
18

Hardware Compilation Using
Attribute Grammars

Economakos, G., Papakonstantinou, G., Pekmestzi, K. and
Tsanakas, P.
National Technical University of Athens
Department of Electrical and Computer Engineering
Zografou Campus, GR-15773 Athens, Greece
george@dsclab. ece. ntua.gr

Abstract
Attribute grammars have been used extensively in every phase of traditional
compiler construction and, therefore, practical attribute granunar evaluators have
been developed to automate the task. The similar task of hardware compilation
has not however taken advantage of these developments yet. Previous work has
shown that attribute grammars can be effectively adopted to hamDe high-level
hardware synthesis. In this paper, these past results are further elaborated and
integrated in the construction of a prototype for an attribute granunar driven
hardware compiler from behavioral descriptions to VHDL Ih! to its flexibility
and rapid design, such a compiler can be used as a workbench for testing various
synthesis algorithms and optimization criteria. This novel approach can be proven
valuable for evaluating new algorithms and techniques in the field.

Keywords
Hardware compilation, high-level synthesis, automated hardware synthesis,
attribute grammars, formal synthesis methods, attribute grammar evaluators

0 lAP I 997 Published by Chapman &. Hall

274 Part Six Issues in Formal Synthesis

I INTRODUCTION

Attribute grammars (AQ;) were devised by Knuth (Knuth, 1968) as a tool for the
formal specification of progrmmning languages. However, in the general case, an
AG can be seen as a mapping from the language described by a conteJCt free
grammar (CFG) into a user defmed domain. Since their introduction, they have
been a s~ect of intensive research, both from a cooceptual and from a practical
point of view. The cooceptual work has produced several subclasses of attribute
granunars (Paaki, 1995) with advanced implementatioo algorithms. The closely
coupled pragmatic efforts have created a large nwnber of automated systems based
oo attribute granunars. These systems, usually called compiler-compilers,
compiler writing systems, or translator writing systems, generate different kinds of
language processors from their high-level specifications.

The development of such systems is the main advantage of AQ; over other
formal specification methods; that is, they can also be used as an executable
method, for the automatic constructioo of a program, which will implement the
specified mapping. This advantage has made AQ; me of the most widely applied
semantic formalisms.

Traditionally, AQ; have been extensively used in compiler construction (Aho,
1986), (!Xransart, 1988). Recently they have also been adopted in many other
areas such as knowledge representation (Papakoostantinou, 1986a), (Papakonsta­
ntinou, 1986b), logic progrmmning (Arbab, 1986), (!Xransart, 1985), and as a da­
taflow language (Papakonstantinou, 1988). In the field of AGdriven compiler
construction, a lot of work is presented by Aho et al (Aho, 1986) and Waite and
Goos (Waite, 1984). In the field of AGdriven dataflow computing, Farrow
(Farrow, 1983) first showed that an attribute evaluator can be viewed as a
dataflow program that computes the translatioo of a source string, when its parse
tree is given as input and Papakoostantinou and Tsanakas (Papakonstantinou,
1988) presented a method for the dataflow extraction of computational
algorithms.

A recent extension of these two fields is the high-level automated hardware
synthesis of special purpose architectures (Camposano, 1991), (Gajski, 1992),
(Hafer, 1983), (lin, 1997), (M:Farland, 1990), (Paulin, 1989), (Tanaka, 1989),
(Trickey, 1987), (Walker, 1991), (Walker, 1995). It is defined as the
transformatioo of behavioral circuit descriptions into register-transfer level (RTL)
structural descriptions that implement the given behavior while satisfying user
defined constraints, and can be seen as either a compilation process, or a dataflow
computatioo over a loosely defined hardware architecture. The result of this
transformation is the exact definitioo of the optimal (or suboptimal) architecture
for each given behavior.

Hgh-level synthesis is an evolving research topic in the field of design
automation, with a lot of recent work being published. However, concerning its

Hardware compilation using attribute grammars 275

acceptance in the industrial world, we must recognize that a lot of problems are
still open (Gajski, 1992). The reasons are manifold Over the last I 0 years, many
systems were introduced increasing the complexity of hardware description
languages, design capture methods and technologies that each new approach has
to consider. In the contrary with the lower levels of design abstraction, high-level
synthesis lacks the existence of a theoretical framework (like Boolean algebra for
logic design) that would further accelerate research. The rrugority of optimization
problems faced are NP-complete, thus heuristics are mandatory.

All these problems motivated the search for formal methods to describe and
perform high-level synthesis. One of the first proposals (Hafer, 1983), integer
linear programming, is still considered as a widely used methodology (lin, 1997).
H>wever, its computational complexity limits its application to very small
problems.

Attempting to overcome inefficiencies and propose a unifying formal framework
for high-level synthesis, Economakos et al (Economakos, 1995) proposed an
attribute grammar based approach. Earlier, other formal methods for the
automated synthesis of special purpose architectures had been investigated, like
FP (Tsanakas, 1989), (Tsanakas, 1992) and PROLOG (Tsanakas, 1991).

