
14

Analyzing performance
bottlenecks in protocols based on
finite state specifications

Sijian Zhang
P.O.Box 30004, 8602 Granville St., Vancouver, BC, Canada V6P 5AO
(email: <sijian@unixg.ubc.ca»

Samuel T. Chanson
Dept. of Computer Science, HongKong Univ. of Science and Technology
Clear Water, Hong Kong (email: <chanson@cs.ust.hk>)

Abstract

This paper studies the problem of identifying performance bottlenecks in commu­
nication protocols. The model used is a Finite State Machine extended with time
and transition probabilities known as PEFSM. A definition of PEFSM is given and
the bottleneck identification methods proposed are based on this performance model.
Informally, a bottleneck with respect to a performance metric is defined as the trans­
ition among all the transitions in a PEFSM which would produce the largest marginal
improvement of the performance metric if the time of the transitions were reduced by
the same small amount. We present two methods to locate the bottleneck transitions
with respect to two of the most important performance metrics, i.e., throughput and
queue wait time. These methods are partially validated by simulation.

Keywords

Finite state, specification, performance, bottleneck

Testing of Communicating Systems, M. Kim, S. Kang & K. Hong (Eds)
Published by Chapman & Hall © 1997IFIP

Analyzing performance bottlenecks in protocols 221

1 INTRODUCTION

Performance bottlenecks exist in almost all computer systems in various forms.
System designers, managers, analysts and users have worked on identifying the
performance bottlenecks in a computer system for a long time. A bottleneck
can be a service center of a system [Leung88, Allen90] or, at a more abstract
level, a system parameter. For instance, in [ZiEt92], the sensitivities of the
parameters in the throughput expression are used to determine the throughput
bottleneck.

There exist many definitions for performance bottlenecks and most of them
are defined with respect to only throughput or utilization [Ferr78, Lock84,
Leung88, Yang89, Allen90, ZiEt92]. Nevertheless, all definitions of the per­
formance bottlenecks have a common characteristic: a bottleneck identifies the
component! in the system which has the most significant impact on system
performance. A small improvement to the bottleneck component can greatly
improve system response time, throughput or utilization.

This paper is concerned with finding performance bottlenecks in commu­
nication protocols. We note that it is common to specify communication
protocols as interacting Finite State Machines (FSMs) or Extended FSMs
(EFSMs) which are FSMs extended with variables. Many standardized pro­
tocols are directly given as FSMs or EFSMs. Examples can be found in
[Tane88, IS02576, IS07776]. At least two internationally standardized formal
description techniques exist (Estelle [IS08807] and SDL [SDL]) which provide
a way of specifying protocols and distributed systems based on FSMs or EF­
SMs. Therefore, it is reasonable to define a performance model based on FSM
or EFSM for use in performance analyses as well as bottleneck identification.
In the following section, we shall call such a performance model as performance
extended FSM (PEFSM).

The PEFSM is essentially an FSM enhanced with time and transition
probabilities. In the FSM of a PEFSM, state and transition are the two main
constructs. States are conceptual while transitions have direct correspondence
in the implementation of the protocol specified by the FSM. The execution time
of a transition directly affects performance. Therefore, it is natural to trans­
form the bottleneck detection problem to the one of identifying the bottleneck
transition in a PEFSM. This is useful because once the bottleneck transition
is identified, we know where we should focus our efforts in improving system
performance.

The execution of a transition takes non-zero time. In our model, each
transition is associated with a class of incoming messages (i.e., message type).
Futhermore, because of causal relationship, the transition service time affects
the subsequent messages. Reducing the transition time in a PEFSM will im-

1 A "component" can be a hardware device, a software module or a system parameter as
mentioned earlier.

222 Part Six Theory and Practice of Protocol Testing

prove the overall performance of the PEFSM. For example, reducing a trans­
ition time will increase the throughput of each class of outgoing messages
since the recurrence times of each state are decreased. However, the degree
of improvement to a performance metric depends on the selected transitions.
The one which results in the most improvement with respect to a performance
metric is called the bottleneck of this performance metric.

