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Abstract 
Attribute grammars have been used extensively in every phase of traditional 
compiler construction and, therefore, practical attribute granunar evaluators have 
been developed to automate the task. The similar task of hardware compilation 
has not however taken advantage of these developments yet. Previous work has 
shown that attribute grammars can be effectively adopted to hamDe high-level 
hardware synthesis. In this paper, these past results are further elaborated and 
integrated in the construction of a prototype for an attribute granunar driven 
hardware compiler from behavioral descriptions to VHDL Ih! to its flexibility 
and rapid design, such a compiler can be used as a workbench for testing various 
synthesis algorithms and optimization criteria. This novel approach can be proven 
valuable for evaluating new algorithms and techniques in the field. 
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I INTRODUCTION 

Attribute grammars (AQ;) were devised by Knuth (Knuth, 1968) as a tool for the 
formal specification of progrmmning languages. However, in the general case, an 
AG can be seen as a mapping from the language described by a conteJCt free 
grammar (CFG) into a user defmed domain. Since their introduction, they have 
been a s~ect of intensive research, both from a cooceptual and from a practical 
point of view. The cooceptual work has produced several subclasses of attribute 
granunars (Paaki, 1995) with advanced implementatioo algorithms. The closely 
coupled pragmatic efforts have created a large nwnber of automated systems based 
oo attribute granunars. These systems, usually called compiler-compilers, 
compiler writing systems, or translator writing systems, generate different kinds of 
language processors from their high-level specifications. 

The development of such systems is the main advantage of AQ; over other 
formal specification methods; that is, they can also be used as an executable 
method, for the automatic constructioo of a program, which will implement the 
specified mapping. This advantage has made AQ; me of the most widely applied 
semantic formalisms. 

Traditionally, AQ; have been extensively used in compiler construction (Aho, 
1986), (!Xransart, 1988). Recently they have also been adopted in many other 
areas such as knowledge representation (Papakoostantinou, 1986a), (Papakonsta­
ntinou, 1986b), logic progrmmning (Arbab, 1986), (!Xransart, 1985), and as a da­
taflow language (Papakonstantinou, 1988). In the field of AGdriven compiler 
construction, a lot of work is presented by Aho et al (Aho, 1986) and Waite and 
Goos (Waite, 1984). In the field of AGdriven dataflow computing, Farrow 
(Farrow, 1983) first showed that an attribute evaluator can be viewed as a 
dataflow program that computes the translatioo of a source string, when its parse 
tree is given as input and Papakoostantinou and Tsanakas (Papakonstantinou, 
1988) presented a method for the dataflow extraction of computational 
algorithms. 

A recent extension of these two fields is the high-level automated hardware 
synthesis of special purpose architectures (Camposano, 1991), (Gajski, 1992), 
(Hafer, 1983), (lin, 1997), (M:Farland, 1990), (Paulin, 1989), (Tanaka, 1989), 
(Trickey, 1987), (Walker, 1991), (Walker, 1995). It is defined as the 
transformatioo of behavioral circuit descriptions into register-transfer level (RTL) 
structural descriptions that implement the given behavior while satisfying user 
defined constraints, and can be seen as either a compilation process, or a dataflow 
computatioo over a loosely defined hardware architecture. The result of this 
transformation is the exact definitioo of the optimal (or suboptimal) architecture 
for each given behavior. 

Hgh-level synthesis is an evolving research topic in the field of design 
automation, with a lot of recent work being published. However, concerning its 



Hardware compilation using attribute grammars 275 

acceptance in the industrial world, we must recognize that a lot of problems are 
still open (Gajski, 1992). The reasons are manifold Over the last I 0 years, many 
systems were introduced increasing the complexity of hardware description 
languages, design capture methods and technologies that each new approach has 
to consider. In the contrary with the lower levels of design abstraction, high-level 
synthesis lacks the existence of a theoretical framework (like Boolean algebra for 
logic design) that would further accelerate research. The rrugority of optimization 
problems faced are NP-complete, thus heuristics are mandatory. 