This, to the best of our knowledge, was the first attempt to fully describe the
whole process of hardware synthesis using AG;. Earlier, Naini (Naini, 1989)
presented a dataflow based solution, Farrow et al (Farrow, 1989) presented an AG
driven compiler of the VIIDL hardware description language (Bhas.ker, 1992),
(lipsett, 1993) and Jones et al (Jones, 1986) presented an AG based solution to
the incremental evaluation of properties and conditions in VUH circuits. This last
work was very thorough but rather complicated, involving circular AG;, and has
not been tested in practical design systems. Circular AG; were involved because
the authors used an internal representation of the VISI circuit (generally
composed of circles) as the design tree, to which attributes were attached. On the
contrary, the approach presented in (Economakos, 1995), was much simpler and
attached non-circular attributes to the parse tree of the behavioral specification
language. Jones aimed at the development of interactive design editors while our
approach was aimed at the process of hardware compilation. Such a tool, was the
syntax directed system developed by Keutzer et al (Keutzer, 1988). However, this
work was aimed at a lower level of abstraction. It faced the problem of register­
transfer level realization, that is, the optimal transformation of an FSM
architecture into netlists of digital gates, and used more than one language
processors.

In this paper the results of both (Economakos, 1995) and (Economakos, 1997)
are further elaborated for the implementation of an AG driven high-level
behavioral hardware compiler. The internal representation of the design consists
of a Control/Data Flow Graph, which directly designates the structure of the
design. To accomplish this, control structures were investigated and the proposed

276 Part Six Issues in Formal Synthesis

scheduling algorithms were expanded to cross control boundaries while
preserving the overall behavior (global scheduling). Also, the language used for
behavioral description has been extended to handle declarative as well as
procedural semantics. The later can describe behavior efficiently. However, the
fonner is also needed to describe real world entities and interfaces that will be
synthesized Finally, implementation problems were solved and a VHDL
translator tool has been realized to be used as a preprocessor for VHDL based
simulation and synthesis tools.

Even though many hardware compilation tools have been presented in the past
(Biesenack, 1993), (Keutzer, 1988), (Thomas, 1990), (Walker, 1991), our
approach has the advantage of being flexible, because it can easily incorporate
different algorithms by changing the appropriate attributes. Consequently, it can
be used as a testbench for the evaluation of new design algorithms, thus
facilitating the rapid development of hardware compilers.

The rest of this paper is organized as follows. Section II presents some basic
ideas about AG; and high-level hardware synthesis. Section III gives a detailed
description of a hardware compiler based on the ideas presented in (Economakos,
1995) using common compiler construction tools. Section IV presents
experimental results and, finally, section V gives the conclusions of the presented
work and proposes possible extensions.

2 PROBLEM DEFINITION

l.l Attribute grammars (AGs)

An attribute grammar (A G) (Knuth, 1968) is based upon a context free grammar
(CFG) O=(N, T,P,Z), where N is the set of nontenninal symbols, Tis the set of ter-

minal symbols, P is the set of productions (syntactic rules) and Z (ZeN) is the
start symbol.

Each symbol in the vocabulary V (V=Nvn of G has an associated set of
attributes A(X). Each attribute represents a specific context-sensitive property of
the corresponding symbol. The notation Xa is used to indicate that attribute a is
an element of A(X). A(X) is partitioned into two disjoint sets; the set of
synthesized attributes AS(X) and the set of inherited attributes AI(X). Synthesized
attributes X.s are those whose values are defined in tenns of attributes at
descendant nodes of node X of the C<m:SpODding semantic tree. Inherited
attributes X.i are those whose values are defined in terms of attributes at the
parent and (possibly) the sibling nodes of node X of the corresponding semantic
tree.

Hardware compilation using attribute grammars 277

Each of the productions peP (p=Xo:Xl···Xn> of the CFGis augmented by a se­
mantic condition SC(p) and a set of semantic rules SR(p). A semantic conditioo is
a constraint oo the values of certain attributes that are elements of the set

Ui=O .. nA(Xi). The semantic conditioo SC(p) must be satisfied in every
applicatioo of the production (syntactic rule) p. A semantic rule defines an
attribute in tenns of other attributes of tenninals and nontenninals appearing in
the same productioo. The semantic rules associated with productioo p define all
the synthesized attributes of the nontenninal symbol Xo (oo the left-hand side of
p), as well as all the inherited attributes of symbols XJt ... ,Xn (oo the right-hand
side ofp).

An attribute grarmnar is, therefore, defined by the five-tuple
AG=(G,A,D,SR,SC), where:
• G is a reduced CFG
• A=uxevA(X) is a finite set of attributes
• D is the set of domains of all attribute values

• SR =upe pSR(p) is a fmite set of semantic rules

• SC=up e pSC(p) is a fmite set of semantic conditions.
The analysis of an input string by an AG interpreter proceeds in two phases. In

the first, called syntax analysis, a cootext-free parser is used to construct a parse
tree of the input string. In the second, called semantic analysis, the values of the
attributes at the nodes of the parse tree are evaluated and the semantic cooditions
are tested.

AG; are using a nonprocedural fonnalism. Therefore, they do not impose any
sequencing order in the process of parsing or in the process of evaluating the
attributes. Instead, they just describe the dependencies among the syntactic
structures and among the attribute values. Consequently, they can be adopted to
define a sequencing order for the subcomponents of any language based
description, inferred from attribute dependencies.

