
2

PerITTCN, a TTCN language extension
for performance testing

/. Schieferdecker, B. Stepien, A. Rennoch
GMDFOKUS
Hardenbergplatz 2, D-J 0623 Berlin, Germany,
tel.: (+4930) 254 99 200, fax: (+4930) 254 99202,
e-mail: {Schieferdecker.Stepien.Rennoch}@fokus.gmd.de

Abstract
This paper presents a new approach to test the perfonnance of communication
network components such as protocols, services, and applications under nonnal and
overload situations. Perfonnance testing identifies perfonnance levels of the
network components for ranges of parameter settings and assesses the measured
perfonnance. A perfonnance test suite describes precisely the perfonnance
characteristics that have to be measured and procedures how to execute the
measurements. In addition, the perfonnance test configuration including the
configuration of the network component, the configuration of the network, and the
network load characteristics is described. PerfITCN - an extension of TTCN - is a
formalism to describe performance tests in an understandable, unambiguous and re­
usable way with the benefit to make performance test results comparable. First
results on the description and execution of performance tests will be presented.

Keywords
Performance Testing, Test Suite, TTCN, Quality of Service

Testing of Communicating Systems, M. Kim, S. Kang & K. Hong (Eds)
Published by ClJapman & Hall e 19971F1P

22 Part Two TTCN Extensions

1 MOTIVATION
Non-functional aspects of today's telecommunication services (e.g. multimedia
collaboration, teleteaching, etc.) and in particular Quality-of-Service (QoS) aspects
became as important as the functional correctness of telecommunication systems.
Different approaches for guaranteeing certain QoS levels to the end users were
developed. They include approaches for QoS negotiation between the end users and
service and network providers, QoS guarantees of transmission services, QoS
monitoring and QoS management, for example in self-adapting applications.

This paper considers QoS in the area of testing. Testing is a general method to
check whether a network component meets certain requirements. Network
components are considered to be communication protocols, telecommunication
services, or end user applications. The requirements on network components are
often described in a specification. The tested network component is also called
implementation under test (IUT). Testing is either oriented at the conformance of an
JUT with respect to the specification of the network component, the interoperability
between the IUT and other network components, the quality of service of the IUT,
or at its robustness.

QoS testing checks the service quality of the JUT against the QoS requirements of
the network component. A specific class of QoS is that of performance-oriented
QoS. Performance-oriented QoS requirements include requirements on delays (e.g.
for response times), throughputs (e.g. for bulk data transfer), and on rates (e.g. for
data loss). We concentrate exclusively on performance-oriented QoS, other classes
of QoS are not considered. Subsequently, we use the term performance instead of
QoS and refer therefore to performance testing.

One of the well-established methods in testing is that of conformance testing. It is
used to check that an implementation meets its functional requirements, i.e. that the
IUT is functionally correct. Since conformance testing is aimed at checking only the
functional behavior of network components, it lacks in concepts of time and
performance. Timers are the only means to impose time periods in the test execution.
Timers are used to distinguish between network components that are too slow, too
fast or do not,react at all. In conformance testing, the correctness of the temporal
ordering and exchanged protocol data units (PDUs) or of abstract service primitives
(ASPs) have been the main target.

Performance testing is an extension to conformance testing to check also QoS
requirements. Performance tests make use of performance measurements.
Traditionally, performance measurements in a network consist of sending time
stamped packets through a network and of recording delays and throughput. Once
measurement samples have been collected, a number of statistics are computed and
displayed. However, these statistics are sometimes meaningless since the actual
conditions in which these measurements have been performed are unknown.

Different strategies can be used to study performance aspects in a communication
network. One consists in attempting to analyze real traffic load in a network and to
correlate it with the test results. The other method consists of creating artificial traffic
load and of correlating it directly to the behavior that was observed during the
performance test. The first method enables one to study the performance of network
components under real traffic conditions and to confront unexpected behaviors. The
second method allows us to execute more precise measurements, since the
conditions of an experiment are fully known and controllable and correlations with
observed performance are less fuzzy than with real traffic. Both methods are actually

PerfITCN, a TTCN language extension/or performance testing 23

useful and complementary. A testing cycle should involve both methods: new
behaviors are explored with real traffic load and their understanding is further
refined with the help of the second method by attempting to reproduce them
artificially and to test them. The presented approach to performance testing attempts
to address both methods.

This paper presents a new approach to describe performance tests for network
components and to test their performance under normal and overload situations.
Certain performance levels of an IUT can be identified by means of repeating
performance tests with varying parameter settings. On the basis of a thorough
analysis, the measured performance can be assessed.

