
16

Approaches to the Specification of
Object Associations

D. Ramazani and G. v. Bachmann
Departement d'informatique et de recherche operationnelle
Universite de Montreal
C.P. 6128, Succursalle Centre- Ville
Montreal, Canada H3C 3J7
Phone: (514) 343-7484, fax: (514) 343-5834,
E-mails: {bochmann, ramazani }@iro. umontreal. ca

Abstract
Many practitioners agree on the key role of object associations during the
requirements specification and analysis phases of application development, since
they contribute to the definition of the semantics of applications. However, the
literature shows that there are multiple semantics for associations, and confusion
about how they should be represented. As a matter of fact, various interpretations
of the concept of association exist, leading to a multiplicity of representations.

The contribution of this paper is an exposition of four practical approaches to the
formal specification of associations. It also introduces a conceptual model for
associations which is used as a baseline for comparing the four approaches to
formal specification of associations. These four approaches are based on different
constructs of the specification language Object-Z which can be used for formally
describing associations. The way these approaches capture the requirements
represented by associations is central to selecting the approach to be used for the
application development.

Keywords
Associations, Formal specifications, Object-oriented modeling, Object
interactions, Relationships

This work was funded by the Ministry of Industry, Commerce, Science and Technology,
Quebec, and the Natural Sciences and Engineering Research Council of Canada
under the IGLOO project organized by the Centre de Recherche Informatique de
Montreal.

© IFIP 1997. Published by Chapman & Hall

232 Part Five 00 Requirements Analysis and Design

The cornerstone of convergence of object-oriented analysis and design methods is
the explicit formulation of the semantics of concepts used in these methods. In
this formulation, formal specifications play a key role. An important concept of
these methods are associations. Based on the following arguments, we claim that
special attention should be given to associations between objects. Mili et al.
(1990) observed that a number of run-time interactions between objects correspond
to enforcing relations. Among the weaknesses of object-oriented methods,
Monarchi and Puhr, (1992) report the identification and representation of
associations, and the maintenance of a consistent and correct semantics for
associations. Associations contribute to the specification of the dynamic behavior
of applications. Generally, the complexity of an application is due to complex
interactions between its components. As some of these interactions are abstracted
by associations, the explicit description of associations allows to manage
complexity of applications.

In fact, it can be demonstrated that associations are key to the specification of
applications, especially of complex applications (Kilov, 1993). A quick tour of
existing object-oriented methods reveals that associations are neglected during the
development of applications (Monarchi and Puhr, 1992). This results in
applications which are difficult to enhance, to modify and to reuse (Tanzer, 1995).
The problem is caused by the lack of traceability from requirements to the
implementation code via the associations expressed in analysis specifications of
applications. Many practitioners agree on the key role of associations during the
requirements specification and the analysis phases of application development,
since they contribute to the definition of the semantics of applications. As a result
of this role, associations need to be represented and manipulated. Further, there are
multiple semantics for associations, and confusion in how they should be
represented. As a matter of fact, various interpretations of the concept of
association exist (ANSI, 1995), leading to a multiplicity of representations. For
instance, associations may be realized as attributes, as separate classes, as
operations along with their results, as separate modeling construct, or not at all.
Facing this problem in the context of the definition of standards, the ISO/IEC
JTCl SC21 Working Group 4 proposes a General Relationship Model (GRM)
(IS0-2, 1993). GRM provides a framework for specifying semantic properties of
relationships independent of how they are represented. It encourages the definition
of generic, reusable relationship classes applicable to multiple management
applications. To extend the usability of conceptual models for relationships to
general applications, Kilov (1993) developed a generic concept of relationships.

The work described in this paper was done as part of an ongoing research dealing
with the modeling of composite objects. In this research, it appears that object
composition can not be successfully handled if we are unable to capture the
semantic properties of object associations. This has led to the study of the formal
approaches which can be used for specifying object associations. The contribution
of this paper is an exposition of practical approaches to the formal specification of
associations. Before this exposition, we need to agree on a common base for
discussing the concept of association. For that purpose, in Section 2, we present a

Approaches to the specification of object associations 233

conceptual model for association. The remaining part of this paper reviews four
approaches to the formal specification of associations. An example is used to
demonstrate some of the semantic properties of associations. It illustrates the
practical usability of the approaches. We close the paper with a review of the kind
of requirements captured by each approach.