2.2 High-level automated hardware synthesis

Hardware synthesis is the task of searching for a set of interconnected components
(structure), which implements a certain way of component and environment
interactioo (behavior), while satisfying a set of goals and constraints. Eventually,
the structure must be mapped into a physical design, i.e., a specificatioo of how
the system is actually to be built. Behavioral, structural and physical are
distinguished as the threalomains in which hardware can be described.

Just as designs can be described in different domains, they can also be described
at various levels of abstractioo in each domain. Traditiooally, abstractioo levels
are presented as coocentric circles on an Y -chart (Gajski, 1992). On top of the
design hierarchy is the so-called system level, where computer systems are

278 Part Six Issues in Formal Synthesis

described as algorithms, interconnected sets of processors, chips and boards in the
different domains. The next level is called microarchitectural or register-transfer
level with focus on register transfers, netlists of ALU;, MUXs and registers and
module floorplans. Next comes the logic level, where the system is described with
Boolean equations, as a network of gates and flip-flops or as geometrically placed
modules. Last comes the circuit level, which views the design in terms of
transistor functions, transistor netlists or wire segments and contacts.

We define synthesis the process of translating a behavioral description into a
structural description, similar to the compilation of conventional programs into
assembly language. High-level synthesis, as we use the term, means going from a
system level behavioral specification of a digital system, to a register-transfer level
structural description that implements that behavior. Obviously, there are many
different structures that can be used to realize a given behavior. Consequently, one
major task of high-level synthesis is to find the best structure that carries out the
required computations and meets user defined constraints, such as limitations on
cycle time, area, power, etc.

!Xsign entry in a high-level synthesis system is an algorithmic description
written in a common programming language (like PASCAL or R>RTRAN), or by
a special purpose hardware description language (HDL), such as ISPS, Il)L or
VHDL.

The first step in high-level synthesis is usually the compilation of the formal
HDL specification into an internal representation. Most approaches use graph­
based representations that contain both the data and the control flow implied by
the specification. Such representations are called Control/Data Row Graphs
(CDIGi). Operations in the behavioral descriptions are mapped as nodes in the
CDFG and values as edges. Additionally, the CDFG can also represent
conditional branches, loops, etc., hence the name controVdata flow graph.

Once the CDFG has been constructed, the three central synthesis tasks in a
typical high-level synthesis system are the following:
• Scheduling - determining the sequence in which the operations are executed

provided a sequence of discrete time slices called control steps.
• Allocation - selecting the appropriate nwnber of flDlctional lDlits, storage

units and interconnection units from available component libraries.
• Binding - assigning operations to flDlctionallDlits, assigning values to storage

units and interconnecting these components to cover the entire data path.
Many high-level synthesis systems combine allocation and binding into the

same task and call this combined task allocation. Also, the solution to any of the
three nugor tasks lDlder user defined constraints, is strongly related to the
solutions to the others. Most of the problems arising in this combined
optimization case are NP-complete, so heuristics are mandatory.

Hardware compilation using attribute grammars 279

3 AG-DRIVEN HARDWARE COMPILER

The design complexity of VI..SI architectures has grown exponentially making the
traditional capture-and-simulate design methodology obsolete in many cases. A
new describe-and-synthesize methodology has become necessary. The first step in
this methodology is the high-level synthesis of a behavioral description petformed
by hardware compilation tools. This section is a detailed description of an AG
driven hardware compiler based on ideas presented in (Economakos, 1995).

3.1 Input specification

!Xsign entry in a high-level synthesis system is an algorithmic description written
in a conventional or special pwpose HDL All HDLs exhibit some common
programming language features, including constructs like data types, operators,
assignment statements and control statements, supporting behavioral abstractions
in different levels. Supplementary, hardware specific properties are also supported
by modern HDLs with constructs like intetface declarations, structural
declarations, register-transfer and logic operators, asynchronous operations and
constraint declarations. Finally, all HDLs define an execution ordering, with
sequential and parallel threads of operation.

The experimental HDL used in (Economakos, 1995) as the underlying CFG that
was decorated by a scheduling AG; was a subset of PASCAL, presented in (Aho,
1986). This language had only procedural semantics to describe behavior.
However, for hardware design entry, declarative semantics are also needed to
define entities and intetfaces between entities, i.e. the 1/0 ports of the design and
their mode of operation, as mentioned above. An HDL containing both procedural
and declarative semantics, constructed as an extension of a common procedural
language, is HardwareC (Ku, 1990). A subset of HardwareC is used in the
hardware compiler presented here. Its syntax is defined in figure 1.

This HDL includes the same procedural semantics as the HDL of (Economakos,
1995) as well as entity, port, and signal declarations. The execution ordering
imposed on every behavioral description is strictly sequential. The descriptions
produced are, therefore, closer to the way a human designer conceives the abstract
functionality of the desired structure. The hardware compilation process can
evaluate all possible parallel orderings of the sequential behavior and evaluate all
possible architectural tradeoffs, by applying appropriate algorithms.