We use the concept of weight to indicate the relation between the reduction
of transition time and the improvement of a performance metric. A weight with
respect to a performance metric is computed for each transition in a PEFSM.
The higher the weight of a transition with respect to a performance metric,
the more the performance metric can be improved by reducing the service (or
execution) time of this transition. As such, the transition with the greatest
weight with respect to a performance metric is the bottleneck transition (with
respect to the performance metric). For instance, if the weight of transition
ji,h (from state i to state j) in a PEFSM with respect to the mean queue
wait time of a message class is greater than that of any other transition, then
transition ji,h is the bottleneck transition with respect to the mean queue
wait time. In other words, if each transition time is independently reduced by
the same amount, the mean queue wait time will decrease the most in the case
of a reduction in transition ji,h.

In this paper, we focus on two of the most important performance metrics
of a PEFSM. They are the throughput rate of a class of outgoing messages
and the mean queue wait time of a class of incoming messages. The methods
to compute the weights of transitions with respect to each performance metric
are also discussed.

The first method is to use partial derivatives. In general, if a performance
metric K can be expressed as a function of a set of parameters, t1, t2, .. " tn,

and the derivatives of K with respect to t1, t2, "', tn exist, then the partial
derivatives oK oK

ot1 ' ot2'
oK

indicate the relative impact of the change of each parameter on the perform­
ance metric. Therefore, the partial derivatives can be used as the weights
of the parameters. In our studies, we compute the partial derivatives of the
throughput of outgoing messages of a specific class with respect to each trans­
ition time. These derivatives are taken as the weights of the transitions with
respect to throughput.

The second method is to use an approximation technique to compute the
weights of transitions with respect to the mean queue wait time of a specific
incoming message class. This method is useful in the case where the compu­
tation of partial derivatives is difficult.

Analyzing performance bottlenecks in protocols 223

The rest of the paper is organized as follows. Section 2 gives the defini­
tion of the performance model PEFSM. Section 3 presents a method to locate
the bottleneck transition of the throughput rate of a class of outgoing mes­
sages. Section 4 presents a different method to compute the weights for each
transition with respect to the mean queue wait time of a class of incoming mes­
sages. The method is partially validated by simulation. Section 5 discusses
related work on defining and locating performance bottlenecks, and Section 6
summarizes this paper.

2 PERFORMANCE MODEL

The detailed definition of PEFSM can be found in [Zhang95]. Due to space
limitation, only a brief description of PEFSM is given in this paper. Since a
PEFSM contains an embedded FSM, we start with the definition of the FSM.

2.1 FSM

A finite state machine (FSM) which describes a protocol entity is formally
defined as a six-tuple

M = (Q,I,O,~,e,qo)

where Q - a finite set denoting states;
I - a finite set denoting incoming message classes;
o - a finite set denoting outgoing message classes;
o - a function denoting transitions, i.e., 0 : Q x I -t Q;
e - a function denoting transition outputs, i.e., e : Q x I -t 0;
qo - an initial state.

(1)

Note that an FSM of a communication protocol does not necessarily have
any final state. This is because a protocol (such as that in the telephone
system) can execute forever without termination.

2.2 PEFSM

During execution, the FSM of a protocol changes from state to state. The
state changing process is a stochastic process. Our performance model is a
model that describes this stochastic process.

We enhance the FSM with time and probability to define the performance
model which is called the performance extended FSM (PEFSM). Each trans­
ition in the PEFSM is associated with a transition time and a single-step
transition probablity. The transition time from state i to j is denoted as "'Tij

which is the time period from the start to the completion of the transition.
The single-step probability of the transition from state i to j is denoted as Pij

which is the probability that transition ji,j;. will be executed when the PEFSM
is in state i.

224 Part Six Theory and Practice of Protocol Testing

Formally, a PEFSM, denoted as q" is defined as a pair

q, = (M, P) (2)

where M = (Q, I, 0, 6, e, qo) is the kernel which is an FSM whose formal defin­
ition is given in (1), and P = (P, 1IH) is the running environment expressed
in terms of time and probability:

P = (Pij] - a matrix of the single-step transition probabilities;
1IH = [tPhij(t)] - a matrix of the probability density functions (p.d.f.s)

of the transition times.

