
17

Exploring The Semantics
of UML Type Structures
with Z
R. B. France, J.-M. Bruel*, M. M. Larrondo-Petrie,
and M. Shroff
Department of Computer Science & Engineering
Florida Atlantic University
Boca Raton, FL-33431, USA.
Email: {robert, maria} @cse.fau. edu

* Laboratoire IRIT /SIERA
F-31062 Toulouse Cedex, France

Abstract
The Unified Modeling Language (UML) builds upon some of the best object­
oriented (00) modeling concepts available, and is intended to serve as a
common 00 modeling notation. Given its intended role, it is important that
the UML notation have a well-defined semantic base. In this paper we present
some early results from our work on the systematic formalization of UML
modeling constructs. The paper focuses on the formalization of UML Class
Diagrams. The formal notation Z is used to express the semantics of Class
Diagrams.

Keywords
Formal Specification Techniques, Object-Oriented Analysis and Modeling,
Unified Modeling Language, Z.

1 INTRODUCTION

The Unified Modeling Language (UML) (Booch et al., 1997) is a proposed
common object-oriented (00) modeling notation, currently being developed

©IFIP 1997. Published by Chapman & Hall

248 Part Five 00 Requirements Analysis and Design

by some of the more experienced 00 methodologists. The potential primary
strengths of UML constructs, their simplicity and intuitive appeal, are also
potential sources of problems. A significant problem is UML's reliance on
informally defined semantics. This can lead to situations where models are
interpreted differently because of differing viewpoints on what the semantics
are. This is more likely to occur when complex structures (e.g., those involving
recursive structures) are involved.

A formal semantic ba.se for the notation allows one to rigorously reason
about the models being built. Our work on formalizing other 00 and struc­
tured notations indicates that the ability to rigorously analyze models strength­
ens validation and verification of the models. In our past work we have used
formalized semantic bases for graphical techniques to animate requirements
models, and to statically analyze properties (e.g., see (Bruel et al., 1996;
France et al., 1997)).

In this paper we present a Z (Spivey, 1992) formalization of the UML con­
structs used to build Class Diagrams consisting only of types and their asso­
ciations. Such diagrams can be used to model the static structure of systems
at the requirements level. We assume that the reader is familiar with the Z
notation. In section 2 we give the current form of our rules for transforming
Class Diagram constructs to Z, and in section 3 we show how they can be
used to formalize a. non-trivial Class Diagram. We conclude in section 4 with
an overview of our future work on the formalization of the UML notation.

2 FORMALIZING UML ANALYSIS-LEVEL
CLASS DIAGRAMS

A Class Diagram is a. model of the static structure of a system expressed
in terms of classes, types, objects (class instances) and their associations. A
UML type is a specification of concrete UML classes. In UML, classes imple­
ment types, that is, classes provide concrete implementations of the attributes
and operations abstractly defined in types. We will refer to Class Diagrams
that consist solely of types as Type Diagrams. Type Diagrams provide appro­
priate abstractions for modeling problems at the requirements analysis phase
of software development, and is the focus of the formalization given in this
paper.

In our formalization, a Type Diagram characterizes a set of instance struc­
tures, referred to as valid instance structures or configurations. A configuration
is one that exhibits the properties expressed in the Type Diagram. One can
view a configuration as a snapshot of a system's structure at some point in
time, where the instances are those that have been created but not yet de­
stroyed in the system. In this section we illustrate the rules fm transforming
UML type structures to Z specifications that characterize configurations.

Exploring the semantics of UML type structures with Z 249

2.1 A fonnalization of types

A type, like a UML class, has a name, and consists of a set of attributes
and operation specifications. Graphically, it is depicted as a rectangular box
with three compartments: the top compartment contains the type name, the
middle compartment contains the set of attributes (with optional types and
initial values), and the third compartment contains the list of operations (with
optional argument lists and return types).

The set of all instances of a type in a configuration is called the state of the
type. This set is to be distinguished from the set of all possible instances that
satisfy the type properties. Such a set is called the type space of the type. A
type state must be a subset of the type space. When interpreted in isolation,
a type denotes its type space. When interpreted in the context of a Type
Diagram, a type denotes a type state.

The state of an instance consists of two components: a data state and a
set of operation states. The data state of an instance consists of attribute
and association values. The attribute values are the values associated with
type attributes, and association values are the instances that are linked to
the instance under consideration. Associations will be discussed in the next
section. In a state of an instance, each operation is associated with an op­
eration state of the form < befm·e _data_state, aftet·_data_state(inputs) >.
The befor-e_data_state is the (current) data state of the instance and the
after _data_state(inputs) is the data state that is attained when the opera­
tion is performed to completion with inputs inputs.