3.2 Internal representation

As stated above, the first step in high-level synthesis is the compilation of the
input specification to a dataflow type internal representation. This step has many
similarities with dataflow computing, for which, an AGformalism has been given

280 Part Six Issues in Formal Synthesis

in (Papakonstantinou, 1988). These similarities were exploited in (Economakos,
1995), where a first AG formalism for hardware compilation was given.

design~ block id (pon_declararions_lisr) compo1111d_sraremenr.
pon_declararions_lisr~ pon_declararions lpon_declararion_lur; pon_declararions
pon_declararions~ mode port declararion_lisr
mode~ ill I oat I i11Ht
declararion_lisr ~ declararion I declararion_lisr, declararion
declararion ~ id I id l•u•l
compo'lllld_sraremenr~ !Jeaia oprional_declararions oprional_sraremenuead
oprional_declararions~ id_declararions_lisr; I e
id_declararions _lur ~ idenrijier _declrarionsl id_declararions _lisr; idenrijier _declararions
idenrijier _declararions~ rype declararion_lisr
rype ~ booleu lst.tic I iat
oprional_sraremenr~ sraremenr_lb~ e
sraremenr_lbr~ sraremenrlsraremer_lisr; sraremenr
sraremenr~ variable anignop expression I compo1111d_sraremenr

I if expression thea sraremenrebe sraremenrl.,qjle expression do sraremenr
variable ~ id
expresnon ~ simple_expresnon 1 nmple_expression relop nmple_expresnon
simple_expression~ renn I ngn renn lsimple_expressionaddop renn
tenn ~ factorltenn •alop factor
factor~ id I aam I (expression) I DOt factor
ngn~+l-

Figure 1 HDL syntax

This formalism was used to produce a sequential form for the dataflow graph of
the algorithm described by an input file. The process was similar to the
intermediate code generation phase of traditional compilers. The sequential form
consisted of a quadruple for each graph node, containing the corresponding
operation, references to its inputs and outputs and scheduling information. The
input and output references were used to designate the edges of the graph.
Scheduling was supported by an attribute instance in each nonterminal that
corresponded to a node. The evaluation of this instance followed a widely used
scheduling heuristic algorithm with attribute dependencies used to convey
information and define the order in which each node would be scheduled. This
effort has been presented in detail in (Economakos, 1995). However, for the
development of a hardware compiler, this sequential form is not adequate.

One disadvantage of the sequential dataflow representation is that the edges are
not explicitly defined, but are implied by the input and output references.
However, explicit definition of edges is preferred for a hardware compiler tool,
since it will need to access them many times for optimization and final mapping
into actual hardware. Also, an efficient hardware compiler implementation
requires control flow information, to construct a finite state machine that
generates the control signals to drive the datapath. fur this reason, a modified
internal representation of the one presented in (Thomas, 1990) has been adopted.
All operator nodes are described by the set X={x..} where each operator is indexed

Hardware compilation using attribute grammars 281

by a subscript a. When describing operator inputs and outputs, it is necessary to
distinguish them from each other. This is accomplished using the sets I={ia,b} and
O={Oa,c} for all operator inputs and outputs, respectively. Each operator input is
indexed by the operator index a and a second index b that nwnerically identifies
the inputs to the operator. Similarly, each operator output is specified by the
operator index a and a second index c that nwnerically identifies the operator's
output. All three sets are implemented as single linked lists with additional links
from each operator in X to its corresponding inputs in I and outputs in 0.

Control flow is described by grouping operators into basic blocks. Each basic
block represents a group of operators translated from a sequence of statements (a
block of statements containing no branches) and has Boolean conditions that
guard the entry and exit from the basic block. Operators within a basic block may
execute in any order that does not violate data dependencies. Control flow
between basic blocks is determined by the guard conditions. The basic blocks are
implemented by attaching special fields to the elements of X defining the
conditions that must hold for the corresponding operation to be executed.

As an example, consider the following code fragment:

IF A>O THEN I:=l+l; ELSE I:=I-1;

The corresponding CDRJ and the basic block structure are given in figure 2,
where solid lines are used to denote data flow and dashed to denote control flow.

A 0

Figure 2 An example CDFG and basic block structure

282 Part Six Issues in Formal Synthesis

3.3 AG-driven scheduling

A crucial task in high-level synthesis is scheduling. A scheduled CDIU is a
complete implementation of the specified behavior, if enough resources are
provided. Generally, four scheduling problems exist in high-level synthesis. Gven
a set of operations X, a set of functional unit types K, a type fWiction t : X---)K, a
time constraint (deadline) D on the overall schedule length, and resource
constraints IDJt, I~ for each fWictional unit type, the four problems can be
defined as:
• Unconstrained scheduling (UC5): Hod a feasible (or optimal) schedule for X

that obeys the precedence constraints.
• Time-constrained scheduling (7C.5): Hod a feasible (or optimal) schedule for

X that obeys the precedence constraints and meets the deadline D.
• Resource-constrained scheduling (RTS): Hod a feasible (or optimal) schedule

for X that obeys the precedence constraints and meets the resource constraints
for each func~ional unit type.

• Time and resource-constrained scheduling (TRC5): Hod a feasible (or
optimal) schedule for X that obeys the precedence constraints, meets the
deadline D and meets the resource constraints for each functional Wlit type.