A performance test suite describes precisely the performance characteristics that
have to be measured and procedures how to execute the measurements. In addition,
a performance test has to describe the configuration of the IUT, the configuration of
the network, and the characteristics of the artificial load. The exact description of a
test experiment is a prerequisite to make test results repeatable and comparable. The
description of the performance test configuration is an integral part of a performance
test suite.

The objectives of performance testing can be realized with a variety of existing
languages and tools. However, there is only one standardized, well known and
widely used notation for the description of conformance tests: TTCN - the tabular
and tree combined notation (lSOIIEC 1991, 1996 and Knightson, 1993). In addition,
a number of TTCN tools are available. We decided to base our work on TTCN due
to its wide acceptance. We define an extension of the TTCN language to handle
concepts of performance testing. Only a limited number of additional declarations
and functionalities are needed for the definition of performance tests. PermCN - an
extension of TTCN with notions of time, traffic loads, performance characteristics
and measurements - is a formalism to describe performance tests in an
understandable, unambiguous and re-usable way with the benefit to make the test
results comparable.

The proposal introduces also a new concept of time in TTCN. The current standard
of TTCN considers time exclusively in timers, where the execution of a test can be
branched out to an alternative path if a given timer expires. New proposals by Walter
and Grabowski (1997) introduce means to impose timing deadlines during the test
execution by means of local and global timing constraints. In contrast to that, a
performance test gathers measurement samples of occurrence times of selected test
events and computes various performance characteristics on the basis of several
samples. The computed performance characteristics are then used to check
performance constraints, which are based on the QoS criteria for the network
component.

Although the approach is quite general, one of its primary goals was the study of
the performance of A TM network components. Therefore, the approach is in line
with the A TM Forum performance testing specification (A TM Forum, 1997) that
defines performance metrics and measurement procedures for the performance at the
A TM cell level and the frame level (for layers above the A TM layer).

In this paper, we first discuss the objectives, main concepts, and architectures for
performance tests, next we present the language features of PermCN to describe
the new concepts, and finally we present some results of experiments on an example
handling queries to an HTTP server using a modified test generator of some well
known TTCN design tool.

24 Part Two ITCN Extensions

2 INTRODUCTION TO PERFORMANCE TESTING

2.1 Objectives of performance testing
The main objective of performance testing is to test the performance of a network
component under normal and overload situations. The normal and overload
situations are generated by artificial traffic load on the network component. The
traffic load follows traffic patterns of a well-defined traffic model. For performance
testing, the conformance of an IUT is assumed. However, since overload may
degrade the functional behavior of the IUT to be faulty, care has to be taken to
recognize erroneous functional behavior in the process of performance testing.

Another goal of performance testing is to identify performance levels of the IUT
for ranges of parameter settings. Several performance tests will be executed with
different parameter settings. The testing results are then interpolated in order to
adjust that range of parameter value, where the IUT shows a certain performance
level.

Finally, if performance-oriented QoS requirements for an IUT are given,
performance testing should result in an assessment of the measured performance,
whether the network component meets the performance-oriented QoS requirements
or not.

The main advantage of the presented method is to describe performance tests
unambiguously and to make test results comparable. This is in contrast with informal
methods where test measurement results are provided only with a vague description
of the measurement configuration, so that it is difficult to re-demonstrate and to
compare the results precisely. The presented notation PerfITCN for performance
tests has a well-defined syntax. The operational semantics for PerfITCN is under
development. Once given, it will reduce the possibilities of misinterpretations in
setting up a performance test, in executing performance measurements, and in
evaluating performance characteristics.

2.2 Concepts of performance testing
This section discusses the basic concepts of the performance test approach. The
concepts are separated with respect to the test configuration, measurements and
analysis, and test behavior.

2.2.1 Test components
A peiformance test consists of several distributed foreground and background test
components. They are coordinated by a main tester, which serves as the control
component.

A foreground test component realizes the communication with the IUT. It
influences the IUT directly by sending and receiving PDUs or ASPs to and
respectively from the IUT. That form of discrete interaction of the foreground tester
with the IUT is conceptually the same interaction of tester and IUT that is used in
conformance testing. The discrete interaction brings the IUT into specific states,
from which the performance measurements are executed. Once the IUT is in a state
that is under consideration for performance testing, the foreground tester uses a form
of continuous interaction with the IUT. It sends a continuous stream of data packets
to the IUT in order to emulate the foreground load for the IUT. The foreground load
is also called foreground traffic.

A background test component generates continuous streams of data to cause load
for the network or the network component under test. A background tester does not

Perf/TCN, a ITCN language extensionfor performance testing 25

directly communicate with the IUT. It only implicitly influences the IUT as it brings
the IUT into normal or overload situations. The background traffic is described by
means of traffic models. Foreground and background tester may use load generator
to generate traffic patterns.

