and ! (output). An undecorated parameter stands for 
a simple parameter. The schema enable_c specifies the states and simple 
parameters in which c cannot refuse to communicate on c. Hence we assume 
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that enable_c and effect_c can be normalised to 
enable_c ________________ ___ 

[., ' ty,; ... ; p, ' ty, 

effect_c ________________ __ 

d(v1, ... , Vm) 
Pl : ty1; · · · ; Ps : tys 

[Pena Ps+l? : tYs+l; · · · ; Ps+i? : tYs+i 
Ps+i+l! : tYs+i+l; · · · ; Pn! : tyn 

Peff 

Any of the parameter lists can be empty. If enable_c is omitted Pena is set 
to true. Other schemas- not prefixed with a keyword- may freely be used to 
structure the specification, but there is always a class without further schemas 
with the same failure-divergence semantics. 

As the Z-part of a CSP-OZ class corresponds directly to an Object-Z class, 
features like inheritance or instantiation of Object-Z classes can be used to 
structure a CSP-OZ class. But in this paper we assume that all classes can 
be normalised to the form given above. 

CSP-OZ classes can be combined using the following CSP-operators: 

• cl [I All c2 is the parallel composition of cl and c2 synchronising on the 
set of events A. 

• C \ A is the class where all events in the set A are hidden; no e E A can be 
observed by the environment . 

• cl Ill C2, cl n c2 and cl 0 c2 are the interleaving, internal choice and 
external choice of cl and c2. 

The notation {I relP I} denotes 
f f h h l acce11t . the set o events o t e c anne request reJect 

relP. As an example, we specify 
the registration desk of a hotel. 
A connection diagram [12] can 
be found in Figure 1. Every box Reg 
stands for a CSP-OZ class. The 
lines between boxes denote hid-
den channels and the four dan- print 

gling lines are the observable in-
terface of the specification. An 
event on the channel request in-
dicates that a guest wants to 
register. Then a new PID is re-
quested and a card with the PID 

c 

Printer 

leave 

Cancel 

relP 

is printed. The printer delivers 
the card (card) or fails to pro­
duce a card ( nocard). 

Figure 1 The connection diagram for 
Reg Desk 

A successful registration is indicated by accept and any error in this pro-
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cedure results in a communication on reject. Leaving the hotel is indicated 
by a communication on leave. Then the PID is released. We omit a detailed 
specification of Reg and Cancel. The printer is modelled by the following 
specification. 

Printer ________________________________________________ __ 

channel print: [P: PID] 
channel card, nocard : [] 
main = print?x ~(card~ main n nocard ~main) 

The precise semantics of the connection diagram in fig. 1 is given by the 
following CSP-expression. 

RegDesk = ( ( (Reg [I {I print, card, nocard I} I] Printer) 

[I {I reqP I} IJ S-PIDI) [I {I relP I} IJ Cancel) 

\ {I relP, reqP, print, card, nocard I} 

4 THE SEMANTIC MODEL OF CSP 

The standard semantic model of CSP is the failure-divergence model. The 
semantics given in (12] is restricted to finite alphabets. Straight forward ex­
tensions of this model to infinite alphabets are restricted to bounded nonde­
terminism. To allow unbounded nondeterminism, two models were developed: 
A new order for the definition of fix points is introduced in (17] and in (18] the 
failure-divergence model is extended with the set of infinite traces a process 
may engage in. Generally speaking, both models can be used for the semantics 
of CSP-OZ. The model in (18] avoids the anomaly that hiding of an event e 
leads to divergence if it can occur finitely many times without a finite bound 
for the number of possible occurrences of e. But we prefer here the model of 
(17] as it is similar to the standard model of CSP (12] and is the basis of a 
CSP-encoding in the theorem prover Isabelle (24] that is used in the project 
UniForM (15] to develop tool support for CSP-OZ. Nevertheless, the defini­
tions presented here are also applicable to the infinite trace model and the 
differences completely vanish if only bounded nondeterminism is considered. 