For each of the four problems, different algorithms have been proposed over the
past years. Each hardware compiler system must implement one or more of these.
In (Economakos, 1995), two algorithms for UCS were expressed in an AG
fonnalism, As Early As Possible (ASAP) scheduling and As Lilte As Possible
(ALAP) scheduling. These two algorithms are also involved in upper and lower
boWld calculations for other scheduling algorithms. Their description can be
found in figure 3.

ASAP scheduling

for each node ui eV do
ifPredui=0 then
Ei=l; V=V-{ui};

else
Ei=O;

endif
endfor
whileYI-0do
for each node ui eV do
if ALL_NDS_SCHD(Prcdui,E) then
Ei=MAX(Predui,E)+I; V=V-{ui};

endif
endfor

end while

ALAP scheduling

for each node uieV do
ifSuccui=0 then
Li=T; V=V-{ui};

else
Li=O;

endif
endfor
while V,o0 do
for each node uieV do
if ALL_NDS_SCHD(Succui,L) then
Li=MIN(Succui,L)-1; V=V-{ui};

endif
endfor

end while

Figure 3 ASAP and ALAP scheduling algorithms

Hardware compilation using attribute grammars 283

In the above, Ei (li) is the ASAP (AIAP) control-step index calculated for
every node in a CDFG V and E (L) the set of all indexes. Predui (Succui) denotes
all the nodes in the CDFG that are inunediate predecessors (successors) of node
ui. The ftmction ALL_Nlli_SCHD returns true if all the nodes in the set passed
as its first parameter are scheduled, i.e., have a non-zero label. Hnally the
ftmction MAX (MIN) retwn the control-step index with the maximwn
(minimum) value from the set passed as its frrst parameter.

The main difference between the two algorithms is their evaluation order. ASAP
moves from the root of the CDFG to the leaves while ALAP moves the other way.
This was reflected in the AQ; presented in (Economakos, 1995). Since all
attributes were attached to the parse tree of the given behavior, by examining the
HDL syntax given in figure 1, one can easily see that ASAP required attribute
instance dependencies with direction from the leaves of each subtree to its root
and ALAP the opposite. In AGterminology, ASAP required synthesized attributes
while ALAP required inherited ones.

Since the CDFG nodes are operators, the attributes used for scheduling are
attached to the syntactic rules that deal with operators. The general case can be
written as:

operation-) operand1 operator operan~. (l)

By examining the HDL syntax of figure 1, one can easily see that many rules
like (1) are used.

R>r AG driven ASAP scheduling, a synthesized attribute called control_step is
used and the semantic rule corresponding to (1) is:

operation.control_step=
=MAX(operand 1.control_step,operand 2.control_step)+ 1. (2)

The initial condition needed to calculate all control step assignments is that
every constant can be considered as scheduled in control step 0. Also, the control
step when each variable is last generated must be kept in a symbol table so that
every operator that uses it will be scheduled after that. An AGimplementation of
a symbol table can be found in (Economakos, 1995).

R>r AG driven ALAP scheduling, an inherited attribute called again
control_step is used, evaluated by the following semantic rule attached to (1):

operand i.control_step=operation.control_step-1, i= 1 ,2. (3)

The initial condition needed in (3) is that the final operator in each subgraph of
the CDFG must be scheduled in the last control step, except when there is a data
dependence for the variable that is generated by that operator. In this case, it must

284 Part Six Issues in Formal Synthesis

be scheduled a number of control steps earlier, equal to the length of the
dependence. So, before scheduling any final operator node, all data dependencies
must be fOWld. To perfonn this in an AG driven environment, the input
behavioral description must be passed two times: first to extract dependencies and
next to perform scheduling. A detailed description of this technique can be fOWld
in (Economakos, 1997). Rlll AG; for both ASAP and ALAP scheduling can be
found in (Economakos, 1995) and (Economakos, 1997).

3.4 VHDL preprocessor

VHDL has been proposed and adopted as a standard language to describe digital
designs in various levels of abstraction. Currently, it is widely and unifonnly used
for simulation purposes. For synthesis, vendor specific subsets of the language are
supported.

VHDL can describe designs following three basic styles:
• Behavioral style: All common procedural programming language constructs

and abstract data types are supported; the design is expressed as a set of
concurrent processes. This style has very poor performance for synthesis.

• Dataflow style: The design is expressed as concurrent signal assignments and
guard conditions that perform a partition of all assignments into control
states. The underlying architecture is that of a finite state machine driven
datapath and can be automatically synthesized with quite satisfactory
results.

• Structural style: The design is expressed as a netlist of basic blocks and can
be generally synthesized with no problems. The quality of the produced
results depend on the quality of the input description.

For the hardware compiler ~ect, a tool has been developed that translates the
internal representation into dataflow style VHDL that can be used as a
preprocessor in modern CAD simulation or synthesis environments. Oltaflow
style has been chosen because it is a straightforward translation of the scheduled
CDFG.