All these problems motivated the search for formal methods to describe and 
perform high-level synthesis. One of the first proposals (Hafer, 1983), integer 
linear programming, is still considered as a widely used methodology (lin, 1997). 
H>wever, its computational complexity limits its application to very small 
problems. 

Attempting to overcome inefficiencies and propose a unifying formal framework 
for high-level synthesis, Economakos et al (Economakos, 1995) proposed an 
attribute grammar based approach. Earlier, other formal methods for the 
automated synthesis of special purpose architectures had been investigated, like 
FP (Tsanakas, 1989), (Tsanakas, 1992) and PROLOG (Tsanakas, 1991). 

This, to the best of our knowledge, was the first attempt to fully describe the 
whole process of hardware synthesis using AG;. Earlier, Naini (Naini, 1989) 
presented a dataflow based solution, Farrow et al (Farrow, 1989) presented an AG 
driven compiler of the VIIDL hardware description language (Bhas.ker, 1992), 
(lipsett, 1993) and Jones et al (Jones, 1986) presented an AG based solution to 
the incremental evaluation of properties and conditions in VUH circuits. This last 
work was very thorough but rather complicated, involving circular AG;, and has 
not been tested in practical design systems. Circular AG; were involved because 
the authors used an internal representation of the VISI circuit (generally 
composed of circles) as the design tree, to which attributes were attached. On the 
contrary, the approach presented in (Economakos, 1995), was much simpler and 
attached non-circular attributes to the parse tree of the behavioral specification 
language. Jones aimed at the development of interactive design editors while our 
approach was aimed at the process of hardware compilation. Such a tool, was the 
syntax directed system developed by Keutzer et al (Keutzer, 1988). However, this 
work was aimed at a lower level of abstraction. It faced the problem of register­
transfer level realization, that is, the optimal transformation of an FSM 
architecture into netlists of digital gates, and used more than one language 
processors. 

In this paper the results of both (Economakos, 1995) and (Economakos, 1997) 
are further elaborated for the implementation of an AG driven high-level 
behavioral hardware compiler. The internal representation of the design consists 
of a Control/Data Flow Graph, which directly designates the structure of the 
design. To accomplish this, control structures were investigated and the proposed 
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scheduling algorithms were expanded to cross control boundaries while 
preserving the overall behavior (global scheduling). Also, the language used for 
behavioral description has been extended to handle declarative as well as 
procedural semantics. The later can describe behavior efficiently. However, the 
fonner is also needed to describe real world entities and interfaces that will be 
synthesized Finally, implementation problems were solved and a VHDL 
translator tool has been realized to be used as a preprocessor for VHDL based 
simulation and synthesis tools. 

Even though many hardware compilation tools have been presented in the past 
(Biesenack, 1993), (Keutzer, 1988), (Thomas, 1990), (Walker, 1991 ), our 
approach has the advantage of being flexible, because it can easily incorporate 
different algorithms by changing the appropriate attributes. Consequently, it can 
be used as a testbench for the evaluation of new design algorithms, thus 
facilitating the rapid development of hardware compilers. 

The rest of this paper is organized as follows. Section II presents some basic 
ideas about AG; and high-level hardware synthesis. Section III gives a detailed 
description of a hardware compiler based on the ideas presented in (Economakos, 
1995) using common compiler construction tools. Section IV presents 
experimental results and, finally, section V gives the conclusions of the presented 
work and proposes possible extensions. 

2 PROBLEM DEFINITION 

l.l Attribute grammars (AGs) 

An attribute grammar (A G) (Knuth, 1968) is based upon a context free grammar 
(CFG) O=(N, T,P,Z), where N is the set of nontenninal symbols, Tis the set of ter-

minal symbols, P is the set of productions (syntactic rules) and Z (ZeN) is the 
start symbol. 