Definition 1 Let A be a possibly infinite alphabet of events. Then the seman­
tics of a CSP-OZ specification is a tuple (F, D) where 

1. the failure set F : seq A +-+ lP' A is a relation between traces on A and 
subsets of A. A tuple (tr, X) is element ofF iff tr is a possible trace and 
all communications from X can be refused after engaging in tr. 
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2. the divergence set V : lP' seq A with V ~ dom :F is the set of traces after 
which the system may diverge, 

The set of (:F, V) fulfilling the healthiness conditions of {17f is called N'. D 

5 A FAILURE-DIVERGENCE SEMANTICS OF CSP-OZ 

The semantics for CSP is defined in [17]. Thus our main task is the definition 
of the failure-divergence semantics of CSP-OZ classes with an empty CSP­
part. The combination of the CSP-part and the Z-part is defined at the end 
of this section using the parallel operator. 

Let Ide denote the set of all channel identifiers. Let Idv denote the set 
of undecorated variable identifiers and let Idp denote the set of undecorated 
parameter names. Finally, let Value denote the set of possible values that can 
be assigned to variables and parameters. The exact definition of Ide, Idv, Idp 
and Value is not formalised here. A state is a finite partial function assigning 
values to variable-identifiers. 

State == Idv ~ Value 

An event is a tuple consisting of a channel-identifier and a parameter, which 
is a finite partial function assigning values to parameter-names. 

Parameter == Idp ~ Value 
Event== Ide x Parameter 

A CSP-OZ class with an empty CSP-part induces a set of channels, states, 
and initial states; a transition relation; a set of input, output, and simple pa­
rameters for every channel and a set of enabled parameters for every state and 
channel. This is modelled by the schema type ClassStruct with the following 
signature. 

ClassStruct _____________________ _ 

states, initial : lP' State 
channels : lP' Ide 
trans : Event -1+ (State -1+ lP' State) 
simplep : Ide -!+ lP' Idp 
inp, outp :Ide -1+ lP' Parameter 
enable : Ide x State -1+ lP' Parameter 

We only give an informal description of the translation of CSP-OZ syntax to 
the induced ClassStruct. The construction of states, initial and channels for 

• The healthiness conditions of [17] rule out miraculous specifications; require a prefix closed 
set of traces, subset closed refusal sets, and any set of communications that are impossible 
in the next step are refused. Furthermore, the divergence set must be a suffix closed and 
the chaotic closure is included in :F in case of divergence. 
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a given class C is obvious. We only consider classes where initial =f. 0. The 
set simplep (c) consists of all simple parameter names declared for the channel 
c. The sets inp (c) and outp (c) contain all functions assigning values to the 
input and output parameters. The possible values of the parameters are only 
affected by the declaration of the channel, not by the corresponding schemas. 
If a channel c does not have input parameters we assume inp (c) = { 0} (output 
parameters analogously). The set trans (e) ( st) consists of all states reachable 
by applying the event e to the state st. E. g. for S-PID1 we have 

trans(reqP, {nu t--t 1,/r t--t {1}})({used t--t {4}}) ={{used t--t {1,4}}} 
trans(reqP, {nut-+ 3,jr t--t {1}})({used t--t {4}}) = {} 

The function enable computes for a given channel and state the enabled simple 
parameters. E. g. for S-PID3 we have 

enable ( relP, {used t--t { 1, 3, 4}}) = { { rel t--t X} I X <;;; { 1, 3, 4}} 

and for S-P ID1 we have enable ( relP, st) = { 0} for all states st because relP 
does not have a simple parameter. If S-PID1 could refuse a communication on 
relP for some st we would have enable ( relP, st) = {}. This trick of notation 
simplifies the following formal definitions significantly because we do not have 
to consider separate cases for channels without all three kinds of parameters. 

We define the failure-divergence semantics of CSP-OZ based on ClassStruct. 
The function reachable computes the set of reachable states for a trace. 

reachable : ClassStruct -+ (seq Event -+ IP' State) 

V C : ClassStruct • 
reachable (C)(()) = C. initial 1\ 

V tr : seq Event • reachable (C)( tr ,__ (e)) = 
{ st : State I (3 st1 : reachable (C)( tr) • st E C. trans (e)( sti))} 

Using tr1 (1) we have reachable(S-PIDI)(tri) = {{used t-+ {5}}} if we identify 
S-PID1 with the induced ClassStruct. 