The translation produces one concurrent signal assignment for each node of the
CDRl For example, for operator OP with inputs INl and IN2 and output Otrr,
the following line ofVHDL code will be generated:

OUT <= INl OP IN2;

H>wever, only with this code, all operations will be performed simultaneously.
No scheduling infonnation is used. To support scheduling, the assignments of
each control step are grouped together in a block statement. This block has a
guard condition that permits the execution of all enclosed assignments only at the
correct control step, by the use of a signal that holds the current control step. Also,

Hardware compilation using attribute grammars 285

the guard condition includes the well known (CLK'EVENI' and CIK=' 1')
condition, that is used to denote an edge triggered register. The block also
includes an assignment for updating the state signal. Rr example, if the above
qxntion is scheduled at control step CS 1, with a clock cycle ci N ns and CS 1 is
followed by CS2, the following code will be generated:

CSl: BLOCK ((CLK'EVENT AND CLK='l') AND (STATE=CSl))
BEGIN

OUT <= GUARDED INl OP IN2;
STATE<= GUARDED CS2 AFTER N NS;

END BLOCK;

This basic construct is used for all CDFG qxntions. In the case ci operations
that will be performed only if some condition holds (that is, inside conditional
basic blocks), these are translated into conditional assignments.

A representative example of the whole compilation process and the VHDL
output is presented in the following section.

4 EXPERIMENTAL RESULTS

The ideas presented so far have been implemented in a hardware compiler tool
based on AO;. The basic difference ci the two presented algorithms (ASAP
requires synthesized attributes while AI.AP requires inherited) played an
important role in the development cithe compiler. The current version is based on
the YACC (Abo, 1986) compiler construction tool and implements only ASAP,
since Y ACC can evaluate only synthesized attributes.

To evaluate the AG driven hardware compiler, a representative example ci an
automatically synthesized design is presented In figure 4, the behavioral
description ci the differential equation solver presented in (Ortt, 1992) is given.
The description passes through YACC for scheduling and then through the
VHDL preprocessor. The out ut is 'venin fi 5.

block diffeq(inout port x[l6),u[l6],y[l6];
in port dx[l6],a[l6])

begin
boolean xl[l6],ul[l6],yl[l6];
while x<a do

end.

begin
xl:=x+dx;
ul:=u-(3*x*u*dx)-(3*y*dx);
yl: =y+ (u*dx);
x:=xl;
u:=ul;
y:=yl

end

Figure 4 Differential equation solver

286 Part Six Issues in Formal Synthesis

entity vhdl h
port (a: in integer;

dx: in integer:
y: inout integer;
u: inout integer;
x: inout integer);

end vhdl;

architecture data flow of vhdl i~
siqna.l yl: inte9er;
signal TlO: integer;
:~iqnal ul: integer;
siqnal TB: integer;
signal T7: integer;
signal 1'6: integer;
::~iqnal TS: integer;
:.ignal T4:integer;
:siqnal T3: integer;
:dgnal xl: integer;
signal Tl:boolean;
signal state: integer: •1;
signal CLK:bit:•'O';

begin
CLK<•not CLK after 10 ns;

Sl: block ((CLK'EVENT and CLK-'1') and (state•l))
begin

xl;

TlO;

Tl<-guarded x<a;
xl<•x+dx when (Tl and Tl'ACTIVE) el:'Je

T3<-3*x when (Tl and Tl'ACTIVE) else T3;
T7<•3*y when (Tl and Tl'ACTIVE) else T7;
TlO<-u*dx when (Tl and Tl'ACTIVE) else

process
begin

wait on xl;
x<•xl;

end proce:!ll:!l;
state<•quarded 2 after 2 n:!ll;

end block;

52: block ((CLK'EVENT and CLK•'l') and (:!11tate•2))
begin

T4<•gwuded T3*u when Tl ehe T4;
TS<•quarded T?*dx when Tl el:!lle TS;
yl<•quarded y+TlO when Tl else yl;
proce:!ll:!ll

begin
wait on yl;
y<•yl;

end proces!!l;
:!lltate< .. guarded 3 after 2 n:!ll;

end block;
53: block ({CLK'EVENT and CLK•'l') and (:!11tate•3))

begin
TS<•guarded T4*dx when Tl else TS;
:!lltate<•quarded 4 after 2 n:!ll;

end block;
S4: block ((CLK'EVENT and CLK.•'l') and (:!11tate•4))

begin
T6<•guarded u-TS when Tl else T6;
!!ltate<•quarded S after 2 n:!ll;

end block;
SS: block ((CLK'EVENT and CLK•'l') and (:!lltate•S))

begin
ul<•quarded T6-T8 when Tl el:!lle ul;
process

begin
wait on ul;
u<•ul;

end proce:ots;
:!lltate<•guarded 1 after 2 n9;

end block;
end data_flow;

Figure S Dataflow style VHDL description of differential equation solver

The code fragment of figure 5 was used as input to the Accolade PeakVHDL
simulator. Hgure 6 presents the resulting waveforms for three different test cases.
It must be stated that all calculated values for x and y are significant parts of the
result and not only the fmal values (just before the circuit reaches steady state).

For the AlAP case, in order to evaluate the two pass AG with inherited
attributes, a new implementation is Wlder development using an AG evaluation
tool that handles any case of non-circular AGs (Sideri, 1989).

5 CONCLUSIONS

A novel AQ.driven approach to the implementation of a flexible hardware
compiler has been presented in this paper.

