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Abstract 
The Unified Modeling Language (UML) builds upon some of the best object­
oriented (00) modeling concepts available, and is intended to serve as a 
common 00 modeling notation. Given its intended role, it is important that 
the UML notation have a well-defined semantic base. In this paper we present 
some early results from our work on the systematic formalization of UML 
modeling constructs. The paper focuses on the formalization of UML Class 
Diagrams. The formal notation Z is used to express the semantics of Class 
Diagrams. 
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1 INTRODUCTION 

The Unified Modeling Language (UML) (Booch et al., 1997) is a proposed 
common object-oriented (00) modeling notation, currently being developed 
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by some of the more experienced 00 methodologists. The potential primary 
strengths of UML constructs, their simplicity and intuitive appeal, are also 
potential sources of problems. A significant problem is UML's reliance on 
informally defined semantics. This can lead to situations where models are 
interpreted differently because of differing viewpoints on what the semantics 
are. This is more likely to occur when complex structures (e.g., those involving 
recursive structures) are involved. 

A formal semantic ba.se for the notation allows one to rigorously reason 
about the models being built. Our work on formalizing other 00 and struc­
tured notations indicates that the ability to rigorously analyze models strength­
ens validation and verification of the models. In our past work we have used 
formalized semantic bases for graphical techniques to animate requirements 
models, and to statically analyze properties (e.g., see (Bruel et al., 1996; 
France et al., 1997)). 

In this paper we present a Z (Spivey, 1992) formalization of the UML con­
structs used to build Class Diagrams consisting only of types and their asso­
ciations. Such diagrams can be used to model the static structure of systems 
at the requirements level. We assume that the reader is familiar with the Z 
notation. In section 2 we give the current form of our rules for transforming 
Class Diagram constructs to Z, and in section 3 we show how they can be 
used to formalize a. non-trivial Class Diagram. We conclude in section 4 with 
an overview of our future work on the formalization of the UML notation. 

2 FORMALIZING UML ANALYSIS-LEVEL 
CLASS DIAGRAMS 

A Class Diagram is a. model of the static structure of a system expressed 
in terms of classes, types, objects (class instances) and their associations. A 
UML type is a specification of concrete UML classes. In UML, classes imple­
ment types, that is, classes provide concrete implementations of the attributes 
and operations abstractly defined in types. We will refer to Class Diagrams 
that consist solely of types as Type Diagrams. Type Diagrams provide appro­
priate abstractions for modeling problems at the requirements analysis phase 
of software development, and is the focus of the formalization given in this 
paper. 

In our formalization, a Type Diagram characterizes a set of instance struc­
tures, referred to as valid instance structures or configurations. A configuration 
is one that exhibits the properties expressed in the Type Diagram. One can 
view a configuration as a snapshot of a system's structure at some point in 
time, where the instances are those that have been created but not yet de­
stroyed in the system. In this section we illustrate the rules fm transforming 
UML type structures to Z specifications that characterize configurations. 
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2.1 A fonnalization of types 

A type, like a UML class, has a name, and consists of a set of attributes 
and operation specifications. Graphically, it is depicted as a rectangular box 
with three compartments: the top compartment contains the type name, the 
middle compartment contains the set of attributes (with optional types and 
initial values), and the third compartment contains the list of operations (with 
optional argument lists and return types). 

The set of all instances of a type in a configuration is called the state of the 
type. This set is to be distinguished from the set of all possible instances that 
satisfy the type properties. Such a set is called the type space of the type. A 
type state must be a subset of the type space. When interpreted in isolation, 
a type denotes its type space. When interpreted in the context of a Type 
Diagram, a type denotes a type state. 

The state of an instance consists of two components: a data state and a 
set of operation states. The data state of an instance consists of attribute 
and association values. The attribute values are the values associated with 
type attributes, and association values are the instances that are linked to 
the instance under consideration. Associations will be discussed in the next 
section. In a state of an instance, each operation is associated with an op­
eration state of the form < befm·e _data_state, aftet·_data_state( inputs) >. 
The befor-e_data_state is the (current) data state of the instance and the 
after _data_state( inputs) is the data state that is attained when the opera­
tion is performed to completion with inputs inputs. 