The function V computes the set of traces after which a class may diverge. 
A trace tr is in V(C) if it can be divided into s ,__ (c, v) ,__ t where (c, v) is 
the event causing the divergence which means (c, v) is enabled after s but no 
transition is defined for (c, v). Because of the healthiness conditions any trace 
t must be possible after s ,__ (c, v). 

V : ClassStruct -+ IP' seq Event 

VC: ClassStruct • V(C) = 
{s, t: seq Event; c: Ide; v: Parameter I 

3 st: reachable(C)(s) • ((C.simplep(c) <J v) E C.enable(c, st) 1\ 
[ v (restricted to the simple parameters) is enabled in st.] 

Vo: C.outp(c) • C.trans(c, v EB o)(st) = 0) 
[No transition is defined for any choice of output parameters.] 

• (s ,__ (c,v) ,__ t)} 
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Recall that { D I P • E} is the set of all evaluations of the expression E in the 
context of all variables declared in D and restricted in P. 

The failures of an object are defined in two steps: We start with the defi­
nition of the refusals - sets of events that can be refused - for a given state. 
Then we combine this definition with reachable to define the failures of an 
object. 

A set of events X is a refusal of a class C in the state st iff for all enabled 
values of simple parameters sp and for all input values ip there exists an output 
value Op such that the event ( c, Sp U Op U ip) is not in X. The transition for 
(c, sp U op U ip) can either be taken or there exists no output value such that 
a transition is defined for sp and ip. 

refusal : ClassStruct -+ (State -# lP' lP' Event) 

'i/C : ClassStruct • (dam refusal(C) = C.states 1\ 

'i/ st : C.states • 'i/ X : refusal(C)(st) • 
'i/ c: C.channels • 'i/ sp: C.enable(c, st) • 'i/ ip : C.inp(c) • 

3 op : C. outp (c) • (( c, ip U Op U sp) (/. X 1\ 
[The event e = (c, ip U op U sp) cannot be refused if) 

(C.trans(c, ip U Op U sp)(st) :f. 0 V [ ... e can be taken next or) 

'i/ op: C.outp(c) • C.trans(c, ip U Op U sp)(st) = 0))) 
[ ... the system diverges after e.] 

E. g. taking R 1 and R1 from section 2 we have refusal(S-PIDI)( {used f--t 

0}) = R1 and refusal(I-PID)({used f--t 0}) = RJ. The definitions of V and 
refusal even make sense if c has no parameters of a particular type [8). 

The definition of the failures of a CSP-OZ class is now straight forward. 
The class C can engage in the trace tr if there exists a reachable state st for 
tr. The set of events X can be refused after tr if it can be refused in the state 
st. 

:F : ClassStruct -+ IP'( seq Event x lP' Event) 

'i/C : ClassStruct • :F(C) = 
{(tr, X) 13 st: reachable(C)(tr) • X E refusal(C)(st)} 

[no divergence) 
U {(tr, X): V(C) x lP' Event} [chaotic closure in case of divergence) 

It is proven in [8) that the definitions fulfill the healthiness conditions of the 
model N'. 

Note that declarations of channels with the same name in different classes 
must not introduce type conflicts. Otherwise the alphabet A in definition 1 
would not be defined. 

The semantics of a CSP-OZ class having only a CSP-part is the semantics 
of the process main. This is defined [17) where also the semantics of the CSP­
operators can be found. The combination of CSP- and Z-syntax is simply done 
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by parallel composition. 
s ______ _ 
Interface 
CSP-part 
Z -part 

Be------­
Interface 
CSP-part 

Sz ______ _ 

Interface 
Z -part 

Thus the semantics of Sis given by Sc [I {I c1, ... , Cn I} I] Sz where c; are the 
channels declared in Interface. 

This approach of combining (Object-)Z and CSP reuses an enormous part 
of existing theory. We get a lot of theorems for free. For example, the mono­
tonicity of the CSP-parallel composition allows the separate refinement of the 
CSP- and the Z-part and all CSP-laws are valid laws of CSP-OZ. 

6 RELATED WORK 

Roscoe, Woodcock, and Wulf [19] give an informal translation from Z to CSP 
by separating input and output communications. The application of a Z­
operation is modelled by two CSP events. CSP-OZ is much more general 
than this approach. 