Each symbol in the vocabulary V (V=Nvn of G has an associated set of 
attributes A(X). Each attribute represents a specific context-sensitive property of 
the corresponding symbol. The notation Xa is used to indicate that attribute a is 
an element of A(X). A(X) is partitioned into two disjoint sets; the set of 
synthesized attributes AS(X) and the set of inherited attributes AI(X). Synthesized 
attributes X.s are those whose values are defined in tenns of attributes at 
descendant nodes of node X of the C<m:SpODding semantic tree. Inherited 
attributes X.i are those whose values are defined in terms of attributes at the 
parent and (possibly) the sibling nodes of node X of the corresponding semantic 
tree. 
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Each of the productions peP (p=Xo:Xl···Xn> of the CFGis augmented by a se­
mantic condition SC(p) and a set of semantic rules SR(p). A semantic conditioo is 
a constraint oo the values of certain attributes that are elements of the set 

Ui=O .. nA(Xi). The semantic conditioo SC(p) must be satisfied in every 
applicatioo of the production (syntactic rule) p. A semantic rule defines an 
attribute in tenns of other attributes of tenninals and nontenninals appearing in 
the same productioo. The semantic rules associated with productioo p define all 
the synthesized attributes of the nontenninal symbol Xo (oo the left-hand side of 
p), as well as all the inherited attributes of symbols XJt ... ,Xn (oo the right-hand 
side ofp). 

An attribute grarmnar is, therefore, defined by the five-tuple 
AG=(G,A,D,SR,SC), where: 
• G is a reduced CFG 
• A=uxevA(X) is a finite set of attributes 
• D is the set of domains of all attribute values 

• SR =upe pSR(p) is a fmite set of semantic rules 

• SC=up e pSC(p) is a fmite set of semantic conditions. 
The analysis of an input string by an AG interpreter proceeds in two phases. In 

the first, called syntax analysis, a cootext-free parser is used to construct a parse 
tree of the input string. In the second, called semantic analysis, the values of the 
attributes at the nodes of the parse tree are evaluated and the semantic cooditions 
are tested. 

AG; are using a nonprocedural fonnalism. Therefore, they do not impose any 
sequencing order in the process of parsing or in the process of evaluating the 
attributes. Instead, they just describe the dependencies among the syntactic 
structures and among the attribute values. Consequently, they can be adopted to 
define a sequencing order for the subcomponents of any language based 
description, inferred from attribute dependencies. 

2.2 High-level automated hardware synthesis 

Hardware synthesis is the task of searching for a set of interconnected components 
(structure), which implements a certain way of component and environment 
interactioo (behavior), while satisfying a set of goals and constraints. Eventually, 
the structure must be mapped into a physical design, i.e., a specificatioo of how 
the system is actually to be built. Behavioral, structural and physical are 
distinguished as the threalomains in which hardware can be described. 

Just as designs can be described in different domains, they can also be described 
at various levels of abstractioo in each domain. Traditiooally, abstractioo levels 
are presented as coocentric circles on an Y -chart (Gajski, 1992). On top of the 
design hierarchy is the so-called system level, where computer systems are 
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described as algorithms, interconnected sets of processors, chips and boards in the 
different domains. The next level is called microarchitectural or register-transfer 
level with focus on register transfers, netlists of ALU;, MUXs and registers and 
module floorplans. Next comes the logic level, where the system is described with 
Boolean equations, as a network of gates and flip-flops or as geometrically placed 
modules. Last comes the circuit level, which views the design in terms of 
transistor functions, transistor netlists or wire segments and contacts. 

We define synthesis the process of translating a behavioral description into a 
structural description, similar to the compilation of conventional programs into 
assembly language. High-level synthesis, as we use the term, means going from a 
system level behavioral specification of a digital system, to a register-transfer level 
structural description that implements that behavior. Obviously, there are many 
different structures that can be used to realize a given behavior. Consequently, one 
major task of high-level synthesis is to find the best structure that carries out the 
required computations and meets user defined constraints, such as limitations on 
cycle time, area, power, etc. 

!Xsign entry in a high-level synthesis system is an algorithmic description 
written in a common programming language (like PASCAL or R>RTRAN), or by 
a special purpose hardware description language (HDL), such as ISPS, Il)L or 
VHDL. 