Traffic models describe traffic patterns for continuous streams of data packets with
varying interarrival times and varying packet length. An often used model for the
description of traffic patterns is that of Markov Modulated Poison Processes
(MMPP). We selected this model for traffic description due to its generosity and
efficiency. For example, audio and video streams of a number of telecommunication
applications as well as pure data streams of file transfer or mailing systems have been
described as MMPPs (Onvural, 1994). For the generation ofMMPPs traffic patterns,
efficient random number generator and an efficient finite state machine logic are
needed only. Nonetheless, the performance testing approach is open to other kinds
of traffic models.

Points of control and observation (PCOs) are the access points for the foreground
and background test components to the interface of the IUT. They offer means to
exchange PDUs or ASPs with the IUT and to monitor the occurrence of test events
(Le. to collect the time stamps of test events). A specific application of PCOs is their
use for monitoring purposes only. Monitoring is needed to observe for example the
artificial load of the background test components, the load of real network
components that are not controlled by the performance test or to observe the test
events of the foreground test component.

Coordination points (CPs) are used to exchange information between the test
components and to coordinate their behavior. In general, the main tester has access
via a CP to each of the foreground and background test components.

To sum up, a performance test uses an ensemble of foreground and background
tester with well-defined traffic models. The test components are controlled by the
main tester via coordination points. The performance test accesses the IUT via points
of control and observation. A performance test suite defines the conditions under
which a performance test is executed. Performance characteristics and
measurements define what has to be measured and how. Only a complete
performance test suite defines a performance test unambiguously, makes
performance test experiments reusable and performance test results comparable.

2.2.2 Performance test configurations
In analogy to conformance testing, different types of performance test configurations
can be identified. They depend on the characteristics of the network component
under test. We distinguish between performance testing the implementation (either
in hardware, software, or both) of
• an end-user telecommunication application,
• an end-to-end telecommunication service, or
• a communication protocol.

Of course, additional test configurations for other network components can be
defined. The test configurations for these three types of performance tests are given
in Figure 1,2, and 3. The notion System Under Test (SUT) comprises all IUT and
network components. For simplification, we omit the inclusion of the main tester in
the figures.

The three test configurations differ only in the use offoreground tester. The use of
background tester that generate artificial load to the network, and the use of
monitors, that measure the actual real load in the network are the same in each of

26 Pan Two ITCN Extensions

FT • Foreground Tester for Emulated Client!
BT • Background Tester

.-----.M • Monito~ of Real etwork Load
S • Tested Serve~

"'----'

• PCO

• PCO. but measurement only

o Performance T t Componen

o SUT Components

Figure 1 Perfonnance test configuration for a server.
these test configurations.

In the case of perfonnance testing a server in Figure 1, foreground tester emulate
the clients. The test configuration for an end-to-end service in Figure 2 includes
foreground tester at both ends of the end-to-end service, which emulate the service
user. Perfonnance testing of a communication protocol (Figure 3) includes
foreground tester at the upper service access point to the protocol under test and at
the lower service access point. This test configuration corresponds to the distributed
'test method in confonnance testing (please refer to ISOIIEC, 1991 for other test
methods). The service access points are reflected by points of control and
observation.

SEt,

FT . Foreground Te ter for
Emulated Service User

~ BT · Background Tester
M . Monito~ of Real

Network Load • •
SE • Te ted Service Entities

see Figure I for symbol explanations

Figure 2 Perfonnance test configuration for an end-to-end service

UFf • Foreground Tester for
Emulated Protocol User

LFT . Foreground Tester for Emulated
Peer-to-Peer Protocol Entity

BT . Background Tester
M - Monito~ of Real Network Load
SE . Tested Protocol Entity

see Figure I for symbol explanations

Figure 3 Perfonnance test configuration for a protocol.

2.2.3 Measurements and Analysis
A measurement is based on the collection of time stamps of events. A measurement
can be executed by monitoring components that are sensitive to specific test events

Per/ITCN, a ITCN language extension/or performance testing 27

only. The format of a test event that belongs to a measurement is described by
constraints, so that the monitor can collect time stamps whenever an event at a
certain PCO matches that format. The constraints used here are the same that are
used in conformance testing. A measurement is started once and continues until it is
cancelled by a test component or reaches its time duration. Currently, we investigate
the need to control measurements explicitly in the dynamic behavior of a
performance test.

Based on the measurements, more elaborated performance characteristics such as
mean, standard deviation, maximum and minimum as well as the distribution
functions can be evaluated. Their evaluation is based on predefined metrics, which
have a well-defined semantics.