2 WHAT IS AN ASSOCIATION?

2.1 Review of associations in object-oriented methods

Object-oriented methods propose two distinct semantics for associations. Some
methods describe an association as being a pair of attributes of the associated
classes. Each attribute allows to find which objects are associated to the object to
which it belongs. The other methods view an association as a relation which is
equivalent to a relation in relational databases, i.e. a set of tuples with operations
for its management. In addition, we may define association classes which allow
associations to have attributes, operations, associations and subtypes. The
difference between the two semantics lies in the fact that the first approach
considers associations as properties of classes (i.e. attributes) while the second
approach identifies associations as autonomous entities. This difference can be
summarized by the question whether an association is allowed to exist on its own?
In many cases, an association is merely a connection between objects, each
participant object using the association for referencing a certain number of other
objects. In other cases, we want to act on the association, e.g. by making some
queries, adding tuples, etc. One association may imply these two kinds of
situations. Therefore, the two approaches complement each other.

2.2 Evolution of associations from analysis to coding

The object-oriented development consists of three phases : analysis, design and
implementation. Analysis serves to define the semantic properties of associations.
These semantic properties determine the nature (semantics) of the connection
between the objects. The semantics is expressed using abstract concepts, i.e.
independent of any particular representation. An object-oriented method provides a
notation which allows to capture the semantics of associations. In OMT -2, for
instance, the semantic properties of associations are its degree, its roles including
multiplicity and ordering, its attributes, operations and associations with other
objects (Rumbaugh, 1996). The notation which is proposed consists of
representing binary associations by lines between associated classes and ternary
associations by diamonds with one line path to each participating class.
Multiplicity and roles are indicated by text while attributes and operations are
represented using the class construct.

During the design phase, the semantic properties of associations are interpreted
in terms of object-oriented design artifacts. The interpretation depends on the
design decisions taken by the designer. The design notation determines the

234 Part Five 00 Requirements Analysis and Design

repertoire of design artifacts. The designer may take five kinds of design decisions.
He may choose to interpret associations as follows:

1 Not at all: associations are ignored by the designer.
2 Correlation of behaviors: associations are interpreted as object interactions. This

is the case when object interactions may be linked to object associations.
3 Correlation of states: associations are interpreted as structural constraints.
4 Collection of correlated behaviors: In this case, not only the designer wants to

interpret object associations as correlated behaviors like in 2, but he wants to act
upon all the instances of the association at the application level.

5 Collection of correlated states: Here also the designer wants to interpret object
associations as correlated object states like in 3, but he wants to act upon all the
correlated states at the application level.

During the implementation phase, design artifacts are translated into constructs of
some object-oriented programming language. This representation depends on the
constructs provided by the language. For example, considering C++, design
artifacts can be translated into object inclusion, pointer structures, operations along
with their results, objects, macros, and templates.

In the evolution of associations from analysis to implementation, a formal basis
for associations can play a significant role. Semantic properties of associations can
be precisely defined allowing a rigorous interpretation of these semantic properties
in terms of design artifacts. The formal representation contributes to the ease of
understanding, to modifiability and reuse of association specifications (Kilov,
1993). The translation of design artifacts into programming language constructs
can be mechanized since formal reasoning is possible and adequate translation rules
can be devised. Further, using the formal basis, it becomes straightforward to
produce tools, such as implementation generators.

2.3 A conceptual framework for associations

The model
An association is the abstraction of a set of constraints between classes of objects.
It has a name and a set of instances. An instance of an association is a set of
constraints on known object instances. These objects are the participants in the
association. The participating objects in an association can be classified according
to the type obligations (attributes, operations, associations and behavior) which
define the responsibilities assumed by these objects. The set of type obligations
which must be met by a participant is a role. Each role has a name. The number
of roles of an association is the degree of this association. For each role, the
number of objects which assume this specific role in an instance of the association
is the role cardinality. Association cardinality is the number of instances of the
association in which a given object may assume the same role. The participation of
an object in an association is mandatory when the object can not exist without
participating in the association with other objects. Otherwise, the participation of
the object is optional. It is static when a participant can not be changed without
destroying the instance of the association. Otherwise, it is dynamic.