In a PEFSM, M, P and 'iH are primitive data. They are assumed to be
provided directly by the performance evaluator.
Let {X(t), t ~ O} be the state changing process of the PEFSM;

to, t1 , ... , tn, ... be the sequence of the epochs right before the pro­
cessing of a transition is completed;

X 0, Xl, ... , X n , ... be the sequence of the states in the PEFSM corres­
ponding to the time sequence to, t 1 , t 2 , ... , tn, ... , re­
spectively.

The components of a PEFSM and their relationships are formally defined
in the following:

1. X(t) E Q for all t ~ O.

2. X(O) = Xo = qo.

3. Xn = X(t;;-) 2 and Xn+1 = X(tn).

4. Pr{Xn+1 = jlXn = i} = Pij.

5. If Xn = i and Xn+1 = j, then tn - tn- 1 = tPrij .

6. tPhij (t) is the p.d.f. of tPrij , i.e. Pr{ tPrij = tlXn = i, Xn+1 = j}
tPhij (t).

From the above definitions, it can be seen that the trajectory of the state
variable X of a PEFSM is governed by M, P and 1IH. M determines the state
space of X and the possible next value of X statically. The other parameters
govern the dynamic control of X.

We assume that the transition probability matrix P is known. When the
stochastic process of state changing is ergodic3 the steady-state state probab­
ility vector, 11", can be computed from P by solving the matrix equation (see
[Zhang95] for details):

1I"P = 11".

2 t;; denotes the epoch right before the time instant tn. t;; < tn but r;; is infinitely close
to tn.

3 A stochastic process is ergodic when it is recurrent non-null and irreducible [Allen90].

Analyzing performance bottlenecks in protocols 225

3 THROUGHPUT BOTTLENECK

In a PEFSM, an outgoing message is generated when a transition is processed.
Therefore, the throughput rate of the outgoing messages of a class is equal to
the recurrence rate of the transition associated with the class.

Let 1/1ei and 1/1eij be the mean recurrence rates of state i and transition ji,ii.,
of a PEFSM, respectively. Their relationship can be expressed as

where Pij is the probability of transition ji,jl,.
When the PEFSM is in equilibrium, we have (see [Howa71]{p.725))

1/1- 11"i
ei = 1/1f.

Therefore,
.L 11"i 11"iPij
"'eij = 1/1f • Pij = ~ 1/1.

i.Ju,vEQ 11"vPuv 1"uv

Let ijij be the throughput rate of the class ij outgoing messages. Since
class ij outgoing messages are associated with transition ji,jl"

- 1/1- 11"iPij
TJij = eij = .

Lu,vEQ 11"uPuv 1/11"uv

The above equation gives the relationship of the throughput rate ijij and
the transition times 1/1fuv (u, v E Q). For a given PEFSM, 11"iPij (i, j E Q) is
fixed, so the change of ijij varies inversely with the change in the value of the
denominator of the above equation.

Using the derivatives, one can determine that the coefficient 11"vPuv of 1/1fuv

in the denominator indicates the relative degree of the improvement on ijij by
transition uv (u, v E Q) compared to the other transitions. 11"vPuv in fact is
the steady-state probability of transition uv. Among the transitions, the one
with the largest steady-state transition probability has the greatest impact on
increasing the throughput rate ijij.

Therefore we define 11"vPuv as the weight of the transition uv with respect
to ijij. The bottleneck transition of ijij is the transition which has the largest
11"vPuv (u, v E Q).

Since 11" v Puv (u, v E Q) is not related to ijij, we can further conclude that
the bottleneck transition is the same for the throughput rates of all classes of
outgoing messages.

4 QUEUE WAIT TIME BOTTLENECK

We say that an incoming message is a firable message of state i if it is asso­
ciated with a transition starting from state i. If the PEFSM is not in state i

226 Part Six Theory and Practice of Protocol Testing

when a firable message of state i arrives, the message will be stored in a queue.
We shall assume that there is a first in first out (FIFO) queue for each class
of incoming messages. We are interested in identifying the bottleneck trans­
ition with respect to the mean queue wait time of a specific class of incoming
messages.