Performance characteristics can be evaluated either off-line or on-line. An off-line
analysis is executed after the performance test finished and all samples have been
collected.

On-line analysis is executed during the performance test and is needed to make use
of performance constraints. Performance constraints allow us to define requirements
on the observed performance characteristics. They can control the execution of a
performance test and may even lead to the assignment of final test verdicts and to a
premature end of performance tests. For example, if the measured response delay of
a server exceeds a critical upper bound, a fail verdict can be assigned immediately
and the performance test can finish.

2.2.4 Performance Test Behavior
A performance test suite has to offer features to start and cancel background and
foreground test components, to start and cancel measurements, to interact with the
IUT and to generate a controlled load to the JUT, as well as to access recent
measurements via performance constraints.

At the end of each performance test, a final test verdict such as pass or fail has to
be assigned. However, a verdict of a performance test should not only evaluate the
observed behavior and performance of the tested network component to be correct
or incorrect (i.e. by assigning pass or fail, respectively), but also return the measured
performance characteristics that are of importance for the analysis of the test results.

3 PERFITCN - A PERFORMANCE EXTENSION OF TICN
This section presents the new language constructs of PerflTCN for the declaration
of traffic models and background traffic, for the declaration of performance
measurements, performance characteristics and performance constraints, for the
control of test components and measurements, for the use of performance
constraints, and for the assignment of verdicts.

3.1 Traffic Models and Background traffic
The location of background test components and the orientation of the background
traffic are defined in the test component configuration table (see also Table 1).

For each background test component, PCOs identify the location of the source of
the background traffic (left side) and of the destination of the background traffic
(right side). Lists of PCOs for the source or destination can be used to declare
multipoint-to-multipoint background traffic.

The coordination points of a background test component are used to control its
behavior, e.g. to start or to stop the traffic generation. The main tester sends in its
dynamic behavior coordination messages to the background test components. The
traffic patterns that are generated by a background test component are defined in a

28 Part Two TTCN Extensions

Table 1 Integration of Background Test Components
Test Component Configuration Declaration

Configuration name: CONFIG_2

Components Used PCOS Used CPs Used Comments

MTC PCO_l CP1,
PTCI PCO_2 MCP2,CPl

Background Test Components

Identifier PCOS Used CPs Used Comments

traffic 1 (PCO_Bl) -> (PCO_B2) BCP1, BCP2 Point to Pomt
traffic2 (PCO_Bl) -> (PCO_B4) BCP1, BCP2 Point to Point

traffic stream declaration table (see next section).
Specific, implementation dependent details of the location of a background test

component, e.g. the connection information such as the VPIIVCI for an ATM
connection, are subject to the protocol extra information for testing (PIXIT)
document of the performance test suite.

3.2 Traffic models
The purpose of the background traffic is to create load on the communication
network that traverses the communication links of the system under test. The
background traffic is a continuous, uninterrupted, and predictable stream of packets
following a well-defined traffic pattern.

The traffic pattern defines the data packet lengths and interarrival times of the data
packets. Traffic patterns can simulate the traffic that is associated with different
kinds of applications.
Table 2 MMPP Traffic Model Declaration

Traffic Model Declaration
Name: on_off
Type: MMPP
Comments:
Length Sl 10
Length S2 1000
Rate Sl 2
Rate S2 10
Transition Sl,S2 3
Transition S2,Sl 5

The traffic patterns are defined in traffic model declaration tables (see Table 2 and
3). The declaration selects the stochastic model and sets the corresponding
parameters. Each model type has a varying number of parameters and different types
of parameters. Therefore, PerfTICN supports different tables for each type of traffic
model. Each traffic model has a name so that it can be referenced later in the traffic
stream declaration. Tables 2 and 3 illustrate the table format of an MMPP and CBR
model, respectively.
Table 3 CBR Traffic Model Declaration

Traffic Model Declaration
Name: constl
Type: CBR
Comments:
PCR 110 MBitls

Per/ITCN, a ITCN language extension/or performance testing 29

The background traffic stream declarations (see also Table 4) relate a traffic stream
to a background test component. A traffic stream uses as many instances of a traffic
model as necessary to produce significant load. A traffic stream is identified by a
name that can be used in the dynamic behavior part to start the corresponding
background traffic.
Table 4 Background Traffic Stream Declaration

Background Traffic Stream Declaration
Traffic Name Background Test Component Model Name Nr. ofInstances

Load I trafficl on off 6
Load2 trafficl constl 2
Load3 traffic2 constl 8

3.3 Measurements and Analysis
The introduction of performance measurements into the testing methodology leads
to new tables for the declaration of measurements, performance characteristics and
performance constraints as well as to additional operations in the dynamic behavior
description of test cases and test steps.