The first step in high-level synthesis is usually the compilation of the formal 
HDL specification into an internal representation. Most approaches use graph­
based representations that contain both the data and the control flow implied by 
the specification. Such representations are called Control/Data Row Graphs 
(CDIGi). Operations in the behavioral descriptions are mapped as nodes in the 
CDFG and values as edges. Additionally, the CDFG can also represent 
conditional branches, loops, etc., hence the name controVdata flow graph. 

Once the CDFG has been constructed, the three central synthesis tasks in a 
typical high-level synthesis system are the following: 
• Scheduling - determining the sequence in which the operations are executed 

provided a sequence of discrete time slices called control steps. 
• Allocation - selecting the appropriate nwnber of flDlctional lDlits, storage 

units and interconnection units from available component libraries. 
• Binding - assigning operations to flDlctionallDlits, assigning values to storage 

units and interconnecting these components to cover the entire data path. 
Many high-level synthesis systems combine allocation and binding into the 

same task and call this combined task allocation. Also, the solution to any of the 
three nugor tasks lDlder user defined constraints, is strongly related to the 
solutions to the others. Most of the problems arising in this combined 
optimization case are NP-complete, so heuristics are mandatory. 
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3 AG-DRIVEN HARDWARE COMPILER 

The design complexity of VI..SI architectures has grown exponentially making the 
traditional capture-and-simulate design methodology obsolete in many cases. A 
new describe-and-synthesize methodology has become necessary. The first step in 
this methodology is the high-level synthesis of a behavioral description petformed 
by hardware compilation tools. This section is a detailed description of an AG 
driven hardware compiler based on ideas presented in (Economakos, 1995). 

3.1 Input specification 

!Xsign entry in a high-level synthesis system is an algorithmic description written 
in a conventional or special pwpose HDL All HDLs exhibit some common 
programming language features, including constructs like data types, operators, 
assignment statements and control statements, supporting behavioral abstractions 
in different levels. Supplementary, hardware specific properties are also supported 
by modern HDLs with constructs like intetface declarations, structural 
declarations, register-transfer and logic operators, asynchronous operations and 
constraint declarations. Finally, all HDLs define an execution ordering, with 
sequential and parallel threads of operation. 

The experimental HDL used in (Economakos, 1995) as the underlying CFG that 
was decorated by a scheduling AG; was a subset of PASCAL, presented in (Aho, 
1986). This language had only procedural semantics to describe behavior. 
However, for hardware design entry, declarative semantics are also needed to 
define entities and intetfaces between entities, i.e. the 1/0 ports of the design and 
their mode of operation, as mentioned above. An HDL containing both procedural 
and declarative semantics, constructed as an extension of a common procedural 
language, is HardwareC (Ku, 1990). A subset of HardwareC is used in the 
hardware compiler presented here. Its syntax is defined in figure 1. 

This HDL includes the same procedural semantics as the HDL of (Economakos, 
1995) as well as entity, port, and signal declarations. The execution ordering 
imposed on every behavioral description is strictly sequential. The descriptions 
produced are, therefore, closer to the way a human designer conceives the abstract 
functionality of the desired structure. The hardware compilation process can 
evaluate all possible parallel orderings of the sequential behavior and evaluate all 
possible architectural tradeoffs, by applying appropriate algorithms. 

3.2 Internal representation 

As stated above, the first step in high-level synthesis is the compilation of the 
input specification to a dataflow type internal representation. This step has many 
similarities with dataflow computing, for which, an AGformalism has been given 



280 Part Six Issues in Formal Synthesis 

in (Papakonstantinou, 1988). These similarities were exploited in (Economakos, 
1995), where a first AG formalism for hardware compilation was given. 

design~ block id (pon_declararions_lisr) compo1111d_sraremenr. 
pon_declararions_lisr~ pon_declararions lpon_declararion_lur; pon_declararions 
pon_declararions~ mode port declararion_lisr 
mode~ ill I oat I i11Ht 
declararion_lisr ~ declararion I declararion_lisr, declararion 
declararion ~ id I id l•u•l 
compo'lllld_sraremenr~ !Jeaia oprional_declararions oprional_sraremenuead 
oprional_declararions~ id_declararions_lisr; I e 
id_declararions _lur ~ idenrijier _declrarionsl id_declararions _lisr; idenrijier _declararions 
idenrijier _declararions~ rype declararion_lisr 
rype ~ booleu lst.tic I iat 
oprional_sraremenr~ sraremenr_lb~ e 
sraremenr_lbr~ sraremenrlsraremer_lisr; sraremenr 
sraremenr~ variable anignop expression I compo1111d_sraremenr 