Approaches to the specification of object associations 235

An assoc1at10n may have mathematical properties including reflexivity,
symmetricity and transitivity. In addition to its mathematical properties, an
association may have application-specific properties. Among these properties we
find constraints defined on states and behaviors of the participating objects. These
properties are application-specific since they define the semantics of the
application. Kilov uses the term business rules of an application to denote such
properties (Kilov, 1993). Instances of an association may have state and behavior.
The state is captured by attributes which characterize each instance of the
association. The behavior consists of operations for querying and changing the
state of an instance of the association. These operations should not be confused
with the management operations of the associations which consists of operations
for creating, deleting and testing the existence of an instance of the association.
Similar to objects, associations can be mutually constrained. For example, we may
define exclusive associations, derived associations, composed associations, etc.

Exemplifying the conceptual model
It is difficult to grasp a conceptual model without an illustration of its usability.
We exemplify the model using the employment association. The informal
description of this association follows. A person may work for many companies;
she is an employee of these companies. A company may employ many persons; it
is the employer of these persons. A person is characterized by her name, social
security number (ssn), address and age. A company has a name, an address and a
budget. When a person is employed by a company, she has a job in that company
and she must be aged of at least 18. This job has a position and a salary which can
be modified. The budget of the company includes all the salaries of its employees.
Association definition
name: employment
roles
role-name:
type obligations:
role cardinality:
participation:
association cardinality:
mathematical properties:
application-spec(fic properties:
attributes:
behavior:
management behavior:

degree: 2

employee
with age:~: 18
one
optional

employer
with budget
one
optional

many many
irreflexive, anti-symmetric, non-transitive, ordered

company budget :1: }: salary
position, salary
change-position, change-salary

constraints with other associations:
hiring, firing, checkworking status
exclusive with the association
"enrolled to unemployment"

Figure 1 Employment association description according to the conceptual model

Hiring and firing an employee correspond to creating and deleting an instance of
the employment association. We may also check if someone works for a given
company (respectively if the company employs a given person). A person who is
employed by a given company is not allowed to be enrolled to the unemployment
insurance provided by the ministry of labor. Such an insurance has specific terms

236 Part Five 00 Requirements Analysis and Design

which can be modified by the ministry of labor. Using the conceptual model, we
specify this association as described in Figure 1 which is self explanatory.

2.4 Comparison with other models for associations

We restrict this comparison to a few well-known models for associations, namely
the ODMG object model (Loomis et al. 1993), the Unified method (Booch and
Rumbaugh, 1995), GRM (ISO-I, 1995) and Kilov's model (Guttapale et al. 1992).

ODMG
In the ODMG object model an association is modeled by a pair of association
signatures, each defining the type of the other object(s) involved in the association
and the name of a traversal function used to refer to the related objects. Traversal
functions are similar to roles. Traversal functions are defined as attributes (or
operations) of the participating object types. Generic operations for adding,
deleting and testing the existence of association instances as well as miscellaneous
operations (traverse, create_iterator_for) are also provided. The ODMG model is
grounded on the notion of a mathematical relation. Each tuple of the relation is
represented by a pair of traversal functions. Considering the employment
association, it can be described using ODMG as shown in Figure 2:

Employment
cardinality: many-to-many
traversal functions
signature: <employees: set of Person> defined in the interface of" Company
signature: <employers: set of Company>dejined in the interface of" Person
~eneric operations: depend on the database system which is used

Figure 2 Employment association description using the ODMG model

GRM
In GRM, associations are defined using relationship classes. A relationship class
consists of roles and behavior. Each role defines the participant type obligations,
the role cardinality and the relationship cardinality. Cardinalities have minimum
and maximum value sets. GRM also specifies static and dynamic participation of
objects. The behavior defines the interactions between roles.