A measurement declaration (Table 5) consists of a metric and is combined with one
or two test events that define the critical events of the measurement. For example,
for a delay measurement the events define the start and end event. The events are
observed only at specific PCOs. The direction of the event is also indicated: "!"
means sending and "?" means receiving at that specific PCO (as seen from the test
components).

A measurement uses standard metrics such as counter, delay, jitter, frequency, or
throughput with predefined semantics. For example, DELAY _FILO is the delay
between first bit send and last bit arrived*. User defined metrics (implemented by
means of test suite operations) can also be used.
Table 5 Declaration of measurements

Measurement Declaration

Name fMetric IUnit levent 1 Iconstr. 1 levent 2 Iconstr.2
response_delay IDELAY _FILOlms IPCO_I !Requestls_req_spcIPCO_1 ?Response Icresp_spc

Measurements can be most effectively evaluated with the use of statistical
indicators such as means, frequency distributions, maximum, minimums, etc. For
that purpose, PerflTCN offer the concept of performance characteristics. A
performance characteristics is declared in a performance characteristics declaration
table (see also Table 6). It refers to a single measurement. In order to be statistically
significant, a performance characteristics should be calculated only if the
measurement has been repeated several times. Therefore, it is possible to define a
sample size or a time duration of the measurement for the calculation of a
performance characteristic.
Table 6 Declaration of performance characteristics

Performance Characteristics Declaration

Name Calculation Measurement Sample size Duration
res delay mean MEAN response delay 20
res jlelay max MAX response_delay I min

'. In general, four different semantics can be given to a delay measurement: FILO = first bit in, last bit
out, FIFO = first bit in, first bit out, LIFO = last bit in, first bit out, and LILO = last bit in, last bit out.

30 Part Two TTCN Extensions

3.4 Performance constraints and verdicts
Performance constraints are used for the on-line analysis of observed performance
characteristics. For example, if performance falls below some set limits, the verdict
should be set to fail. In contrast to constraints in TrCN, a performance constraint
evaluation is based on repeated measurement of test events rather than the matching
of a single event.

Therefore, we distinguish between functional constraints based on PDU and ASP
value matching (that are the traditional constraints in TrCN) and performance
constraints. The performance constraint declaration (Table 7) consists of a name and
a logical expressions. The expression may use performance characteristics with
individual thresholds. More than one performance characteristic can be used in a
performance constraint. For example p_resp in Table 7 uses the performance
characteristics res_delay_mean and res_delay_max.
Table 7 Declaration of performance constraints

Performance Constraint Declaration

Name Constraint Value Expression Comments

p_resp (res_delay_mean < 5) AND (res_delay_max < 10)
n_p_resp NOT (p_resp)

Functional constraints are specified for each event line in the dynamic behavior of
a test components. However, performance constraints apply only to the lines where
measurements are performed.

3.5 Performance Test Behavior
The behavior of a performance test is specified in the dynamic part of the
performance test suite. The main tester is defined in the test cases, while the other
test components are specified by test steps.

Test components are created with the START construct. Either they execute their
complete behavior or are cancelled explicitly via coordination messages. The control
of performance measurements is specified similar to the control of timers, i.e. a
measurement can be started and cancelled with START and CANCEL, respectively.

Performance constraints are indicated in the constraint reference column.
However, performance constraints are evaluated differently from functional
constraints. That is caused by the sample size required for statistical significance
and/or the type of metrics used, where more than one observation is required to
compute the metric such as the computation of a mean value. Whenever the sample
size to evaluate the constraint has not yet been reached, the performance constraint
is implicitly evaluated to "true". As soon as the sample size is reached through
repeated sampling, the performance constraint is evaluated. If it evaluates to "false",
the related event is consequently not accepted. Both, a functional and a performance
constraint can be used at the same behavior line. Please note, that performance
constraints can be used in qualifiers, too.

Table 8 provides an example of a test case behavior which includes a background
test traffic identified by 'Load2', i.e. according to Table 3 it is a constant bit rate.
After the background traffic has started (line 1) a series of 'Requests' occurs at
PCO_I (line 2).

The test system awaits from the SUT a 'Response' primitive (line 3 or 5). Due to
the response_delay declaration of Table 5 delay measurements occur to determine
the time between 'Request' and 'Response'. There are two possibilities to accept

PerfITCN, a ITCN language extension/or performance testing 31

'Response', which are distinguished by the different performance constraints
'p_resp' (line 3) and 'n_p_resp' (line 5). The resulting preliminary test verdict 'pass'
or 'inconclusive' depends on these performance constraints.