Message 

content: seq BYTE 

maxlength: NA 't 

reset() 
addbyte(data: BYTE) 

{maxlength > 0; count(content)<=maxlength} 

Figure 1 Message Type 

In our formalization, a UML type is associated with a Z basic type consist­
ing of elements representing unique instances of the UML type (they can be 
thought of as object identifiers). The attributes of a type are defined in a Z 
schema, referred to as an att1·ibute schema. UML type invariants are expressed 
as predicates in the predicate part of attribute schemas. The attribute schema 
for the lvlessage type shown in Fig. 1 is given in EXAMPLE 1. The type oper-
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at.ion 1·eset clears the message contents, and addbyte appends a byte of data 
to the message. 

Example 1 Attribute schema for lvfessage type 

[BYTE] 

Me.ssage_Attributes -----------------­
conte·nt : seq BYTE 
maxlength : N 

maxlength > 0 
#content~ maxlength 

Type operations are specified by Z schema.s, called operation schemas, that 
relate before-data-states to after-data-states. Our operation schemas differ no­
tationally from the traditional Z operation schemas in that we use a variable 
to represent the before-state and another to represent the after-state. The op­
eration schemas for the ·reset and addbyte operations are given in EXAMPLE 2. 
In the schemas, m represents a before-state, and m' an after-state. 

Example 2 Operation specifications for Message type 

Reset _________ __ 
m, m' : Message-Attributes 

m'. content = 0 
m'. maxlength = m. maxlength 

AddByte ______ _ 
m, m': Message-Attributes 
data'? :BYTE 

#( m.content) < m.maxlength 
m'.content = m.content"' (data?) 
m'. maxlength = m. maxlength 

Semantically, an instance in a configuration can be viewed as a mapping of 
its object identifier to its data and operation states. This is captured formally 
by a Z schema that declares a variable representing the instances, and func­
tions that map instances to their states. Such a schema is called a type schema. 
The type schema for the Message type is given in EXAMPLE 3 ([MESSAGE] 
is supposed defined). The first three predicates of the Message type schema 
state that only configuration instances (elements of instances) are associated 
with data and operation states. The fourth predicate in the schema states 
that the before-state of an operation ( m) must be the (current) data state of 
the instance (as determined by the function att1·ibutes). 
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Example 3 The type schema for Message 

Afessage ____________________________ ~--------------
instances: lP' AIESSAGE [set of existing instances] 
attributes : AIESSAGE-++ Afessage_Attributes 
reset :MESSAGE-++ lP' Reset 
addbyte :MESSAGE-++ lP' AddByte 

dom attributes = instances 
dom reset = instances 
dom addbyte = instances 
V p : instances; attl : Reset; att2 : AddByte 

I att 1 E reset (p) I\ 
att2 E addbyte(p) • attl.m = attributes(p) 

I\ att2.m = attributes(p) 

2.2 Formalization of UML associations 

Semantically, an association is a set of links, where a link is a pair of instances 
of the form (a ~ b), indicating that a and b are linked. 

Multiplicity of an association constrains how many instances of a type can 
be associated with one instance of another (or the same) type. A range mul­
tiplicity is of the form m .. n, where m is the lower bound and n is the upper 
bound ofthe range. The range m .. m can be simply written m. The multiplic­
ity symbol '*' indicates many i.e. an unlimited number of objects. By itself, 
the symbol '*' is equivalent to '0 .. *'i.e. zero or more. 

When associations are present, the data state of a type instance includes 
the instances that are related to the type. At the analysis level associations 
are bidirectional, that is, each linked instance knows about the instances it is 
linked to. This implies that each type instance includes information about its 
linked instances in its data state. Decisions related to restricting visibility of 
linked instances are best made during the design phase. · 

Consider the Type Diagram for a library system consisting of a Copy type 
and a Borrower type, with a many-to-one Borrowed_by association, show.n in 
Fig. 2. The Borrowed_by association has an attribute due_date and a multi­
plicity that restricts a borrower to a maximum of 5 copies. 