Relationship classes are defined independently of object classes. They define one
or more roles, but do not specify the participants that can fulfill these roles. A
relationship binding specifies the class of the objects that can participate in that
relationship for each role. Relationship bindings are specified independently of the
relationship classes. GRM is formalized using GDMO. To make our presentation
concise, we shall assume that the reader has no background in GDMO. Instead, we
use an infonnal notation which is intuitive (see Figure 3).

In GRM, attributes and operations for instances of the relationships can not be
defined. Therefore, the constraint imposing that the company budget should
includes its employee salaries can not be expressed.

Approaches to the specification of object associations

Relationship class employment
~

behavior

role-name:
type obligations:
role cardinality:
relationship cardinality:
participation:

employee
age 2: 18
[1' 1]
[1' *)
static

employer
none of interest
[1' I]
[1' *)
static

hiring an employee: creating a new instance of the relationship
firing an employee: deleting an instance of the relationship
mutual exclusion with "enrolled to unemployment" relationship class

Relationship binding for employment
~ employee bjndinK Person
role employer binding Company

Figure 3 Employment association description using GRM

Unified method

237

In the Unified method, an association is a structural relationship between objects.
The instances of an association are called links. A link consists of a tuple of object
references. Each end of the association is a named role. The role shows how its
class is viewed by the other class. Multiplicity consists of minimum and
maximum cardinalities of roles. Links may have attributes, operations and
associations. These properties are regrouped under an association class which is
shown in a class diagram by drawing a dashed line from the association line to a
class box that holds the attributes, operations and associations for the link. Other
semantic properties can be defined for a role, e.g. navigability and mutability of a
role indicates that the link can be modified.

Company
{Company.employee.age 2: 18} Person

* name
employment * age

address employer I "' employee name

budget or' ssn
I ' address

Job
unemployr ~ent

position 1- Insurance
salary

Ministry terms

change-position() of change-terms()
change-salary() Labor

Figure 4 Employment assoc1at10n descnptlon usmg the Umfied method

In Figure 4, we have two object classes Company and Person, and a binary
association employment with roles employer and employee. Each role has a
multiplicity of many indicated by the "*" symbol. In addition, there are attributes
and operations for links. These properties are indicated by the association class

238 Part Five 00 Requirements Analysis and Design

"Job" within the class diagram. Constraints between participating objects are
indicated by text within braces free standing in the class diagram. It is not clear
from (Booch and Rumbaugh, 1995) that we may express constraints involving the
attributes of the association instances and the attributes of the associated objects.
As a consequence, we drop the constraint imposing the budget of the company to
includes all its employee salaries. Unemployment and employment associations
are mutually exclusive. This is indicated by linking the two associations by means
of a dashed line labelled "or".

Kilov's model
Kilov's app~oach tries to harmonize object-oriented modeling with entity­
relationship modeling. Associations are described by its participants, cardinalities,
and invariant, as well as the create, read, update and delete (CRUD) operations.
These CRUD operations represent the management behavior of the association.
The approach postulates the existence of primitive generic associations which are
used (refined or combined) to define an association according to the application at
hands. The employment association can be defined as a specialization of a
relationship association, one of the generic associations provided by Kilov. A
relationship association consists of relationship objects. Each relationship object
associates several entities. It corresponds to exactly one instance of each of its
participating entities. It has properties that provide information about itself, and
not information about any of its participating entities. The employment
association is pictured in Figure 5.

Company

Figure 5 Employment association description using Kilov diagrams

The employment association is an entity since it has properties. In Kilov
diagrams, rectangles indicate entities and triangles represent associations.
Cardinality is specified using upper and lower bounds. In this diagram, for one
part, an instance of employment is associated with only 1 instance of Company;
an instance of Company is associated to a minimum of 0, and a maximum of N,
instances of employment. On the other hand, an instance of employment is
associated with only 1 instance of Person; an instance of Person is associated to a
minimum of 0, and a maximum of N, instances of employment. Kilov diagrams
do not specifically indicate relationship roles. Position, salary, change-position
and change-salary are specified as properties of the employment entity. The
invariant of the association constrains each person to be aged of at least 18. It also
states that the company budget includes the salaries of the employees. Hiring and
firing employees correspond to CRUD operations.