The test cases finishes when the timer T_response_delay timeouts (line 7). In that
case a final verdict is assigned. The reception of an event other than 'Response'
terminates the test case (line 8) and measurements, timer, and background traffic are
stopped. It is planned to return the measured performance characteristics in
combination with the test verdicts in order to support an in-depth result analysis after
a performance test finished.
Table 8 The behavior description of a performance test

Test Case Dynamic Behavior

Test Case Name: www_Get
Group:
Purpose:
Configuration: CONFIG_2
Default:
Comments:

Nr Label Behavior Description Constr.Ref Verdicts Comments

1 BCPl ! Start(Load2) start backgr. traffic Load2

2 top PCO_l ! Request s_req start measurements
START response_delay
START T _response_delay

3 PCO_l ? Response p_resp (pass)
acceptable performance

4 GOTOtop

5 PCO_l ? Response n_p_resp (inconc) unacceptable perf.

6 GOTOtop

7 ? T_response_delay measurement
CANCEL response_delay terminates

8 BCPl ! Stop(Load2) R stop background traffic

9 PCO_l ? OTHERWISE (fail) unexpected event, stop
CANCEL response_delay measurements
CANCEL T_response_delay

10 BCPl ! Stop(Load2) R stop background traffic

Detailed Comments:

3.6 . Comparison with TTCN
Concurrent ITCN has been designed as a test description language for conformance
tests, only. It uses discrete test events such as sending and receiving of protocol data
units and abstract service primitives. The conformance test suite and the
implementation under test interact with each other by sending test events to and
receiving test events from the opposite side. A test continues until the tester assigns
a test verdict saying that the observed behavior of the implementation conforms
(pass) or does not conform (fail) to the specification. In the case that the observed
behavior can neither be assessed to be conformant or non-conformant, the
inconclusi ve verdict is assigned. The basis for the development of a conformance test

32 Part Two TTCN Extensions

suite is the functional protocol specification only.
The development of a perfonnance test suite is based on a QoS requirement

specification that is combined with the functional specification of the
implementation under test. The QoS requirements may include requirements on
delays, throughputs, and rates of certain test events. A perfonnance test uses not only
discrete test events (those are used to bring the IUT in a controlled way into a well­
defined state), but uses also a bulk data transfer from the tester to the JUT. Bulk data
transfer is realized by continuous streams of test events and emulates different load
situations for the JUT. A perfonnance test assigns not only pass, fail or inconclusive,
but also assigns the measured perfonnance characteristics that are the basis for an in­
depth analysis of the test results.

The new concepts of PermCN have been introduced in Section 3. The existence
of a mapping from PermCN to ConcurrentTTCN would allow us to model
perfonnance tests on a level of abstraction that has been specifically defined for
perfonnance tests, and would enable us to re-use existing tools for Concurrent TTCN
for the execution of perfonnance tests. However, it turned out that some of the new
concepts (in particular, traffic models, background tester, measurements,
perfonnance constraints) with their semantics can only hardly be represented in
Concurrent TTCN. Predefined test suite operations with a given semantics seem to
be an easy possibility to include the new concepts. Further study is needed in that
area.

4 PERFORMANCE TEST EXAMPLES
Two studies were perfonned to show the feasibility ofPermCN. Perfonnance tests
for a SMTP and a HTTP server has been implemented. The experiments were
implemented using the Generic Code Interface of the TTCN compiler of ITEX 3.1.
(Telelogic, 1996) and a distributed traffic generator VEGA (Kanzow, 1994). VEGA
uses MMPPs as traffic models and is a traffic generator software that allows us to
generate traffic between a potentially large number of computer pairs using TCP/
UDP over IP communication protocols. It is also capable of using ATM adaptation
layers for data transmission such as these provided by FORE Systems on the
SBA200 A TM adaptors cards. The traffic generated by VEGA follows the traffic
pattern of the MMPP models.

(TIC) ~ (C Code) --.
allIomalical mallual

limeslamp
lorage

Figure 4 Technical Approach of the experiment.

V(s): VEGA end componenl
V(r): VEGA receive componenl

The C-code for the executable perfonnance tests was first automatically derived
from TTCN by ITEX GCI and than manually extended
• to instantiate sender/receiver pairs for background traffic,

PerflTCN, a ITCN language extension/or performance testing 33

• to evaluate inter-arrival times for foreground data packets, and
• to locally measure delays.

Figure 4 illustrates the technical approach of executing performance tests: the
derivation of the executable test suite and the performance test configuration. The
figure presents also a foreground tester and several send/receive components of
VEGA.

