
23

Analysis of JAVA Security and Hostile Applets

Dr. Klaus Brunnstein
Professor for Application of Informatics

University of Hamburg, Germany

Paper presented at SEC97 (Copenhagen, May 15, 1997)

Extended Abstract: Rapid growth of Internet was only possible when
document description languages (esp. HTML), exchange protocols (HTTP) and
navigation tools such as Netscape's browser and Internet Explorer were
available for mass usage. Basic Internet features (protocols, esp. TCPIIP, domain
organisation and routing concepts), navigation tools and document description
languages have been specified without observing relevant security
requirements, esp. concerning confidentiality of sensitive processes and data.
Moreover, essential safety aspects - availability, reliability, maintainability,
functionality - have also been neglected. As security and safety are ,design­
inherent" features (i.e. they must be specified in design and enforced in
implemented systems), later enhancements (such as IP v.6 including
authentication and encryption, protocols such as S-HTTP, SSL or SET) can at
best reduce risks, but they can NOT cure past design faults.

Within this insecure and unsafe Internet environment, ,agent" technologies
develop, which perform net-"work" with usually small processes which
intemperate at an assumed benefit of users. A multitude of agents applications
has been discussed, including delegation of tasks, handling email, coordination of
group work and scheduling, mobile knowledge robots, distributed searches and
many others. Early examples of agent technologies (though not named as such)
have been XEROXs worms (which materialized in several network
experiements and attacks) and chain letters. Started either automatically or from
a users desktop (or better: WebTop), agents work in hidden manners.
Therefore, security and safety aspects as well as mechanisms to control
agents must be carefully analysed from design to implementation and actual
work.

© IFIP 1997. Published by Chapman & Hall

294 Part Nine Management of Information Security and Risks (II)

JAVA was announced in 1996, by Sun Microsystems (in a ,White Paper") as
4G-language for Internet applications. It supports development and execution of
small agents, called ,applets" which are executed upon a specific software
engine (conceptually similar to Niklaus Wirth's p-Code for Pascal).

According to Sun's summary:

Java is a simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-performance,
multi-threaded, and dynamic language."

The C++-like JAVA-language has several deliberate restrictions, which
according to Sun shall guarantee applet security. Among such restrictions,
access to files and Internet address space (URLs) is strictly prohibited, and
memory management (including garbage collection) is automatic; user­
manipulated pointers are not supported in JAVA As manipulation of memory
(e.g. via memory residence) and manipulation of files are regarded as essential
means with which (traditional) viruses propagate, some experts and Sun assume
that JAVA viruses are ,impossible"; in a counterposition, others (such as Bill
Cheswick) have regarded JAVA as ,ideal virus writing language".

Besides language restrictions, JAVA offers more security features. A special
class of services ,security.java" supports encryption, authentication (digital
signatures), secure key exchange and integrity mechanisms (checksumming). On
this basis, applets may be authorized and authenticated. This provides a secure
channel to the manufacturer which is ,secure" if and when the manufacturer is
regarded trustworthy. An additional feature is that JAVA applets are executed
upon ist own interpretor; JAVA code can then be verified for conformance with
security prescriptions (byte-code verifier).

With these enhancements, JAVA is much better than almost all other language
systems though it is inferior to Secure ADA which offers also formal methods
for proof of specified features (this is not foreseen in JAVA which does not hide
its medium-level origin: it is similar to C/C++). Nevertheless, JAVA applets are
far from being ,secure". First, any hidden manipulation within the scope of
the language is possible; it is therefore no surprise that ,hostile applets" have
soon been demonstrated on Internet, ranging from rather ,innocent" Noisy.Bear"
which ,only" consumes processor time and memory, to ,Killer-java" which
installs multiple threads and kills some browsers. These applets can be classified
as ,malicious trojan horses"; they do NOT replicate but may nevertheless
harmfully affect user data and processes.

Analysis of Java security and hostile applets 295

More generally, ,security" is a feature of a system whithin properly specified
boundaries. When JAVA applets execute on insecure systems (ranging from
hardware to operationg systems to browsers and file systems), insecure use is
possible despite JAVA restrictions. So far, insecure interactions of JAVA
applets with browsers (esp. Netscape' s) have been discussed (Princeton
University). So far, self-reproduction has not been demonstrated. Moreover,
essential safety aspects - availability, reliability, maintainability, functionality
- have also been neglected in JAVA design.

Conclusion: though JAVA has some security features, applets enlarges the risk of
agent technologies. Based on insecure systems such as operating systems and
browsers, risks of JAVA applets for sensitive information is significant.