Approaches to the specification of object associations 239

Summary of comparison
The main features of these models are summarized in the Table I. The ODMG
model is a simple one, but one with a strong mathematical basis since it is based
on the concept of a mathematical relation. The model of the Unified method
captures more semantic properties than the ODMG model. It considers association
instances as objects which may have attributes, operations and associations. On the
other hand, GRM subsumes the ODMG model. In GRM, specific modeling
features, such as the management behavior of an association, are introduced to
reflect the semantics of associations in the context of system management. In
addition, GRM decouples associations from object classes to make the
representation of associations independent of object classes.

Kilov's approach tries to reconcile GRM with the Unified method. This is done
by proposing generic associations which can be specialized to represent
associations between types, as well as object associations. The conceptual model
proposed in Section 2.3 subsumes all these models. Its main objectives are to be
more abstract and to clearly distinguish between the various semantic properties of
associations. Our goal in devising this model was to present an intuitive, clear and
precise model for associations which can be used as a baseline by practitioners.

Semantic properties ODMG GRM Unified Kilov's models
Method

name no yes yes yes
degree binary_ _yes yes _y_es
(role) name yes yes yes yes
(role) type obligations yes y_es yes y_es
(role) cardinality one and many yes yes yes
(role) participation no yes yes yes
association cardinality no yes no no
mathematical properties no y_es yes _y_es
application-specific no no yes yes
properties
attributes no no yes yes
behavior no no yes yes
management behavior generic yes no CRUD

operations operations
constraints with other no yes yes no
associations
Table 1 Semantic propert1es of some well-known models for assoc1at10ns

3 FORMAL SPECIFICATION OF ASSOCIATIONS

In this section, we describe four approaches to the formal specification of
associations using the Object-Z language (Duke et al. 1994). The choice of Object­z is motivated by the following reasons:

• It is an extension of Z, a well-known formal specification language;

240 Part Five 00 Requirements Analysis and Design

• It has a strong mathematical base for defining relations;
• It is used for the formal specification of OMG, ODP and OSI standards;
• It is a general purpose specification language with built-in object-orientation;
• It is model-oriented, we may express correlations of states and behaviors;
• It has been proven to be expressive enough to specify industrial applications.

In this presentation, there is no emphasis on the formal specification of
cardinalities. The reader is referred to (Liddle et al. 1993) which contains a
formalization of various notions of cardinality. In addition, the formal
representation ofKilov's models can be found in (Guttapalle et al. 1992).

Object-Z, as many other object-oriented formal specification languages, does not
have a specific construct for representing object associations. In order to explicitly
represent associations, the specifier needs to express the associations in terms of
the constructs provided by the language. Among the constructs offered by Object­
Z, the constructs of attributes, operations, classes and mathematical relations may
help for representing associations. This gives rise to four basic approaches to the
fonnal specification of associations. These approaches are described hereafter.

3.1 Approach using attributes (or operations)

This approach consists of representing associations by attributes (or operations) of
the associated objects, as suggested by the ODMG model. The complexity added
to class definitions may compromise modifiability and reuse of class definitions,
as reported in (Tanzer, 1995).

In this approach, the definition of associations is distributed among its
participating classes. Instances of the association are represented by pairs of
attribute (or operation results) values. The degree of the association is the number
of attributes required for representing a single instance of the association. Roles are
captured by attributes. Type obligations, defined for each role of the association,
are captured by the type of the attribute representing the role. Role and relationship
cardinality are conjointly represented by using attributes which may be references
or set of references to objects. Mandatory and optional participations are
represented using assertions on the attribute value. To some extent, we may define
application-specific properties of the association using assertions in the class
definitions of the participating objects. While the other semantic properties of the
association are only expressible in terms of properties of the participating classes.

We illustrate this approach using the employment association. In Object-Z
specifications the definition of attributes, within a class definition, consists of
two parts, one part is devoted to the types of the attributes and the other part to the
constraints on the attributes. In the class Person (see below), the attribute
employers represents a set of references to Company objects since the role
cardinality is many. Theses references represent the companies the person is
working for. In the class Company, the attribute employees represents a set of
references to Person objects. These references represent the employees of the
Company. The usage of sets implies that the duplication of instances of the
association is not allowed. The constraints on these attributes are specified by
assertions included in the class definitions of Person and Company. For example,

Approaches to the specification of object associations 241

in the Company class, the assertion states that each employee must be at least aged
of 18.