It has been proved that [Zhang95] the mean queue wait times of different
classes of firable messages of a state are the same, i.e.,

if class ij (for all j E Q) of messages arrive independently and in a Poisson
pattern. So it is necessary only to compute the overall mean queue wait time
of all classes of firable messages of a state in this case.

To compute the overall mean queue wait time Wi, we construct the virtual
jobs of state i and treat the queuing system of the PEFSM as an M/G/I
system. The virtual jobs of state i are the sequences of transitions where each
sequence forms a first passage from state i to i in the PEFSM. The mean
queue wait time can then be computed by applying the well-known solution
technique for M/G/I:

In the above equation, (lj is the second moment of the service time of class

ij virtual jobs. A set of equations has to be solved in order to compute (&

(i,j E Q) (see [Zhang95] for details). The closed-form solution of(& is difficult
to obtain. So it is generally infeasible to compute the partial derivatives of Wi
with respect to each transition time I/JTuIJ (u, v E Q) for use as the weights to
identify the bottleneck transition of Wi. Therefore, the following approximate
solution is proposed instead.

4.1 An approximation approach

As mentioned earlier, the FSM of a PEFSM contains information on the ser­
vice order of incoming messages. This ordering affects the performance of
the PEFSM and should be taken into consideration to obtain more accurate
results.

In general, we can assume the queuing system of a PEFSM to consist of
a single server with a single queue. Figure 1 shows a queuing system which
serves a PEFSM. The service order of incoming messages is controlled by the
FSM of the PEFSM and the incoming messages.

An asynchronous incoming message to a PEFSM may arrive before the
PEFSM is ready to process this message. When this happens, the message
will have to wait in a queue. The queue wait time of this message is the

Analyzing performance bottlenecks in protocols 227

~
I

............................ 'f

---.-..~ ··· .. 1 m31m21mlHO ·

Figure 1: Service order implied by the FSM of a PEFSM.

elapsed time between the moment it arrives and the moment it is processed.
From Figure 1, it is not difficult to see that the waiting period of this message
includes not only the processing times of all the messages of the same class
which arrived earlier that are still in the system, but also the processing times
of the transitions associated with the messages of the other classes. These
transitions bring the PEFSM to the right state so that the target message can
be processed. For example, in Figure 1, message rn3 has to wait for service
until the transitions associated with m1 and m2 are processed.

Before we show how the incoming messages of a class in a PEFSM wait
statistically when they arrive early, the definitions of transition path and trans­
ition subpath are first given.

Definition 4.1 (transition path) A transition path of a PEFSM is a se­
quence of consecutive transitions in the PEFSM.

Definition 4.2 (transition subpath ij) A transition subpath ij of a PEFSM
is a finite number of consecutive transitions in the PEFSM starting from state
i and ending in state j. The first transition of the subpath is called the head
of the subpath; the last transition is called the tail of the subpath.

Figure 2 shows a state-transition tree of a PEFSM. Each state in the tree
is a state in the FSM of the PEFSM, and each transition is a transition in
the FSM. This tree includes all the possible transition subpaths to transition
iZ,)i...

Suppose , is an incoming message of class ij of the PEFSM and Wij
(Wij > 0) is the queue wait timeof,. Furthermore, suppose transition subpath
1 in Figure 2 includes the transitions which must be processed before message ,.

228 Part Six Theory and Practice of Protocol Testing

.. ()
I
I
I
I
I
I

subpatb 1

subpatb 2

"

Figure 2: The subpaths to transition ii,ii., in a PEFSM.

Assume the PEFSM is in state ko when message / arrives. Then, the
transition subpath koi includes the transitions which are seen by / and will
be processed before /. Let these transitions be transitions kok1' k1k2' "',
km-1km (km = i), and D1, D2, D3 , "', Dm be their transition times, respect­
ively.

By definition, we have

m m

(3)
n=2 n=l

Transition kok1 may already be in progress at the time / arrives, in this case

Wij ::; 2::=1 Dn.