I if expression thea sraremenrebe sraremenrl.,qjle expression do sraremenr 
variable ~ id 
expresnon ~ simple_expresnon 1 nmple_expression relop nmple_expresnon 
simple_expression~ renn I ngn renn lsimple_expressionaddop renn 
tenn ~ factorltenn •alop factor 
factor~ id I aam I (expression) I DOt factor 
ngn~+l-

Figure 1 HDL syntax 

This formalism was used to produce a sequential form for the dataflow graph of 
the algorithm described by an input file. The process was similar to the 
intermediate code generation phase of traditional compilers. The sequential form 
consisted of a quadruple for each graph node, containing the corresponding 
operation, references to its inputs and outputs and scheduling information. The 
input and output references were used to designate the edges of the graph. 
Scheduling was supported by an attribute instance in each nonterminal that 
corresponded to a node. The evaluation of this instance followed a widely used 
scheduling heuristic algorithm with attribute dependencies used to convey 
information and define the order in which each node would be scheduled. This 
effort has been presented in detail in (Economakos, 1995). However, for the 
development of a hardware compiler, this sequential form is not adequate. 

One disadvantage of the sequential dataflow representation is that the edges are 
not explicitly defined, but are implied by the input and output references. 
However, explicit definition of edges is preferred for a hardware compiler tool, 
since it will need to access them many times for optimization and final mapping 
into actual hardware. Also, an efficient hardware compiler implementation 
requires control flow information, to construct a finite state machine that 
generates the control signals to drive the datapath. fur this reason, a modified 
internal representation of the one presented in (Thomas, 1990) has been adopted. 
All operator nodes are described by the set X={x..} where each operator is indexed 
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by a subscript a. When describing operator inputs and outputs, it is necessary to 
distinguish them from each other. This is accomplished using the sets I={ia,b} and 
O={Oa,c} for all operator inputs and outputs, respectively. Each operator input is 
indexed by the operator index a and a second index b that nwnerically identifies 
the inputs to the operator. Similarly, each operator output is specified by the 
operator index a and a second index c that nwnerically identifies the operator's 
output. All three sets are implemented as single linked lists with additional links 
from each operator in X to its corresponding inputs in I and outputs in 0. 

Control flow is described by grouping operators into basic blocks. Each basic 
block represents a group of operators translated from a sequence of statements (a 
block of statements containing no branches) and has Boolean conditions that 
guard the entry and exit from the basic block. Operators within a basic block may 
execute in any order that does not violate data dependencies. Control flow 
between basic blocks is determined by the guard conditions. The basic blocks are 
implemented by attaching special fields to the elements of X defining the 
conditions that must hold for the corresponding operation to be executed. 

As an example, consider the following code fragment: 

IF A>O THEN I:=l+l; ELSE I:=I-1; 

The corresponding CDRJ and the basic block structure are given in figure 2, 
where solid lines are used to denote data flow and dashed to denote control flow. 

A 0 

Figure 2 An example CDFG and basic block structure 
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3.3 AG-driven scheduling 

A crucial task in high-level synthesis is scheduling. A scheduled CDIU is a 
complete implementation of the specified behavior, if enough resources are 
provided. Generally, four scheduling problems exist in high-level synthesis. Gven 
a set of operations X, a set of functional unit types K, a type fWiction t : X---)K, a 
time constraint (deadline) D on the overall schedule length, and resource 
constraints IDJt, I~ for each fWictional unit type, the four problems can be 
defined as: 
• Unconstrained scheduling (UC5): Hod a feasible (or optimal) schedule for X 

that obeys the precedence constraints. 
• Time-constrained scheduling (7C.5): Hod a feasible (or optimal) schedule for 

X that obeys the precedence constraints and meets the deadline D. 
• Resource-constrained scheduling (RTS): Hod a feasible (or optimal) schedule 

for X that obeys the precedence constraints and meets the resource constraints 
for each func~ional unit type. 