[STRING} [Money} [Position]

- Person .---- Company

name: STRING
ssn: STRING
address: STRING
age: IN
employers: IP Company

name: STRING
address: STRtNG
employees: IP Person
budoet: Money
'V p e employees • p.age C!: 18

Salary and position are determined by a person and the company she is working
for. They can be defined as partial functions which may be declared as global
variables or localized within the classes Person or Company.

salary: (Companyx Person)- Money

'V p:Person, c: Company·
((3 m: Money·salary((c,p)) = m) ¢> c e p.employers/\ p e c.employees)

Salary and position are defined by axiomatic descriptions (see above the definition
of salary). An axiomatic description introduces one or more global variables in a
specification, and optionally specifies a constraint on their values. We use
surjections to denote the fact that two employees may hold the same position or
they may have the same salary. Salary takes as input a tuple consisting of a
Company and a Person. It returns the salary of the person within the company. An
assertion links salary to the employment association. It states that for each tuple of
Company and Person such that salary is defined, this tuple is an instance of the
employment association. Forcing the domain of the partial surjections salary and
position to be the employment association means that to each instance of the
association corresponds a salary and a position.

Operations consisting of changing the salary and the position are defined as
operations affecting the partial functions representing these attributes of the
association. In Object-Z, the definition of an operation consists of two parts, the
parameter declarations (input parameters are decorated with? and output parameters
with !), and the pre- and post-conditions for the operation. As illustrated below,
the operation changesalary modifies the current value of the salary of an employee
of a given company. As input, it takes the company, the person, and her newsalary
within this company. Its pre-condition imposes that the salary of a person working
for the given company is different from her new salary. Its post-condition
guarantees that when the partial surjection salary is applied to the tuple formed by
the company and the person, it returns the newsalary.

Operations for managing the association are represented by operations decoupled
from the association representation. For instance, hiring an employee is an
operation which adds an instance to the employment association. It is declared as

242 Part Five 00 Requirements Analysis and Design

an operation of the class Company as illustrated above. The operation hire is
included in the definition of the class company, since intuitively a company hires
one of its employees. We define the operation fire analogously.

ChangeSalary ---­
A (salary)

employee?: Person
employer?: Company
newsalary?: Money

3m: Money·
((salary(

(employer?, employee?))
= m) 1\ m .. newsalary?)

salary'(
(employer?, employee?))

= newsalary?

Compani¥------
Hire

employee?: Person
position?: Position
salary?: Money

employee? tt; employees
self tt; employee?.employers
employees'= employees u {employee?}
employee?.employers' =

employee?.employer u {self}
position'((self, employee?))= position?

salary'((self, employee?))= salary?

3.2 Approach defining the entire association as an object

In this approach, one considers the association as an object having state and
behavior. This allows to apply operations to the entire association. Many
expressions over the entire association can be written concisely. The state of the
object representing an association consists of the set of association instances and
the semantic properties of the association. These elements are expressed in terms of
class attributes and assertions on these class attributes. The behavior of the object
includes update and query operations. Among these operations, there may be
operations for adding or deleting association instances, testing the membership of
given association instances, selecting a subset of the association instances
according to some condition, and iterating over the set of association instances. In
addition, the invariant of the class captures the association invariants and other
constraints which need to be maintained between the participating objects.

Here, the definition of associations is localized in a single class definition.
Instances of the association are stored using an attribute as a container (i.e. a set of
tuples). The degree of the association is represented in the type definition of this
attribute. This is also the case for roles, type obligations defined for each role, and
role cardinalities. Association cardinality, mandatory and optional participations,
and mathematical and application specific properties are represented by assertions
in the class definition of the association. In this approach, like in the previous one,
it is difficult to represent attributes and behavior of associations instances.
Therefore, we also use the equivalence between association attributes and partial
functions. These partial functions are attributes of the object representing the
association. Association behavior is represented by operations affecting the partial
functions. Management operations for the association are represented by operations

Approaches to the specification of object associations 243

of the object representing the association. Constraints with other associations are
represented by constraints between objects representing these associations.