/ will have to wait until the processing of all of these transitions is fin­
ished whether or not the incoming messages associated with them have already
arrived. The decrease of the transition time of any of these transitions will
reduce the queue wait time of /, Wij . Those transitions that appear in the
transition subpath koi more than once will have a higher impact in reducing
Wij.

However, different messages of class ij may see different transition sub­
paths when they arrive. Furthermore, a transition may appear in more than
one transition subpath. So the relative frequency of each transition subpath

Analyzing perjonnance bottlenecks in protocols 229

seen by 'Y should be taken into account in computing the weights for all the
transitions with respect to Wij. The relative frequency of a subpath can be
computed using the transition subpath probability defined below.

Definition 4.3 (transition subpath probability) The probability of a trans­
ition subpath kokm is defined as:

m

Pr{ subpath kokm} = II P~"-lkn
n=l

where transition kn-1kn (n = 1,2, ... , m) are the transitions in the subpath and
P~n-lkn = 1f'k n_ 1Pk .. _ 1k .. is the steady-state probability of transition kn-1kn,
and Pkn_1k n is the single-step probability of transition kn-1kn.

Given the probabilities of transition subpaths, we can compute the relative
frequency of a transition seen by a specific class of incoming messages. The
frequency is simply the sum of the probabilities that this transition appears in
all the possible transition subpaths which satisfy Inequality (3). It is useful to
compute the relative frequency of a transition because decreasing the time of
the transition with the highest frequency by the same amount will reduce the
mean queue wait time of the specific class the most. Therefore, in this case,
the frequency can be used as the weight in identifying the bottleneck transition
of the mean queue wait time of the incoming messages of the specific class.

Let Wuv be the weight of transition uv. From the discussion above, we can
define

Wuv = L (Pr{ subpath I} . Pr{ transition uv appears in the subpath I}).
IE$ubpath$

Next, we present an algorithm to compute the weights given the mean
queue wait time of a class of incoming messages.

4.2 Computation of weights

Assume that the single-step transition probabilities in P of a PEFSM are
given, and the steady-state state probabilities 1f' as well as the transition times
of each transition have been computed.

Suppose Wij is known either by computation or measurement. An al­
gorithm to compute the weights with respect to Wij is given in Figure 3.

Procedure 1 of the algorithm initializes all the weights to zero before calling
Procedure 2. Procedure 2 computes the weights of all the transitions in the
PEFSM. Using a recursive procedure, it traverses all the transition subpaths
which end in state i and satisfy Inequality (3). The subpath starts backwards
from state i. A transition is added to the current head of the subpath in each
iteration. This transition becomes the new head transition of the subpath.
The transition subpath grows until the sum of the mean transition times of the
transitions along the subpath is larger than the given mean queue wait time,

230 Part Six Theory and Practice of Protocol Testing

Procedure 1 : compute weights given mean queue wait time

Inputs: Wij - the mean queue wait time of class ij incoming messages;
Outputs: the weights of all the transitions in the PEFSM, Wuv (u, v E Q);
Steps:

1. initialize the weights of all the transitions to zero,
i.e., Wij = 0 for i, j E Q;

2. call Procedure 2 with arguments (1, ij, Wij).

Procedure 2 : recursively backtrack to add the subpath probabilities to
the transitions which are the heads of the subpaths

Inputs: 1) the current subpath probability p;
2) the reference of the current transition uv;
3) the remaining waiting time Rw;

Outputs: weights of the transitions;
Steps:

1. if Rw ;S; 0, return;
2. for (each transition which is immediately before the current transition

uv in the FSM of the PEFSM, say transition ku) do :
1) let p = p * P~u where P~u is the steady-state transition probability

of transition ku;
2) let Wku = Wku + p;
3) call Procedure 2 with arguments (p, ku, (Rw - "'fuv)) ;

endfor.

Figure 3: Algorithm for weight computation.

Wij. At each step, the current subpath probability is added to the weight of
the head transition.

When Procedure 2 terminates, the weights of all the transitions in the
given PEFSM with respect to the mean queue wait time, Wij, are computed.
These weights reflect the relative frequency of the transitions seen by class ij
incoming messages. If the transition time of each transition is reduced by the
same amount one at a time, the one which has the largest weight will cause
the largest improvement in the mean queue wait time of class ij messages.
Therefore, the transition with the largest weight is the bottleneck transition
with respect to the mean queue wait time.