The results obtained and presented show that this combination is promising. Its

main advantages include the extensive use of existing tools and techniques (for
attribute evaluation) and the incorporation of the AG fonnalism as a very high
level meta-language describing high-level synthesis algoritluns. The proposed
implementation is a flexible hardware compiler, which can be seen as a testbench
or as a fast prototyping platform.

Hardware compilation using attribute grammars 287

Currently we are working on the expansion of the proposed formalism, mainly
to include other scheduling and allocation algorithms, in order to tackle the whole
problem of hardware compilation under an AG formalism.

Initial candtlonsX• O. Y• O. lJo1. OX• I . A• 4

r-
• concltions X• O, Y>O, lJo 1, OX•2. Aa8

r-
Figure 6 Simulated waveforms for 3 test cases of the differential equation solver

6 ACKNOWLEDGMENT

We wish to thank Petros Economakos for his valuable help in the design of the
VfiDL preprocessor and the presentation of the differential equation solver
circuit.

7 REFERENCES

Abo, A. V., Sethi, Rand Ulman, J. D. (1986) Compilers: Principles, Techniques
and Tools. Addison-Wesley.

Arbab, B. (1986) Compiling Circular Attribute Gammars into Prolog. IBM J
Res. & Development, Vol30, No 3.

Bhasker, J. (1992) A VHDL Primer. Prentice Hall.

288 Part Six Issues in Formal Synthesis

Biesenack, J., Koster, M, l.angmaier, A., Ledeux, S., Marz, S., Payer, M, Pilsl,
M, Rumler, S., Soukup, H, When, N. and Dlzy. P. (1993) The Siemens
Hgh-Level Synthesis System CAlLAS. IEEE Transactions on Very Large
Scale Integration Systems , Voll, No 3, pp 244-253.

Camposano, R (1991) Path-Based Scheduling for Synthesis. IEEE Transactions
on Computer-Aided Design , VollO, No 1, pp 85-93.

IXransart, P. and Aluszynski, J. (1985) Relating Logic Programs and Attribute
GrammarsJ. Logic Programming , Vol2, pp 119-155.

O:ransart, P. et al. (1988) Attribute Gmnmars, in Lecture Notes in Computer
Science, Spinger-Verlag.

Oltt, N. and Ramachandran, C. (1992) Benchmarks for the 1992 Hgh-Level
Synthesis Workshop. UCI Technical Report #92-108

Economakos, G., Papakonstantinou, G. and Tsanakas, P. (1995) An Attribute
G-ammar Approach to Hgh-Level Automated Hardware Synthesis.
Information and Software Technology, Vol37, No 9, pp 493-502.

Economakos, G., Papakonstantinou, G. and Tsanakas, P. (1997) Attribute
Chmmar Diven Scheduling for the Hgh-Level Synthesis of ASICs.
submitted to /997 IEEEIACM International Conference on Computer Aided
Design.

Farrow, R (1983) Attribute Gmnmars and Oltaflow Languages. ACM SIGPIAN
Symposium on Programming Language Issues in Software Systems , pp 28-
40.

Farrow, Rand Stanculescu, A. G. (1989) A VHDL Compiler Based on Attribute
Chmmar Methodology. ACM SIGPIAN Conference on Programming
Language Design and Implementation , pp 120-130.

Ggski, D., Oltt, N., Wu, A. and lin, S. (1992) Hgh-Level Synthesis. Kluwer
Academic Publishers.

Hafer, L J. and Parker, A. C. (1983) A Formal 'Method for the Specification,
Analysis, and ~sign of Register-Transfer Level Dgital Logic. IEEE
Transacttions on Computer-Aided Design, Vol2, No 1, pp 4-18.

Jones, L G. and Simon, J. (1986) Herarchical VI.SI ~sign Systems Based on
Attribute Gmnmars. 13'h ACM Symposium on Principles of Programming
Languages, pp 58-69.

Keutzer, K. and Wolf, W. (1988) Anatomy of a Hardware Compiler. ACM
SIGPIAN Conference on Programming Language Design and
Implementation, pp. 95-104.

Knuth, D. E. (1968) Semantics of Context-Free Languages. Mathematical
Systems TheoryVol2, No 2, pp 127-145.

Ku, D. and~ Mcheli, G. (1990) HardwareC: A Language for Hardware ~sign.
Stanford University Technical Report CSL-TR-90-419, Version 2.0.

lin, Y. L (1997) Recent ~velopment in Hgh Level Synthesis. ACM
Transactions on Design Automation of Electronic Systems, Vol2, No 1.

Hardware compilation using attribute grammars 289

Lipsett, R, Schaefer, C. F. and U;sery, C. (1993) VHDL: Hardware IXscription
and Design. K.luwer Academic Publishers.

'M:Farland, M C., Parker, A. C. and Camposano, R (1990) The Hgh-Level
Synthesis ofll.gital Systems. Proceedings ofthe IEEE, Vol 78, No 2, pp 301-
318.

Naini, M (1989) A IXdicated Oltaflow Architecture for Hardware Compilation.
22nd Annual Hawaii International Conference on System Sciences.

Paaki, J. (1995) Attribute Qammar Paradigms- A Hgh-Level M!thodology in
Language Implementation. ACM Computing Surveys, Vol27, No 2.