Message

content: seq BYTE

maxlength: NA 't

reset()
addbyte(data: BYTE)

{maxlength > 0; count(content)<=maxlength}

Figure 1 Message Type

In our formalization, a UML type is associated with a Z basic type consist­
ing of elements representing unique instances of the UML type (they can be
thought of as object identifiers). The attributes of a type are defined in a Z
schema, referred to as an att1·ibute schema. UML type invariants are expressed
as predicates in the predicate part of attribute schemas. The attribute schema
for the lvlessage type shown in Fig. 1 is given in EXAMPLE 1. The type oper-

250 Part Five 00 Requirements Analysis and Design

at.ion 1·eset clears the message contents, and addbyte appends a byte of data
to the message.

Example 1 Attribute schema for lvfessage type

[BYTE]

Me.ssage_Attributes -----------------­
conte·nt : seq BYTE
maxlength : N

maxlength > 0
#content~ maxlength

Type operations are specified by Z schema.s, called operation schemas, that
relate before-data-states to after-data-states. Our operation schemas differ no­
tationally from the traditional Z operation schemas in that we use a variable
to represent the before-state and another to represent the after-state. The op­
eration schemas for the ·reset and addbyte operations are given in EXAMPLE 2.
In the schemas, m represents a before-state, and m' an after-state.

Example 2 Operation specifications for Message type

Reset _________ __
m, m' : Message-Attributes

m'. content = 0
m'. maxlength = m. maxlength

AddByte ______ _
m, m': Message-Attributes
data'? :BYTE

#(m.content) < m.maxlength
m'.content = m.content"' (data?)
m'. maxlength = m. maxlength

Semantically, an instance in a configuration can be viewed as a mapping of
its object identifier to its data and operation states. This is captured formally
by a Z schema that declares a variable representing the instances, and func­
tions that map instances to their states. Such a schema is called a type schema.
The type schema for the Message type is given in EXAMPLE 3 ([MESSAGE]
is supposed defined). The first three predicates of the Message type schema
state that only configuration instances (elements of instances) are associated
with data and operation states. The fourth predicate in the schema states
that the before-state of an operation (m) must be the (current) data state of
the instance (as determined by the function att1·ibutes).

Exploring the semantics of UML type structures with Z 251

Example 3 The type schema for Message

Afessage ____________________________ ~--------------
instances: lP' AIESSAGE [set of existing instances]
attributes : AIESSAGE-++ Afessage_Attributes
reset :MESSAGE-++ lP' Reset
addbyte :MESSAGE-++ lP' AddByte

dom attributes = instances
dom reset = instances
dom addbyte = instances
V p : instances; attl : Reset; att2 : AddByte

I att 1 E reset (p) I\
att2 E addbyte(p) • attl.m = attributes(p)

I\ att2.m = attributes(p)

2.2 Formalization of UML associations

Semantically, an association is a set of links, where a link is a pair of instances
of the form (a ~ b), indicating that a and b are linked.

Multiplicity of an association constrains how many instances of a type can
be associated with one instance of another (or the same) type. A range mul­
tiplicity is of the form m .. n, where m is the lower bound and n is the upper
bound ofthe range. The range m .. m can be simply written m. The multiplic­
ity symbol '*' indicates many i.e. an unlimited number of objects. By itself,
the symbol '*' is equivalent to '0 .. *'i.e. zero or more.

When associations are present, the data state of a type instance includes
the instances that are related to the type. At the analysis level associations
are bidirectional, that is, each linked instance knows about the instances it is
linked to. This implies that each type instance includes information about its
linked instances in its data state. Decisions related to restricting visibility of
linked instances are best made during the design phase. ·

Consider the Type Diagram for a library system consisting of a Copy type
and a Borrower type, with a many-to-one Borrowed_by association, show.n in
Fig. 2. The Borrowed_by association has an attribute due_date and a multi­
plicity that restricts a borrower to a maximum of 5 copies.

The formalization of the Type Diagram shown in Fig. 2 is given in EXAM­

PLE 4.
The association schema Borrowed_by defines the association as a set of pairs

(Rel). The states of instances of the types Borrower and Copy are defined in

252 Part Five 00 Requirements Analysis and Design

Copy Borrowed-by Borrower
0 .. 5 0 .. 1

' '

I due_date

Figure 2 Example of an association with attributes

Example 4 The type schema. for the Borrowed_by association

[DATE, BORROWER, COPY] [Borrowed_by_A ttributes __
due_date : DATE

BorrowerLby --------------------­
Ret : COPY--++ BORROWER
ReLAttributes: (COPY x BORROWER)

--+t Borrowed_by_A ttributes

dam ReLAttributes = Ret
V b: ran Rel• #(Rei t> {b}) ~51\ #(Rel t> {b}) ~ 0

[multiplicity constraint]

Borrower _______ _
instances : lP' BORROWER
bormwe(Lby : Borrowe(Lby

Copy _____________ __
instances : lP' COPY
borrowed_by : Bormwed_by

ran borrowed_by.Rel ~ instances dam borrowed_by.Rel ~ instances

AssocStruct ---------------------­
b : Bormwer
c: Copy

b. bor·rowe(Lby = c. borrowed_by

the type schemas with the respective type names. The schema AssocStruct is
a formalization of the Type Diagram shown in Fig. 2.