He [11], Josephs [13], and Woodcock and Morgan [25] translate state based 
specifications to CSP and prove various refinement results. Butler [4] com­
bines action systems and CSP similar to our approach. Our definition of the 
semantics is simpler as we do not redefine CSP operators in Z; we do not 
separate input, output, and non-value passing communications; and we can 
present specifications in a better structure by using Object-Z. Also the com­
bination of CSP and Z syntax is new and to the best of our knowledge the 
mixture of input and output parameters in one event has not been defined 
before. 

LOTOS [3] combines CSP- and CCS-like operators with an algebraic spec­
ification language for abstract data types (Act One). Work on combining 
LOTOS and Z is in progress [2, 5]. The semantics is defined by a translation 
of LOTOS to ZEST (an extension of Z similar to Object-Z; also with a block­
ing view of operations). By contrast, we define the Object-Z semantics in the 
CSP model. We can apply parallel composition to classes and hide operations 
which is impossible in [5]. Furthermore, we do faithfully model Z-operations 
instead of only using blocking operations, and we precisely capture the char­
acteristics of input and output parameters. Our integration of Z, Object-Z 
and CSP is much deeper than the integration of ZEST and LOTOS. 

Strulo [23] investigates the difference between Z and ZEST operations. It is 
shown that blocking operations are good for specifying active behaviour while 
non blocking operations are good for modelling passive behaviour. CSP-OZ 
can be seen as the formalisation of the hybrid approach [23] where specifi­
cations of active and passive behaviour can be mixed. An operation co!IL.c 
corresponds to active behaviour and an operation effect_c with the empty 
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schema as precondition corresponds to passive behaviour. We even extend the 
hybrid approach as the special properties of input and output parameters are 
not captured in [23]. 

The relations to the work of Smith [21] and a previous paper of the author 
[7] have already been stated in the introduction. 

7 CONCLUSION AND FUTURE WORK 

The development of CSP-OZ is driven by the idea of combining successful 
existing formal languages based on a well defined semantics. An important 
aspect is that CSP and to some extent also Object-Z and Z are proper sub 
languages of CSP-OZ. Hence users of any of these three languages can start us­
ing CSP-OZ without having to learn many new things. The additional features 
of CSP-OZ can be explored step by step. A first example of the application 
of this idea is the use of CSP-Z - the predecessor of CSP-OZ - as part of a 
Brazilian project [1], where the specification for the SACI-1 micro satellite is 
developed using CSP-Z. 

The strength of CSP-OZ lies in distributed systems where both data and 
control aspects must be modelled. We tried to demonstrate this idea in section 
3 with the example of a registration desk. The printer is modelled by a pure 
CSP-process as no internal data structure is relevant in this system. The PID 
manager is a mainly data driven application which we modelled without using 
any CSP. The combination of the different components was done using CSP­
operators. Paraphrasing the title of [6], CSP-OZ is even better suited for the 
description of standards than Object-Z. 

Another advantage of CSP-OZ is its compositional semantics. For example, 
the implementation of the PID manager developed in section 2 can be used 
in the registration desk without affecting the correctness of the design. This 
could be done for all components of the system. Reusing a CSP-semantics 
for CSP-OZ gives this important advantage for free. Thus CSP-OZ is espe­
cially well suited to build up a library of specifications together with their 
implementations. 

The semantics of CSP-OZ might look a bit complicated at first look. We 
nevertheless believe that the intuition behind it is simple, and the step from 
(Object-)Z to CSP-OZ is fairly easy. 

A manual for CSP-OZ with a detailed definition of the syntax and the se­
mantics is under development. Refinement rules already developed in [16, 
4] can easily be rephrased for CSP-OZ as done in [7, 10]. Z-data refine­
ment is a proper refinement in CSP-OZ for channels modelling Z-operations 
(analogously for Object-Z data refinement). Small case studies that translate 
straightforwardly to CSP-OZ can be found in [21] (game of life), [7] (telecom­
munications protocol) and [10] (pocket calculator). 

The success of a formal method crucially depends on tool support. A work­
bench to integrate different tools (FDR [9], Z and CSP encodings in Isabelle 
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[14, 24], an hierarchical editor for Z and a graphical editor for CSP) is under 
development in the project UniForM [15]. 
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