Papakonstantinou, G and Kontos J. (1986a) Knowledge Representation with
Attribute Grammars. The Computer Journal Vol29, No 3, pp 241-246.

Papakonstantinou, G et a/. (1986b) An Attribute Qammar Interpreter as a
Knowledge Engineering Tool. Angew. Inf, Vol9, pp 382-388.

Papakonstantinou, G and Tsanakas, P. (1988) Attribute Qammars and Oltaflow
Computing. Information and Software Technology ,Vol 30, No 5, pp 306-
313.

Paulin, P. G and Knight, J. P. (1989) Force-Il.rected Scheduling for the
Behavioral Synthesis of ASICs. IEEE Transactions on Computer-Aided
Design, Vol8, No 6, pp 661-679.

Sideri, M, Ffraimidis, S. and Papakonstantinou, G (1989) Semanticaly IXiven
Parsing of Context-Free Languages. The Computer Journal, Vol32, No I.

Tanaka, T., Kobayashi, T. and Karatsu, 0. (1989) HARP: Fortran to Silicon.
IEEE Transactions on Computer-Aided Design , Vol8, No 6, pp 649-660.

Thomas, D. E., Lagnese, E. D., Walker, RA., Nestor, J. A., Rajan, J. V. and
Blackburn, R L (1990) Algorithmic and Register-Transfer Level Synthesis:
The System Architect's Workbench. K.luwer Academic Publishers.

Trickey, H (1987) Ramel: A ligh-Level Hardware Compiler. IEEE Transactions
on Computer-Aided Design, Vol6, No 2, pp 259-269.

Tsanakas, P., Alexandridis, N. and Papakonstantinou, G (1989) An FP-based
IXsign Methdology for Problem-oriented Architectures. 1he Computer
Journal, Vol32, No 5, pp 453-460.

Tsanakas, P., Papakonstantinou, G and Kaxiras, S. (1991) A PROLOG-based
IXsign Fnvirorunent for the ligh-Level Synthesis of Application-Specific
Architectures.Microprocessing and Microprogramming Vol32, pp 307-313.

Tsanakas, P., Papakonstantinou, G and Bilalis, N. (1992) Systematic Synthesis of
Parallel VLSI Architectures from FP Specifications and its Application to
Scene Matching. Mcroprocessing and Mcroprogramming, Vol 35, pp 579-
586.

Waite, W. M. and Goos, G. (1984) Compiler Construction. Springer-Verlag.
Walker, R A. and Camposano, R (1991) A Survey of ligh-Level Synthesis

Systems. K.luwer Academic Publishers.

290 Part Six Issues in Formal Synthesis

Walker, R A and Chaudhuri, S. (1995) Hgh-Level Synthesis: Introduction to the
Scheduling Problem. IEEE Design & Test of Computers, Voll2, No 2.

8BIOGRAPHY

G. Economakos received his Ilploma in FJ.ectrical and Computer Engineering
fnm the National Technical Uliversity of Athens (1992). Cmrently, he is a Ph.D.
student in the National Technical Uliversity of Athens. Hs research interests
include hardware design automation, combinational synthesis, sequential
synthesis, high-level synthesis and language based design automation.

G. Papakonstantinou received his Ilploma in FJ.ectrical Engineering from the
National Technical UUversity of Athens in 1964, the P.l.l. Ilploma in FJ.ectronic
Engineering from Philips Int. Inst. In 1966, and his MSc. in FJ.ectronic
Engineering from the N.U.F.F.I.C. Netherlands in 1967. In 1971 he received his
Ph.D. in Computer Engineering from the National Technical Uriversity of
Athens. H: has worked as a Research Scientist at the Qeek Atomic Energy
Conunision I Computer Ilvision (1969-1984), as Ilrector of the Computer
Ilvision at the Qeek Atomic Energy Conunision (1981-1984). Rom 1984 he
serves as a Professor of Computer Science at the National Technical Uriversity of
Athens. Hs research interests include knowledge engineering, hardware design
automation, as well as parallel architectures and languages.

K. Pekmestzi received his Ilploma in Flectrical Engineering from the National
Technical Uliversity of Athens (1975). Rom 1975 to 1981 he was a research
fellow in the FJ.ectronics D:partment of the Nuclear Research Centre
"!Xmokritos". H: received his Ph.D. in FJ.ectrical Engineering from the
Uliversity of Patras (1981). Rom 1983 to 1985 he was a professor at Hgher
School of FJ.ectronics in Athens. Since 1985 he has been with the National
Technical Uliversity of Athens, where he is currently an Associate Professor. Hs
research interests include computer arithmetic, VLSI digital filters and VLSI
design automation.

P. Tsanakas received his Ilploma in Flectrical Engineering from the Uliversity
of Thessaloniki (1982), his MSc. in Computer Engineering from Ohio Uliversity
(1985), and his Ph.D. in Computer Engineering from the National Technical
Uliversity of Athens (1988). H: is now serving as Associate Professor at the
National Technical Uliversity of Athens. Hs research interests include parallel/
distributed computing systems and applications, automated synthesis of VLSI
architectures, image I signal processing, and intelligent learning systems.