• Time and resource-constrained scheduling (TRC5): Hod a feasible (or 
optimal) schedule for X that obeys the precedence constraints, meets the 
deadline D and meets the resource constraints for each functional Wlit type. 

For each of the four problems, different algorithms have been proposed over the 
past years. Each hardware compiler system must implement one or more of these. 
In (Economakos, 1995), two algorithms for UCS were expressed in an AG 
fonnalism, As Early As Possible (ASAP) scheduling and As Lilte As Possible 
(ALAP) scheduling. These two algorithms are also involved in upper and lower 
boWld calculations for other scheduling algorithms. Their description can be 
found in figure 3. 

ASAP scheduling 

for each node ui eV do 
ifPredui=0 then 
Ei=l; V=V-{ui}; 

else 
Ei=O; 

endif 
endfor 
whileYI-0do 
for each node ui eV do 
if ALL_NDS_SCHD(Prcdui,E) then 
Ei=MAX(Predui,E)+I; V=V-{ui}; 

endif 
endfor 

end while 

ALAP scheduling 

for each node uieV do 
ifSuccui=0 then 
Li=T; V=V-{ui}; 

else 
Li=O; 

endif 
endfor 
while V,o0 do 
for each node uieV do 
if ALL_NDS_SCHD(Succui,L) then 
Li=MIN(Succui,L)-1; V=V-{ui}; 

endif 
endfor 

end while 

Figure 3 ASAP and ALAP scheduling algorithms 
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In the above, Ei (li) is the ASAP (AIAP) control-step index calculated for 
every node in a CDFG V and E (L) the set of all indexes. Predui (Succui) denotes 
all the nodes in the CDFG that are inunediate predecessors (successors) of node 
ui. The ftmction ALL_Nlli_SCHD returns true if all the nodes in the set passed 
as its first parameter are scheduled, i.e., have a non-zero label. Hnally the 
ftmction MAX (MIN) retwn the control-step index with the maximwn 
(minimum) value from the set passed as its frrst parameter. 

The main difference between the two algorithms is their evaluation order. ASAP 
moves from the root of the CDFG to the leaves while ALAP moves the other way. 
This was reflected in the AQ; presented in (Economakos, 1995). Since all 
attributes were attached to the parse tree of the given behavior, by examining the 
HDL syntax given in figure 1, one can easily see that ASAP required attribute 
instance dependencies with direction from the leaves of each subtree to its root 
and ALAP the opposite. In AGterminology, ASAP required synthesized attributes 
while ALAP required inherited ones. 

Since the CDFG nodes are operators, the attributes used for scheduling are 
attached to the syntactic rules that deal with operators. The general case can be 
written as: 

operation-) operand1 operator operan~. (l) 

By examining the HDL syntax of figure 1, one can easily see that many rules 
like (1) are used. 

R>r AG driven ASAP scheduling, a synthesized attribute called control_step is 
used and the semantic rule corresponding to (1) is: 

operation.control_step= 
=MAX( operand 1.control_step,operand 2.control_step)+ 1. (2) 

The initial condition needed to calculate all control step assignments is that 
every constant can be considered as scheduled in control step 0. Also, the control 
step when each variable is last generated must be kept in a symbol table so that 
every operator that uses it will be scheduled after that. An AGimplementation of 
a symbol table can be found in (Economakos, 1995). 