Exploring the semantics of UML type structures with Z 253

2.3 Formalization of Aggregation

An aggregate structure is a special type of association indicating a conceptual
whole-part relationship. UML provides a weak and a strong form of aggre­
gation. The strong form of aggregation is called a composition. An aggregate
structure is depicted as an association of types in which a diamond is placed
on the end of the association connected to the type that is the whole. If the
diamond is filled then it is a composition, implying that each part can belong
to only one whole, and that the lifetime of the parts are "coincident" with
the lifetime of the whole (page 47, section 4.23 in (Booch et al., 1997)). Such
lifetime binding is not implied by the weak form of aggregation t. An unfilled
diamond represents a weak aggregation, in which sharing of parts is allowed.
For a composition, the multiplicity at the whole end must be no greater than
1 (restricting parts to belong to at most one whole). For the weak aggregation
a multiplicity greater than one is allowed.

TestRequest

..... ~ I

1.* I _I I *

Test Sample

Figure 3 Example of a composition.

Below we formalize the composition shown in Fig. 3:

[TEST, SAMPLE, TESTREQUEST]

Test ____________________ _
[instances : lP' TEST

Sample ________________ __
[instances: lP' SAMPLE

tTo be more precise, the UML manual does not indicate that there is a lifetime
binding of parts to whole in a weak aggregation.

254 Part Five 00 Requirements Analysis and Design

TestRequest ------­
instances: lP' TESTREQUEST
comp1: TESTREQUEST H

TEST
comp2: TESTREQUEST

H SAMPLE

dom comp 1 = instances
dom comp2 = instances

AggStruct ______ _
tests: Test
samples : Sample
testrequests : TestRequest

ran (testrequests. component 1)
= tests. instances

ran (testrequests. component2)
= sample.instances

V t : ran comp 1 • #(compl !> { t }\-==-t----------­
V t : ran comp2 • # (comp 1 !> { t}) = 1

In the schema TestRequest, the components of the aggregate are specified as
mappings from the instances of TestRequest to instances of the parts Test and
Sample. The first and second predicates restrict part instances to instances in
the configuration. The third and fourth predicates state that no two distinct
instances of the type TestRequest can share parts. This restriction is not
needed for weak aggregation in which the multiplicty at the whole-end is
greater than one. The schema AggStruct formalizes the Type Diagram in
Fig. 3. The instances of Test and Sample must be related to one TestRequest
instance in a configuration (as specified by the multiplicty of 1 at the diamond
end). The formalization of the weaker form of aggregation can be obtained by
weakening the restrictions of the stronger form.

2.4 Formalization of
Generalization/Specialization Hierarchies

A generalization-specialization hierarchy captures a supertype-subtype rela­
tionship between types. It is represented as a link from the subtype to the
supertype, with a large hollow triangle at the supertype end.

The attribute structure of a generalization-specialization hierarchy is rep­
resented in Z by including the schemas defining the shared attributes in sub­
type attribute schemas. Our formalization covers the four combinations of
generalization-specialization according to whether or not the supertype is ab­
stract (i.e., all instances are instances of some subtype in the model) or the
subtypes are disjoint (i.e., the subtypes do not share instances).

3 A FORMALIZATION EXAMPLE

In this section we illustrate the application of the UML-to-Z rules outlined in
the previous section on a small, but non-trivial Type Diagram.

A Type Diagram for a Glyph structure is shown in Fig. 4. The complexity
of recursive structures often causes modelers to underspecify their desired

Exploring the semantics of UML type structures with Z 255

properties. Formalizing such structures forces modelers to consider and ex­
press required constraints that may have been glossed over in a less formal
approach. Once a formal model is obtained, it can be used to demonstrate
that the desired properties are present.

Glyph I *

f_
I I

Char Line

length .
add glyph <>-----

{Up to three levels of recursion allowed}

Figure 4 A recursive UML Type Diagram

A glyph is defined to be an abstract type for objects that can appear in
a document structure. Its subtypes are the primitive graphical character el­
ements (elements of type Char) and structural line elements (elements of
type Line). This technique of composing increasingly complex elements out
of simple ones in a hierarchical fashion is called recursive composition.