We define below a class Employment representing the employment association.
The attributes employees and employers in the class definition allow to write
concise assertions on the employment association. For instance, using these
attributes we may act upon one kind of the particpants at a time. This is useful
when constraining each employee to have an age of at least 18. The tuples of the
association are stored in the attribute instances. The partial functions position and
salary are introduced in the definition of the class Employment.

~ Employment
instances: Company +-+ Person
position: (Companyx Person)....,. Position
salary: (Companyx Person)....,. Money

\:1 p E ran instances • p.age 0!: 18

dom position = instances
dom salary = instances

<definition of changeposition, change salary, fire and hire>

In this case, the operations hire, fire, changesalary and changeposition are declared
as operations of the class Employment.

3.3 Viewing each instance of the association as an object

In this approach, one considers each instance of the association as an object having
state and behavior. The state of the object representing an instance of the
association consists of the objects playing the roles along with other semantic
properties. Application-specific properties and attributes of the association are
expressed in terms of attributes and invariant of the object. The behavior of the
object consists of application-specific operations which can be applied to each
instance of the association.

In this approach, the instances of the association are objects. The degree of the
association is represented by the number of the attributes required for representing
the participant objects in an instance class. Roles, type obligations defined for each
role, and role cardinality are captured by the type definition of the attributes
representing the participant. Application-specific properties are represented by
assertions in the class definition. Association attributes and behavior are made
attributes and operations of the object representing the instance of the association.
Management operations for the association are represented by operations for
creating and deleting objects. However, using Object-Z, these operations can not
be represented since Object-Z does not provide operations for creating and deleting
objects. On the other hand, when the constraints with other associations are
expressed in terms of association instances, they can be represented.

As an example, we define below the class Employment which represents a single
instance of the employment association. Each role is represented by a specific
attribute. With this approach, the representations of change-salary and change­
position operations are intuitive.

244 Part Five 00 Requirements Analysis and Design

_ Employment

employee: Person
employer: Company
position: Position
salary: Money
employee.age :2: 18

....- ChangePosition __

newposition?: Position

position ,. newposition?
position'= newposition?

- ChangeSalary -­
newsalary?: Money

salary ,. newsalary?
salary' = newsalary?

3.4 Approach viewing associations as mathematical relations

This approach consists of reducing an association to a mathematical relation.
Instances of the association are tuples of the relation. The degree of the association
is the degree of the relation. The roles, and the type obligations are defined by
definitional constraints on the domain and the range of the relation. The role
cardinality defined for each role are specified as mathematical properties of the
relation. Association cardinality, mandatory and optional participations, and
mathematical and application specific properties are also defined in the same way.
Association attributes can be represented using existential quantification while
application specific operations can not be represented. Management operations for
the association are represented as operations acting on the relation. Constraints
with other associations are expressed byconstraints between mathematical relations.

The formal representation of associations with this approach is done using
axiomatic descriptiofts. For instance, the employment association is defined as
follows.

Employment: Company <--> Person

V p: Person • p e (ran employment) 9 p.age :2: 18

All the semantic properties of an association can at some level be represented using
mathematical relations. Such a description of an association becomes overloaded
and for each semantic property there may be many representations. In order to
avoid such a level of detail, we limit ourselves to the direct mapping between an
association as a set of related objects and a mathematical relation understood as a
cross product over domains.

4 OBSERVATIONS AND FINDINGS

As described in Section 3, we may use four approaches to the formal specification
of associations. These approaches, due to the constructs of Object-Z on which they
are based, can capture certain semantic properties directly, certain other properties
only by using some specification artifacts, and may not be able to represent some
other semantic properties. This is summarized in Table 2. In addition, the last line
of the table indicates which of the well-known models for associations can be
formally represented using each approach.