R>r AG driven ALAP scheduling, an inherited attribute called again 
control_step is used, evaluated by the following semantic rule attached to (1): 

operand i.control_step=operation.control_step-1, i= 1 ,2. (3) 

The initial condition needed in (3) is that the final operator in each subgraph of 
the CDFG must be scheduled in the last control step, except when there is a data 
dependence for the variable that is generated by that operator. In this case, it must 
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be scheduled a number of control steps earlier, equal to the length of the 
dependence. So, before scheduling any final operator node, all data dependencies 
must be fOWld. To perfonn this in an AG driven environment, the input 
behavioral description must be passed two times: first to extract dependencies and 
next to perform scheduling. A detailed description of this technique can be fOWld 
in (Economakos, 1997). Rlll AG; for both ASAP and ALAP scheduling can be 
found in (Economakos, 1995) and (Economakos, 1997). 

3.4 VHDL preprocessor 

VHDL has been proposed and adopted as a standard language to describe digital 
designs in various levels of abstraction. Currently, it is widely and unifonnly used 
for simulation purposes. For synthesis, vendor specific subsets of the language are 
supported. 

VHDL can describe designs following three basic styles: 
• Behavioral style: All common procedural programming language constructs 

and abstract data types are supported; the design is expressed as a set of 
concurrent processes. This style has very poor performance for synthesis. 

• Dataflow style: The design is expressed as concurrent signal assignments and 
guard conditions that perform a partition of all assignments into control 
states. The underlying architecture is that of a finite state machine driven 
datapath and can be automatically synthesized with quite satisfactory 
results. 

• Structural style: The design is expressed as a netlist of basic blocks and can 
be generally synthesized with no problems. The quality of the produced 
results depend on the quality of the input description. 

For the hardware compiler ~ect, a tool has been developed that translates the 
internal representation into dataflow style VHDL that can be used as a 
preprocessor in modern CAD simulation or synthesis environments. Oltaflow 
style has been chosen because it is a straightforward translation of the scheduled 
CDFG. 

The translation produces one concurrent signal assignment for each node of the 
CDRl For example, for operator OP with inputs INl and IN2 and output Otrr, 
the following line ofVHDL code will be generated: 

OUT <= INl OP IN2; 

H>wever, only with this code, all operations will be performed simultaneously. 
No scheduling infonnation is used. To support scheduling, the assignments of 
each control step are grouped together in a block statement. This block has a 
guard condition that permits the execution of all enclosed assignments only at the 
correct control step, by the use of a signal that holds the current control step. Also, 
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the guard condition includes the well known (CLK'EVENI' and CIK=' 1') 
condition, that is used to denote an edge triggered register. The block also 
includes an assignment for updating the state signal. Rr example, if the above 
qxntion is scheduled at control step CS 1, with a clock cycle ci N ns and CS 1 is 
followed by CS2, the following code will be generated: 

CSl: BLOCK ((CLK'EVENT AND CLK='l') AND (STATE=CSl)) 
BEGIN 

OUT <= GUARDED INl OP IN2; 
STATE<= GUARDED CS2 AFTER N NS; 

END BLOCK; 

This basic construct is used for all CDFG qxntions. In the case ci operations 
that will be performed only if some condition holds (that is, inside conditional 
basic blocks), these are translated into conditional assignments. 

A representative example of the whole compilation process and the VHDL 
output is presented in the following section. 

4 EXPERIMENTAL RESULTS 

The ideas presented so far have been implemented in a hardware compiler tool 
based on AO;. The basic difference ci the two presented algorithms (ASAP 
requires synthesized attributes while AI.AP requires inherited) played an 
important role in the development cithe compiler. The current version is based on 
the YACC (Abo, 1986) compiler construction tool and implements only ASAP, 
since Y ACC can evaluate only synthesized attributes. 

To evaluate the AG driven hardware compiler, a representative example ci an 
automatically synthesized design is presented In figure 4, the behavioral 
description ci the differential equation solver presented in (Ortt, 1992) is given. 
The description passes through YACC for scheduling and then through the 
VHDL preprocessor. The out ut is 'venin fi 5. 

block diffeq(inout port x[l6),u[l6],y[l6]; 
in port dx[l6],a[l6]) 

begin 
boolean xl[l6],ul[l6],yl[l6]; 
while x<a do 

end. 