The performance tests for SMTP and HTTP server use the concepts of
performance test configuration of the network, of the end system, and of the
background traffic only. Other concepts such as measurements of real network load,
performance constraints and verdicts will be implemented in the next version.

4.1 A performance test for an HTTP server
This example of a performance tests consists of connecting to a Web server using the
HTTP protocol and of sending a request to obtain the index.html URL. If the query
is correct, a result PDU containing the text of this URL should be received. If the
URL is not found either because the queried site does not have a URL of that name
or if the name was incorrect, an error PDU reply can be received. Otherwise,
unexpected replies can be received. In that case, a fail verdict is assigned.

The SendGet PDU defines an HTTP request. The constraint SGETC defines the
GET /index.html HITP/l.O request. A ReceiveResult PDU carries the reply to the
request. The constraint RRESULTC of the ReceiveResult PDU matches on "?" to the
returned body of the URL: HTTP/l.O 200 OK.

The original purely functional test case in TTCN has been extended to perform a
measurement of the response time of a Web server to an HTTP Get operation (see
also Table 10). The measurement "MeasGet" has been declared to measure the delay
between the two events SendGet and ReceiveResult as shown in Table 9.
Table 9 HTTP measurement declaration

Measurement Declaration

Name IMetric lunit levent 1 Iconstr. 1 levent 2 Iconstr.2
MeasGet IDELAY Ims ISendGet ISGETC IRecelVeResult IRRESULTC

The repeated sampling of the measurement has been implemented using a classical
TTCN loop construct to make this operation more visible in this example. The
sampling size has been set to 10. The location of the operations due to "MeasGet"
measurements are revealed in the comments column in the dynamic behavior of
Table 10. It consists in associating a start measurement with the SendGet event and
an end measurement with the ReceiveResult event as declared in Table 9. The delay
between these two measurements will give us the response time to our request, which
includes both network transmission delays and server processing delays.

The main program of the HTTP performance test is shown in Figure 5. The GCI
TTCN code of the performance test case is initiated in Line 2. Line 3 instantiates a
measurement entity to collect time stamps. The co-working between TTCN GCI and
VEGA is initiated by vegaTtcnBridge (Line 4). Models for background traffic are
declared and defined on Line 5-7. Background traffic components are declared on
Line 8-9. Finally, lines 10-12 define and start the background traffic streams
consisting of a background traffic component, a traffic model, and a number of
instances. Line 13 starts the performance test case that controls the execution of the
test and accesses the measurement entity. The test cases finishes with reporting the
measured delays (Line 14). An example of the statistics with and without network
load is shown in Figure 6.

34 Part Two ITCN Extensions

This experiment has been performed on an A TM network using Sun workstations
and TCPIIP over A TM layers protocols. The graph on the left of Figure 6 shows
delay measurement under no traffic load conditions while the graph to the right
shows results achieved with six different kinds of CBR and three different kinds of
Poisson traffic flows between two pairs of machines communicating over the same
segment as the HTIP client machines t.

Table 10 Performance test case for the HTIP example
Test Case Dynamic Behavior

Test Case: www_Get
Group:
Purpose:
Configuration:
Default:
Comments:

Nr Label Behaviour Description Constr.Ref Verdicts Comments

I Top N ! Connect (NumTimes := 0) CONNECTC

2 N! SendGet SGETC start measurement,
START T _Receive begin delay
START MeasGet sample

3 N ? ReceiveResuIt RRESULTC (P) acceptable
(NumTimes:= NumTimes+l) response,
CANCEL T_Receive end delay sample

4 [NumTimes < 10]
GOTOTop

5 [NumTimes>= 10] R measurement
CANCEL MeasGet terminates

6 N ? ReceiveError RERRORC I incorrect
CANCEL T_Receive response
CANCEL MeasGet

7 ?T_Receive F no response
CANCEL MeasGet

8 N ? OTHERWISE F unexpected
CANCEL T_Receive response

Detaoed Comments:

5 CONCLUSIONS
The importance of Quality-of-Service aspects in multimedia communication
environments and the lack of conformance testing to check performance oriented
QoS requirements lead us to the development of a performance testing framework.
The paper presents a first approach to extend Concurrent TTCN with performance
features.

The main emphasis of our work is the identification and definition of basic
concepts for performance testing, the re-usable formulation of performance tests and
the development of a performance test run time environment. Thus, the concrete

t. Due to lack of space, we have no included the complete performance test suite into the paper. However,
it is available on request.