Approaches to the specification of object associations 245

Semantic properties Attribute Association as Instance as an Mathematical
an ob.iect obiect relation

name no yes yes yes
deJ;!ree yes yes _y_es yes
(role) name yes yes yes yes
jrole) type obliJ;!ations yes y_es yes yes
(role) cardinality yes yes yes yes
(role) p_articij.J_ation _yes yes yes yes
association yes yes no yes
cardinalif]J_
mathematical ordering yes no yes

_IZroperties
application specific no yes yes yes

_1)1"operties
attributes no no yes no
behavior no no yes no
manaj!ement behavior no yes no no
constraints with other no yes no yes
associations
Models captured ODMG GRM and Kilov Unified method GRM

Table 2 Semantic properties which can be formally captured by the approaches

These basic approaches for the specification of associations can be combined to
overcome their respective disadvantages. A question which any requirements
specifier may ask, is what are the criteria for selecting one approach over another?
This raises the question of the relative importance of the different semantic
properties. We believe that it is up to the requirements specifier to evaluate which
requirements are more important, and to select the appropriate approach
accordingly.

In general, we would suggest to use the instance of an association as an object
approach if needed combined with the association as an object approach. This
recommendation is based on our experience with these approaches as well as the
experience of other practitioners. This approach avoids redundancy and it removes
any direct couplings between the associated classes. In addition, it leads to
complete and reusable requirement specifications .

5 CONCLUSION

The importance of associations in the development of applications, especially
complex applications, and the key role played by formal specifications in the
formulation of semantic properties of associations led us to review how we may
fonnally specify associations. We identified four approaches. In order to ease the
comparison of these approaches, we have introduced an abstract conceptual model
for associations. Our experience with the well-known models presented in Section
2 and the different approaches for providing formal specifications reveals that there
is still a confusion on the semantics of cardinalities (multiplicities) of

246 Part Five 00 Requirements Analysis and Design

associations. We note that (Liddle et al, 1993) give an excellent formal treatment
of cardinalities for various models. Attributes of association instances can be
represented by means of partial functions. In addition, there is sometimes a
confusion between associations and attributes. Embley et al. (1992) have shown
that attributes of objects may be represented by associations, and the converse is
not necessarily true. In addition, management operations for associations are most
of the time ignored, except in database and system management applications.

The main contribution of this paper is the demonstration that although there
exists multiple well-known approaches for modelling object associations
corresponding to different interpretations, as exemplified by the use of Object-Z,
only four basic approaches suffice to formally specify object associations. These
four basic formal approaches can be used individually or combined in order to
capture various semantic properties of object associations. In addition, the four
basic formal approaches can be applied in the context of any model-oriented formal
specification language.

6 REFERENCES

ANSI-95 (1995) Object Data Management Reference Model. ANSI Accredited
Standards Committee X3, Information Processing Systems.

Booch, G. and Rumbaugh, J. (1995) The Unified method, Rational Corporation.
Duke et al. (1994) Object-Z: a Specification Language Advocated for the

Description of Standards. Technical Report No. 94-45, SVRC, The University
of Queensland, Australia.

Embley et al. (1992) Object-Oriented Systems Analysis, A Model Driven
Approach, Yourdon Press/Prentice Hall Englewood Cliffs, NJ.

Guttapalle et al. (1992) The Materials: A Generic Object Class Library for
Analysis. Information Modeling Concepts and Guidelines, ST-OPT-002010,
Bell Core.

IS0-1 (1993) Information Technology - Open Systems Interconnection -
Management Information Services- Structure of Management Information- Part
7: General Relationship Model, CDC ISO/IEC 10165-7.

Kilov, H. (1993) Information Modeling and Object-Z: Specifying generic reusable
associations, Proceeedings ofNGIT'93.

Liddle, S. et al. (1993) Cardinality Constraints in semantic data models, Data &
Knowledge Engineering, 11, 235-70.

Loomis, M. et al. (1993) The ODMG Object Model, JOOP, 6 (3):64-9.
Mili, H. et al. (1990) An Object-Oriented Model Based on Relations, Journal of

Systems Software, 12, 139-55.
Monarchi, D. and Gretchen, 1., A Research Typology for Object-Oriented Analysis

and Design, CACM, 35 (9), 35-47.
Rumbaugh, J. (1996) Models for design: Generating code for associations, JOOP,

8 (9), 13-7.
Tanzer, C. (1995) Remarks on object-oriented modeling of associations, JOOP, 7

(9), 43-6.