4.3 Simulation results

Simulations have been conducted to validate the accuracy of the bottleneck
identification method. The architecture of the simulation experiment is shown

Analyzing performance bottlenecks in protocols 231

in Figure 4.

description of a PEFSM

simulation results
modification simulator

r--- of of
transition times modified an abstract PEFSM

data
transition waiting times and

transition probabilities

!
computation

bollleneck l!1lllsition(s)
of

weights

Figure 4: A simulation architecture.

The simulator module accepts a model description of the PEFSM and
simulates the execution of transitions in the FSM of the PEFSM. The module
contains an incoming message generator which generates the incoming mes­
sages to the PEFSM based on the given arrival model of the PEFSM.

The simulation results are fed to the weight computations module. This
computation module also stores the description data of the PEFSM. The al­
gorithms in Figure 3 are used to compute the weights of all the transitions with
respect to the mean queue wait time of a specific transition. The transition
with the largest weight is the bottleneck transition.

The modification module reduces the service time of each transition of the
PEFSM by the same small amount one at a time. This module res ends the
modified data of the PEFSM to the simulation module and the simulation is
rerun. All the mean queue wait times of class ij incoming messages in each
run are recorded so as to verify if the bottleneck transition in fact causes the
largest reduction in the mean queue wait time.

Several protocols were used in our experiments which showed that the
proposed technique for bottleneck transition identification works in practice.
We report the result of the alternating bit protocol in the following.

The FSM of the alternating bit protocol is given in Figure 5. The input
data of the PEFSM are given in Columns 2, 3 and 4 of Table 1. The incoming
data packets to be transmitted arrives in a Poisson pattern with a mean rate
of 200.0 packets/second.

Columns 4, 5 and 6 are the simulation results. The steady-state transition
probabilities were recorded in Column 4. These results agree with the results
from computation of P~j = 7riPij where tri is the steady-state probability of
state i, and Pij is the single-step probability of transition ji,ji.,. The weights
were computed with respect to the mean queue wait time of a class of incoming
messages and recorded in Column 5. Then, in each of the subsequent runs,
we selected one of the transitions and reduced its service time by a small
amount (0.002 second). The simulation was re-run with the modified data.

232 Part Six Theory and Practice of Protocol Testing

STATES:
state 0 : idle

TOI: DATAIDATA

TlO: ACKf-

state I: waiting for ACK

(acknowledgement)

TIl: timeoutIDATA

TRANSITIONS:

TOI : sending a DATA packet

TlO: receiving an ACK

TIl: timeout retransmission

Figure 5: An FSM of the alternating bit protocoL

Table 1: A simulation result of bottleneck identification.

transition single-step mean transition
identifier tran. prob. time a

T01 1.0 0.001
T10 0.9 0.002
Tll 0.1 0.002

a All times are in seconds.

bSteady-state transition probability.

transition transition queue wait
probabilityb weight C time reductiond

0.4738 0.3102 0.0069
0.4738 0.6207 0.0090
0.0525 0.0343 0.0010

cThe weight is computed with respect to the mean queue wait time of the data packets.

dThe new average queue wait time is measured by decreasing the mean service time of
the corresponding transition by 0.002 second. The reduction of the queue wait time is equal
to the original value minus the new value.

The reduction in mean queue wait time was recorded in Column 6. This
procedure is repeated for all the transitions. From the table, we can see
that reducing the service time of the transition with the largest weight causes
the largest reduction in the mean queue wait time of that class of incoming
messages. This result confirms the analysis given in this section.

More than 20 experiments with different work load parameters had been
performed for several protocols. In most cases, the results from simulation
agreed with the analytic results. Only 3 exceptions were found. However,
even then, the reduction of the mean queue wait time by reducing the service
time of the bottleneck transition was very close (within 15%) to the largest
reduction. The reason why the proposed procedure occasionally does not
correctly identify the bottleneck transition is that both the queue wait times
and the transition times have variance and we use only the mean value to
compute the weights for simpilicity.