The formalization of the Type Diagram shown in Fig. 2 is given in EXAM­

PLE 4. 
The association schema Borrowed_by defines the association as a set of pairs 

(Rel). The states of instances of the types Borrower and Copy are defined in 



252 Part Five 00 Requirements Analysis and Design 

Copy Borrowed-by Borrower 
0 .. 5 0 .. 1 

' ' 

I due_date 

Figure 2 Example of an association with attributes 

Example 4 The type schema. for the Borrowed_by association 

[DATE, BORROWER, COPY] [ Borrowed_by_A ttributes __ 
due_date : DATE 

BorrowerLby --------------------­
Ret : COPY--++ BORROWER 
ReLAttributes: (COPY x BORROWER) 

--+t Borrowed_by_A ttributes 

dam ReLAttributes = Ret 
V b: ran Rel• #(Rei t> {b}) ~51\ #(Rel t> {b}) ~ 0 

[multiplicity constraint] 

Borrower _______ _ 
instances : lP' BORROWER 
bormwe(Lby : Borrowe(Lby 

Copy _____________ __ 
instances : lP' COPY 
borrowed_by : Bormwed_by 

ran borrowed_by.Rel ~ instances dam borrowed_by.Rel ~ instances 

AssocStruct ---------------------­
b : Bormwer 
c: Copy 

b. bor·rowe(Lby = c. borrowed_by 

the type schemas with the respective type names. The schema AssocStruct is 
a formalization of the Type Diagram shown in Fig. 2. 
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2.3 Formalization of Aggregation 

An aggregate structure is a special type of association indicating a conceptual 
whole-part relationship. UML provides a weak and a strong form of aggre­
gation. The strong form of aggregation is called a composition. An aggregate 
structure is depicted as an association of types in which a diamond is placed 
on the end of the association connected to the type that is the whole. If the 
diamond is filled then it is a composition, implying that each part can belong 
to only one whole, and that the lifetime of the parts are "coincident" with 
the lifetime of the whole (page 47, section 4.23 in (Booch et al., 1997)). Such 
lifetime binding is not implied by the weak form of aggregation t. An unfilled 
diamond represents a weak aggregation, in which sharing of parts is allowed. 
For a composition, the multiplicity at the whole end must be no greater than 
1 (restricting parts to belong to at most one whole). For the weak aggregation 
a multiplicity greater than one is allowed. 

TestRequest 

..... ~ I 

1.* I _I I * 

Test Sample 

Figure 3 Example of a composition. 

Below we formalize the composition shown in Fig. 3: 

[TEST, SAMPLE, TESTREQUEST] 

Test ____________________ _ 
[instances : lP' TEST 

Sample ________________ __ 
[instances: lP' SAMPLE 

tTo be more precise, the UML manual does not indicate that there is a lifetime 
binding of parts to whole in a weak aggregation. 
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TestRequest ------­
instances: lP' TESTREQUEST 
comp1: TESTREQUEST H 

TEST 
comp2: TESTREQUEST 

H SAMPLE 

dom comp 1 = instances 
dom comp2 = instances 

AggStruct ______ _ 
tests: Test 
samples : Sample 
testrequests : TestRequest 

ran ( testrequests. component 1) 
= tests. instances 

ran ( testrequests. component2) 
= sample.instances 

V t : ran comp 1 • #( compl !> { t }\-==-t----------­
V t : ran comp2 • # ( comp 1 !> { t}) = 1 

In the schema TestRequest, the components of the aggregate are specified as 
mappings from the instances of TestRequest to instances of the parts Test and 
Sample. The first and second predicates restrict part instances to instances in 
the configuration. The third and fourth predicates state that no two distinct 
instances of the type TestRequest can share parts. This restriction is not 
needed for weak aggregation in which the multiplicty at the whole-end is 
greater than one. The schema AggStruct formalizes the Type Diagram in 
Fig. 3. The instances of Test and Sample must be related to one TestRequest 
instance in a configuration (as specified by the multiplicty of 1 at the diamond 
end). The formalization of the weaker form of aggregation can be obtained by 
weakening the restrictions of the stronger form. 

2.4 Formalization of 
Generalization/Specialization Hierarchies 

A generalization-specialization hierarchy captures a supertype-subtype rela­
tionship between types. It is represented as a link from the subtype to the 
supertype, with a large hollow triangle at the supertype end. 

The attribute structure of a generalization-specialization hierarchy is rep­
resented in Z by including the schemas defining the shared attributes in sub­
type attribute schemas. Our formalization covers the four combinations of 
generalization-specialization according to whether or not the supertype is ab­
stract (i.e., all instances are instances of some subtype in the model) or the 
subtypes are disjoint (i.e., the subtypes do not share instances). 

3 A FORMALIZATION EXAMPLE 

In this section we illustrate the application of the UML-to-Z rules outlined in 
the previous section on a small, but non-trivial Type Diagram. 