PerflTCN, a TTCN language extension/or performance testing 35

1 int main(char* argc, int argv) { ..•
2 Gcilnit(); CreatePCOsAndTimers();
3 WWWResponseEnt = new MeasurementEnti ty ("GetWWW') ;
4 vegaTtcnBridgelnit(argc,argv);
5 backgroungtraffic = new backGroundTraffic();
6 aModel = new vegaModel("cbr_slow', "cbr",lO, 0.1, 0);
7 backgroungtraffic->addAModel(aModel); •..
S aBackGroundDa ta flow=new BackGroundDa ta flow ("traf f ic_l " ,

"kirk","clyde","udp") ;
9 backgroungtraffic->addABGDataflow(aBackGroundDataflow) ;
10 aBackGroundTrafficLoad=

new BackGroundTrafficLoad("traffic_l", "cbr_slow', 3);
11 backgroungtraffic->

addABGBackGroundTrafficLoad(aBackGroundTrafficLoad);
12 backgroungtraffic->SetupBGTraffic(); •.•
13 GciStartTestCase ("www_GET"); ...
14 WWWResponseEnt->printStatistics(); ••• }

Figure 5 Performance test configuration for the HTTP performance test.

without load with load
mean

Figure 6 Performance test result of the HTTP example.

syntax of PerfTTCN is a minor concern, but also the basis for ongoing work.
An initial feasibility study of the approach on performance testing has been

conducted using the SMTP and the HTTP protocols as examples. The usability of
this approach has been demonstrated on a more complex example: A performance
test suite to test the end-to-end performance of A TM Adaptation Layer 5 Common
Part (AAL5-CP) has been defined only recently (Schieferdecker, Li, Rennoch,
1997).

In parallel, we are further exploring the possibility of re-using existing TTCN tools
in a performance test execution environment. Therefore, we are working on a set of
test suite operations (reflecting the new performance concepts) and on a mapping
from PerfTTCN to TTCN by using these special test suite operations. The definition
of the operational semantics of PerfTTCN is currently under work.

36 Part Two ITCN Extensions

6 REFERENCES
Combitech Group Telelogic AB (1996): ITEX 3.1 User Manual.
ISOIIEC (1991): ISOIIEC 9646-1 "Information Technology - Open Systems

Interconnection - Conformance testing methodology and framework - Part 1:
General Concepts".

ISOIIEC (1996): ISOIIEC 9646-1 "Information Technology - Open Systems
Interconnection - Conformance testing methodology and framework - Part 3:
The tree and tabular combined notation".

Jain, R. (1996) The Art of Computer Systems Performance Analysis, John Wiley &
Sons, Inc. Publisher.

Kanzow, P. (1994) Konzepte fUr Generatoren zur Erzeugung von Verkehrslasten bei
ATM-Netzen. MSc-thesis, Technical University Berlin (in german only).

Knightson, K. G. (1993) OSI Protocol Conformance Testing, IS9646 explained,
McGraw-HilI.

Onvural, R. O. (1994) Asynchronous Transfer Mode Networks: Performance Issues.
Artech House Inc.

Schieferdecker, I. and Li, M. and Rennoch, A. (1997) An AAL5 Performance Test
Suite in PerITfCN, Proceedings ofFBT'97, Berlin, Germany

The A TM Forum Technical Committee (1997): Introduction to A TM Forum
Performance Benchmarking Specifications, btd-test-tm-perf.OO.Ol.ps.

Walter, T. and Grabowski, J. (1997) A Proposal for a Real-Time Extension of
ITCN, Proceedings of KIVS'97, Braunschweig, Germany.

7 BIOGRAPHY
Ina Schieferdecker studied mathematical computer science at the Humboldt
University in Berlin and received her Ph.D. from the Technical University in Berlin
in 1994. She attended the postgraduate course on open communication systems at the
Technical University in Berlin. Since 1993, she is a researcher at GMD FOKUS - the
Research Institute for Open Communication Systems - and a lecturer at Technical
University Berlin since 1995. She is working on testing methods for network
components, and executes research on formal methods, performance-enhanced
specifications and performance analysis.

Bernard Stepien holds a Master degree from the University of Montpellier in
France. Subsequently, he carried out research in Transportation Science with the
Montreal Transportation Commission and worked as an economist for Bell Canada.
He has been a private consultant in computer applications since 1975. He has been
active in research on Formal Description techniques with the University of Ottawa
since 1985. Currently he is involved in various aspects of communication protocols
software with the Canadian Government (Department of Industry, Atomic Energy
Control Board), Bell Canada and Nortel.

Axel Rennoch studied mathematics at the Free University of Berlin. His research
interests include the application of Formal Description Techniques for testing
methodologies and Quality of Service considerations. Currently he is employed as a
scientist at the GMD - Research Institute for Open Communication System in Berlin.