Analyzing performance bottlenecks in protocols 233

5 RELATED WORK

Performance bottleneck detection and removal have received less attention
than performance prediction. This is not only because the problem itself
is hard but also because there is a lack of adequate formal definitions and
effective analysis methods. Only a few methods have been proposed to locate
the performance bottleneck of a software system.

The concept of critical path was first introduced in the context of project
management and used to manage the progress of projects [Lock84]. It was
later adopted for parallel processing systems [Yang89] where there are both
parallel events and synchronization points. The critical path of a parallel
program is the path in the program activity graph4 which determines the
program performance (e.g. shortest execution time). The possible domain of
the potential bottleneck is that of the critical path. Other techniques are used
for locating the bottleneck within the critical path.

Lockyer's critical path analysis [Lock84] is often used to identify bottle­
necks in parallel or distributed systems which are modeled as acyclic directed
graphs [Yang89, Wagn93]. However, only one transition in a PEFSM can
be executed at a time. The execution of the transitions in a PEFSM are se­
quential and follows a certain order. There is no synchronization with other
transitions in a single PEFSM. Therefore, the method of critical path analysis
can not be directly applied to PEFSMs in identifying bottlenecks.

Although intuitively we all know what a bottleneck is, historically, the term
bottleneck has had various definitions. They can be classified into the following
two categories according to usage :

• analytical definitions

• measurement based definitions

Using derivatives is a common analytical approach to identifying a per­
formance bottleneck. For example, in [Ferr78], the derivatives of-the mean
throughput rates with respect to the service rates of the constituent servers of
the system are used to define performance bottlenecks analytically. If

8T 8T (. 2 '''/'' .) -8 >-8 J=l, , ... ,S;J-rZ
Jli Jlj

then server Ei is the performance bottleneck of a system with s servers, where
T is the mean throughput rate of the object system; Jlk is the service rate of
server Ei (k=1,2, ... ,s).

However, this definition can not be used if T is not differentiable.

4 A program activity graph is a directed graph which depicts the synchronization points
of the whole system.

234 Part Six Theory and Practice of Protocol Testing

Utilization based techniques constitute another analytical way for determ­
ining performance bottlenecks [Leung88, Allen90j. Among the servers in a
queuing network model, the one with the highest utilization or the one which
first achieves 100% utilization with increasing workload on the system is con­
sidered to be the bottleneck of the system. However, this approach is not
appropriate for a PEFSM because it is assumed to have only one service cen­
ter.

Generally, the analytical definition is applied to a model of the system.
When an implementation of the system already exists, analyses of data from
measurement can be used to identify the bottleneck. In [ZiEt92J, the bot­
tleneck is defined as the performance parameter which is most sensitive to
performance. The sensitivity of a parameter is defined as

. .. def %ChangelnPerformance
sensztwzty =

%C hangeI nParameter

Intuitively, the sensitivity is similar to the weight to a certain extent. Both
can be used in analytical approaches and measurement approaches.

6 CONCLUSION

We have proposed a methodology to identify performance bottlenecks based on
a performance extended FSM model PEFSM. Weights are used to measure
the impact of the reduction of each transition time on the improvement of
a specific performance metric. The bottleneck with respect to a performance
metric is defined to be the transition in the PEFSM with the maximum weight.

The methods to compute the weights of the transitions in a PEFSM with
respect to tw~ performance metrics are presented. The first method makes
use of the closed-form expression of a performance metric such as throughput.
This depends on the existence of both the closed-form expression of a perform­
ance metric and the partial derivatives of the performance metric with respect
to each transition time. The second method uses an approximate recursive
algorithm to compute the weights with respect to a performance metric. This
method is used when no closed-form expression of the performance metric or
derivatives exists.

The second method was used to identify the bottleneck transition with
respect to the mean queue wait time of a specific class of incoming messages.
It is more general than the method of derivatives. This second method can
be applied to the PEFSM in which the arrivals of asynchronous messages
are not Poisson, and the mean queue wait time may be obtained either by
measurement or computation.