A Type Diagram for a Glyph structure is shown in Fig. 4. The complexity 
of recursive structures often causes modelers to underspecify their desired 
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properties. Formalizing such structures forces modelers to consider and ex­
press required constraints that may have been glossed over in a less formal 
approach. Once a formal model is obtained, it can be used to demonstrate 
that the desired properties are present. 

Glyph I * 

f_ 
I I 

Char Line 

length . 
add glyph <>-----

{Up to three levels of recursion allowed} 

Figure 4 A recursive UML Type Diagram 

A glyph is defined to be an abstract type for objects that can appear in 
a document structure. Its subtypes are the primitive graphical character el­
ements (elements of type Char) and structural line elements (elements of 
type Line). This technique of composing increasingly complex elements out 
of simple ones in a hierarchical fashion is called recursive composition. 

The type schemas for Glyph and Char are given below: 

[GLYPH] Glyph_ Char __ 
instances: f'GLYPH [instances: f'GLYPH 

The recursive composition is constrained as follows (the 'part-of' aggrega­
tion relationship is transitive): 

• The aggregation is anti-symmetric (i.e., if line ll is a part of line 12 then 
12 cannot be a part of ll). 

e The aggregation is irreflexive (i.e., a line cannot be a part of itself). 
• No more than three levels of nesting is allowed (a line ll can contain a line 

12 that contains a line 13; 13 must consist only of characters). This is an 
application-specific constraint (see annotation on diagram). 

The type schema for line is given below: 
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GlyphComp -------------------­
aggrel: GLYPH H GLYPH 

V /1, /2: GLYPH I (11, /2) E aggre[+ • (/2, 11) ¢ aggrel+ 
[ aggrel+ is the transitive closure of aggrel] 

V l: GLYPH • (1, l) ¢ aggret+ 
V 11, /2, 13, {4: GLYPH I (11, l2) E aggrell\ 

(12, /:3) E aggrel• (13, /4) ¢ aggrel 

Line_Attributes _____ _ 
length: N 

"length> 0 

Add Glyph-------
1, l' : Line-Attributes 
c, c': GlyphComp 
g?: GLYPH 

l' .length = l.length + 1 
c' = c U {g?} 

Line _______________________ _ 

instances : lP' GLYPH 
attributes : GLYPH-++ Line_Attributes 
components : GlyphComp 
addglyph : GLYPH-++ lP' AddGlyph 

dom attributes = instance.s 1\ dom (components. aggrel) = instances 
V g : instances • addglyph(g).l = attr·ibutes(g) 1\ 
addglyph(g).c = components 

Using the schemas defined above, the following Z formalization of the Type 
Diagram in Fig. 4 is obtained: 

GlyphStruct ------------------­
glyphs : lP Glyph 
lines : lP Line 
chars : lP' Char 

(lines. instances, chars. instances) partition glyphs. instances 
V l: lines • ran((l.components).aggrel) ~glyphs. instances 

The first predicate in GlyphStruct states that the supertype is abstract and 
the subtypes are disjoint. The second predicate states that lines are composed 
of existing glyphs. 

The benefit of having a formal model of the recursive structure is that one 
can prove properties that cannot be demonstrated simply be examining the 
diagram (e.g., the property that up to ~~-levels of nesting is allowed). Building 
the formal model also forces one to consider, in detail, the constraints that 
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are needed. Formalizing and analyzing UML structures can lead to a. better 
understanding of the modeled structure. 

~ CONCLUSION AND FUTURE vVORI\ 

The formalization of UML models can lead to a. deeper understanding of 
rnodeled structure, and allows one to rigorously reason about modeled prop­
erties. In this paper we have illustrated how formalization can help clarify 

the meaning of non-trivial structures such as recursive definitions+. Recursive 
structures have always been complex to model and to analyze. The lack of 
firm semantic bases for 00 models compounds the complexity problem by 
increasing the chances of introducing ambiguous, incomplete, and imprecise 
statements of desired behavior and structure. 

We have provided a semantic model that supports the formal interpreta­
tion of complex UML type structures, and the rigorous analysis of modeled 
properties. The Z specifications derived from the semantic model are tedious 
to produce by hand. Mechanical support for the generation of Z specifications 
from UML type structures is essential and possible. We are currently extend­
ing a tool we built for generating Z specifications from Fusion Object Models 
(see (France et al., 1997)) to support the UML-to-Z transformation. 
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