begin 
xl:=x+dx; 
ul:=u-(3*x*u*dx)-(3*y*dx); 
yl: =y+ (u*dx); 
x:=xl; 
u:=ul; 
y:=yl 

end 

Figure 4 Differential equation solver 
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entity vhdl h 
port (a: in integer; 

dx: in integer: 
y: inout integer; 
u: inout integer; 
x: inout integer); 

end vhdl; 

architecture data flow of vhdl i~ 
siqna.l yl: inte9er; 
signal TlO: integer; 
:~iqnal ul: integer; 
siqnal TB: integer; 
signal T7: integer; 
signal 1'6: integer; 
::~iqnal TS: integer; 
:.ignal T4:integer; 
:siqnal T3: integer; 
:dgnal xl: integer; 
signal Tl:boolean; 
signal state: integer: •1; 
signal CLK:bit:•'O'; 

begin 
CLK<•not CLK after 10 ns; 

Sl: block ((CLK'EVENT and CLK-'1') and (state•l)) 
begin 

xl; 

TlO; 

Tl<-guarded x<a; 
xl<•x+dx when (Tl and Tl'ACTIVE) el:'Je 

T3<-3*x when (Tl and Tl'ACTIVE) else T3; 
T7<•3*y when (Tl and Tl'ACTIVE) else T7; 
TlO<-u*dx when (Tl and Tl'ACTIVE) else 

process 
begin 

wait on xl; 
x<•xl; 

end proce:!ll:!l; 
state<•quarded 2 after 2 n:!ll; 

end block; 

52: block ((CLK'EVENT and CLK•'l') and (:!11tate•2)) 
begin 

T4<•gwuded T3*u when Tl ehe T4; 
TS<•quarded T?*dx when Tl el:!lle TS; 
yl<•quarded y+TlO when Tl else yl; 
proce:!ll:!ll 

begin 
wait on yl; 
y<•yl; 

end proces!!l; 
:!lltate< .. guarded 3 after 2 n:!ll; 

end block; 
53: block ({CLK'EVENT and CLK•'l') and (:!11tate•3)) 

begin 
TS<•guarded T4*dx when Tl else TS; 
:!lltate<•quarded 4 after 2 n:!ll; 

end block; 
S4: block ((CLK'EVENT and CLK.•'l') and (:!11tate•4)) 

begin 
T6<•guarded u-TS when Tl else T6; 
!!ltate<•quarded S after 2 n:!ll; 

end block; 
SS: block ((CLK'EVENT and CLK•'l') and (:!lltate•S)) 

begin 
ul<•quarded T6-T8 when Tl el:!lle ul; 
process 

begin 
wait on ul; 
u<•ul; 

end proce:ots; 
:!lltate<•guarded 1 after 2 n9; 

end block; 
end data_flow; 

Figure S Dataflow style VHDL description of differential equation solver 

The code fragment of figure 5 was used as input to the Accolade PeakVHDL 
simulator. Hgure 6 presents the resulting waveforms for three different test cases. 
It must be stated that all calculated values for x and y are significant parts of the 
result and not only the fmal values (just before the circuit reaches steady state). 

For the AlAP case, in order to evaluate the two pass AG with inherited 
attributes, a new implementation is Wlder development using an AG evaluation 
tool that handles any case of non-circular AGs (Sideri, 1989). 

5 CONCLUSIONS 

A novel AQ.driven approach to the implementation of a flexible hardware 
compiler has been presented in this paper. 

The results obtained and presented show that this combination is promising. Its 

main advantages include the extensive use of existing tools and techniques (for 
attribute evaluation) and the incorporation of the AG fonnalism as a very high 
level meta-language describing high-level synthesis algoritluns. The proposed 
implementation is a flexible hardware compiler, which can be seen as a testbench 
or as a fast prototyping platform. 
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Currently we are working on the expansion of the proposed formalism, mainly 
to include other scheduling and allocation algorithms, in order to tackle the whole 
problem of hardware compilation under an AG formalism. 

Initial candtlonsX• O. Y• O. lJo1. OX• I . A• 4 

r-
• concltions X• O, Y>O, lJo 1, OX•2. Aa8 

r-
Figure 6 Simulated waveforms for 3 test cases of the differential equation solver 
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