The mean transition time of the bottleneck transition can be reduced in two
ways: reducing the mean transition wait time or the mean transition service
time. To reduce the mean transition wait time, one may increase the arrival

Analyzing perfonnance bottlenecks in protocols 235

rate of the incoming messages associated with that transition. For example, we
can increase the throughput rate of messages or decrease the queue wait time
of messages in a specific workstation by shortening the token turnaround time
for this workstation in a token ring network. To reduce the transition service
time, one may try to improve the software implementation of that transition
or use faster hardware to process the transitions.

7 REFERENCES

[Allen90]

[Ferr78]

[Howa71]

[IS02576]

[IS07776]

[IS08807]

[Leung88]

[Lock84]

[SDL]

[Tane88]

[Wagn93]

[Yang89]

Arnold O. Allen. Probability, Statistics, and Queueing Theory
with Computer Science Applications. Academic Press, Inc.,
second edition edition, 1990.
Domenicao Ferrari. Computer Systems Performance Eval­
uation. Prentice-Hall, INC., Englewood Cliffs, New Jersey,
1978.
Ronald A. Howard. Dynamic Probabilistic Systems, volume
Volume 1: Markov Models; Volume 2: SemiMarkovand De­
cision Processes. John Wiley & Sons, Inc., 1971.
ISO TC97 jSC16 N2576. Formal specification of Transport
protocol in Estelle. ISO, 1986.
ISO JTC 97, Information processing systems. Information pro­
cessing systems - Data communication - High-level data link
control procedures - Discription of the of the X.25 LAPB­
compatible DTE data link procedures. ISO 7776 - 1986. ISO,
first edition, 12 1986.
ISO TC 97 jSC 21. Information processing systems - Open sys­
tems Interconnection - LOTOS - A formal description tech­
nique based on the temporal ordering of observational beha­
viour. ISO 8807. Interational Organization for Standardiza­
tion, 1989.
Clement H.C. Leung. Quantitative analysis of computer sys­
tems. Chichester; New York: Wiley, 1988.
K.G. Lockyer. Critical path analysis and other project network
techniques. Pitman Publishing, 1984.
CCITT. Specification and Description Language - Recom­
mendation Z.100. Geneva, Switzerland: CCITT press, 1986.
Andrew S. Tanenbaum. Computer Networks. Pretice-Hall,
Inc., 1988.
A. Wagner, J. Jiang, and S. Chanson. TMON - A Transputer
Performance Monitor. Concurrency: Practice and Experience,
5(6):511-526, 1993.
Cui-Qing Yang and Barton P. Miller. Performance Measure­
ment for Parallel and Distributed Programs: A Structured and
Automatic Approach. IEEE Transactions on Software Engin­
eering, 15(12),12 1989.

236

[Zhang95]

[ZiEt92]

Part Six Theory and Practice of Protocol Testing

Sijian Zhang. Performance Modelling and Evaluation of Pro­
tocols based on Formal Specifications. PhD thesis, The Univ.
of British Columbia, 1995.
John A. Zinky and Joshua Etkin. Troubleshooting throughput
bottlenecks using executable models. Computer Networks and
ISDN Systems, 24(1), 3 1992.

8 BIOGRAPHY

Dr. Sijian Zhang
Dr. Sijian Zhang graduated from Beijing Univ. with B.Sc and M.Sc.

He received his Ph.D. degree from Univ. of British Columbia, Canada in
1995. He is currently working for Hughes Aircraft of Canada. Dr. Zhang's
research interests include protocols, conformance and performance testing,
formal specifications and distributed computing.
Dr. Samuel Chanson

Dr. Samuel Chanson received his Ph.D. degree from the University of Cali­
fornia, Berkeley in 1975. He was a faculty member at Purdue University for
two years before joining the University of British Columbia where he became
a full professor and director of its Distributed Systems Research Group. In
1993 Professor Chanson joined the Hong Kong University of Science & Tech­
nology as Professor and Associate Head of the Computer Science Department.
He has chaired and served on the program committees of many international
conferences on distributed systems and computer communications, including
IEEE ICDCS, IFIP PSTV and IWTCS.

Dr. Chanson's research interests include protocols, high speed networks,
multimedia communication and load balancing in workstation clusters. He has
published more than 100 technical papers in the above areas.