The type schemas for Glyph and Char are given below:

[GLYPH] Glyph_ Char __
instances: f'GLYPH [instances: f'GLYPH

The recursive composition is constrained as follows (the 'part-of' aggrega­
tion relationship is transitive):

• The aggregation is anti-symmetric (i.e., if line ll is a part of line 12 then
12 cannot be a part of ll).

e The aggregation is irreflexive (i.e., a line cannot be a part of itself).
• No more than three levels of nesting is allowed (a line ll can contain a line

12 that contains a line 13; 13 must consist only of characters). This is an
application-specific constraint (see annotation on diagram).

The type schema for line is given below:

256 Part Five 00 Requiremellts Analysis and Design

GlyphComp -------------------­
aggrel: GLYPH H GLYPH

V /1, /2: GLYPH I (11, /2) E aggre[+ • (/2, 11) ¢ aggrel+
[aggrel+ is the transitive closure of aggrel]

V l: GLYPH • (1, l) ¢ aggret+
V 11, /2, 13, {4: GLYPH I (11, l2) E aggrell\

(12, /:3) E aggrel• (13, /4) ¢ aggrel

Line_Attributes _____ _
length: N

"length> 0

Add Glyph-------
1, l' : Line-Attributes
c, c': GlyphComp
g?: GLYPH

l' .length = l.length + 1
c' = c U {g?}

Line _______________________ _

instances : lP' GLYPH
attributes : GLYPH-++ Line_Attributes
components : GlyphComp
addglyph : GLYPH-++ lP' AddGlyph

dom attributes = instance.s 1\ dom (components. aggrel) = instances
V g : instances • addglyph(g).l = attr·ibutes(g) 1\
addglyph(g).c = components

Using the schemas defined above, the following Z formalization of the Type
Diagram in Fig. 4 is obtained:

GlyphStruct ------------------­
glyphs : lP Glyph
lines : lP Line
chars : lP' Char

(lines. instances, chars. instances) partition glyphs. instances
V l: lines • ran((l.components).aggrel) ~glyphs. instances

The first predicate in GlyphStruct states that the supertype is abstract and
the subtypes are disjoint. The second predicate states that lines are composed
of existing glyphs.

The benefit of having a formal model of the recursive structure is that one
can prove properties that cannot be demonstrated simply be examining the
diagram (e.g., the property that up to ~~-levels of nesting is allowed). Building
the formal model also forces one to consider, in detail, the constraints that

Exploring the semantics of UML type structures with Z 257

are needed. Formalizing and analyzing UML structures can lead to a. better
understanding of the modeled structure.

~ CONCLUSION AND FUTURE vVORI\

The formalization of UML models can lead to a. deeper understanding of
rnodeled structure, and allows one to rigorously reason about modeled prop­
erties. In this paper we have illustrated how formalization can help clarify

the meaning of non-trivial structures such as recursive definitions+. Recursive
structures have always been complex to model and to analyze. The lack of
firm semantic bases for 00 models compounds the complexity problem by
increasing the chances of introducing ambiguous, incomplete, and imprecise
statements of desired behavior and structure.

We have provided a semantic model that supports the formal interpreta­
tion of complex UML type structures, and the rigorous analysis of modeled
properties. The Z specifications derived from the semantic model are tedious
to produce by hand. Mechanical support for the generation of Z specifications
from UML type structures is essential and possible. We are currently extend­
ing a tool we built for generating Z specifications from Fusion Object Models
(see (France et al., 1997)) to support the UML-to-Z transformation.

REFERENCES

Booch, Grady, Rumbaugh, James, & Jacobson, lvar. 1997 (.Jan.). Unified
Modeling Language. Version 1.0. Rational Software Corporation, Santa.
Clara, CA-95051, USA.

Bowen, .Jonathan P., & Hall, .J. Anthony (eels). 1994. Z User ~11/orkshop,

Cambridge 1994. Workshops in Computing. Springer-Verlag, New York.
Bruel, Jean-Michel, France, Robert B., & Benzekri, Abdelmalek. 1996 (21-

25 Oct.). A Z-basecl Approach to Specifying and Analyzing Complex Sys­
tems. In: Proceedings of the Second IEEE International Conference on En­
gineering of Complex Computer Systems (ICECCS'96); Montreal, Canada.

France, Robert B., Bruel, Jean-Michel, & Larronclo-Petrie, MariaM. 1997. An
Integrated Object-Oriented and Formal Modeling Environment. To appem'
in the Journal of Object-Oriented Programming (JOOP).

Spivey, J. Michael. 1992. The Z Notation: A Reference Manual. Second ecln.
Englewood Cliffs, NJ: Prentice Hall.

:j:The authors wish to thank the members of the Methods Integration Research
Group (MIRG) for their participation on this project. For more information on
MIRG, and integrated formal and 00 modeling techniques see the WWW site
at: http:/ /www.cse.fau.edu/research/MIRGj. This work was partially funded
by NSF grant CCR-9410396.

