
13

Using induction and BDDs to
model check invariants

David Deharbe and Anamaria Martins Moreira
UFRN- DIMAp
Universidade Federal do Rio Grande do Norte
Departamento de Informatica e Matemtf.tica Aplicada
Campus Universittf.rio
Lagoa Nova
59072-970 Natal, RN
Brazil

Abstract
We present an inductive characterization for an invariant to stand in a given
finite-state transition system. We show how this characterization can be com­
puted by means of BDD-based operations, without performing a fixpoint it­
eration over sets of states as the CTL symbolic model checking algorithm
does.

1 INTRODUCTION

Model checking is an algorithm for computing the truth of a formula expressed
in some logic in a given model. Clarke & Emerson (1981) and Queille & Sifakis
(1981) presented independently a fully automatic model checking algorithm
for the branching time temporal logic CTL in finite-state transition systems,
linear in the size of the formula and in the size of the model. This algorithm
has been used to verify systems of up to several million states and transi­
tions (Clarke, Emerson & Sistla 1986), which is enough in practice only for
small systems.

A big step forward was made when McMillan (1993) proposed a new model
checking algorithm for CTL, based on fixpoint computations of sets of states.
In this algorithm, called symbolic model checking, binary decision diagrams
(Bryant 1986) are used to represent both the transitions and the states of the
model. Since sets of states are represented in intention by their characteristic
functions, the size of the verified model is not bound by the memory of the
computer carrying the verification and it is possible to verify systems that
have several orders of magnitude more states.

However, most of the systems designed today are much larger and, in or­
der to achieve verification, symbolic model checking must be combined, often
manually, with other techniques, such as abstraction and composition. It is

©IFIP 1997. Published by Chapman & Hall

204 Part Four Decision Graphs

important to note that most of the involved techniques are only good in a
heuristic sense: although theoretically their computational complexity is ex­
tremely large, practically, on many examples, they prove to be efficient. Suc­
cessful verification of industrial hardware designs has been possible with these
techniques. However, even with these combinations, the verification of large
and complex designs for requires too much resources and is not possible, due
to the complexity of the computations involved in the fixpoint computations.

An important class of properties are invariants: a property is an invariant
of a model if it holds for every reachable state. In practice, specifications are
often composed of a large number of invariants, e.g. (Anderson, Beame, Burns,
Chan, Modugno, Notkin & Reese 1996). In this paper we present a theorem
that gives a sufficient condition for a given property to be an invariant of
a given model. We then show how the symbolic model checking algorithm
for CTL can be altered to include to check, using induction, if the sufficient
condition is realized whenever the property to be proved is an invariant.

Outline: In Sections 2 to 5, we overview the foundations of symbolic model
checking: Kripke structures, the class of models considered; binary decision
diagrams, an efficient data structure to represent such structures; elements of
fixpoint theory in lattices;_ syntax and semantics of computation tree logic.
In Section 6, we present the main result of the paper: a sufficient condition
for a given property to be an invariant of a given model. We also show how
to incorporate the computation of this sufficient condition in CTL model
checking.

2 KRIPKE STRUCTURES

Let P be a finite set of boolean propositions. A Kripke structure over P is a
quadruple M = (S, T, I, L) where:

• S is a finite set of states.
• T ~ S x S is a transition relation, such that 'V8 E S, 381 E S, (8, 81) E T.
• I C S is the set of initial states.
• L -;- S --+ 2P is a labeling function. L is injective and associates with each

state a set of boolean propositions true in the state.

A path 1r in the Kripke structure M is an infinite sequence of states 8 1 , 82, ...

such that 'Vi ~ 1, (8i, 8i+I) E T. 1r(i) is the ith state of 1r. The set of states
reachable from I, denoted RS, is the set of states 8 such that there is a path
from an initial state to this state:

RS = {8 E S l37r, ((1r(1) E I) 1\ 3i ~ 1, (1r(i) = 8))} (1)

A property I is an invariant of M, if I is true of each state 8 of RS.

Using induction and BDDs to model check invariants 205

2.1 Characteristic functions

Let M = (S, T, I, L) be a Kripke structure over P = {v1, .•. , vn}· Let v

denote (v1 , ... Vn). The characteristic function of a state s E S, denoted [s],
is defined as:

[s](v) = ((1\ v·) A (1\ v·))
v;EL(•)

1
v;fL(•)

1

The definition of the characteristic function is extended to sets of states with
the following definitions:

[{}](v) = false

[{x} U X](v) = [x](v) V [X](v)

Let P' = { v~, ... v~} be a set of fresh boolean propositions. The character­
istic function of a transition t = (s1 , s2) E T, denoted [t], is defined as:

[t](v, v') = [s1](v) A [s2](v')

This definition can be extended to represent sets of transitions as for sets of
states.

To simplify notations, in the rest of the paper we will identify [X] with X.

2.2 State space traversal

Let M = (S, T, I, L) be a Kripke structure over P. The image of a set of states
X ~ S is the set of states that can be reached in one transition from X:

{s E S !3s' EX, (s', s) E T}

The characteristic function of the image of X, denoted Img(X), is:

Img(X)(v') = 3v,X(v) AT(v, v')

Conversely, the inverse image of a set of states X ~ S, is the set of states
from which X can be reached in one transition:

{s E Sl3s' E X,(s,s') E T}

The characteristic function of the inverse image of a set of states X, denoted
Pre(X), is:

Pre(X)(v') = 3v',X(v')AT(v,v')

206 Part Four Decision Graphs

3 BINARY DECISION DIAGRAMS

Binary Decision Diagrams (BODs for short) form a heuristically efficient data
structure to represent formulas of the propositional logic. Let P be a totally
ordered finite set of boolean propositions. Let f be a boolean formula over P,
bdd(f) is the BOD representing J, and lbdd(f)l is the size if this BOD. Bryant
(1986) showed that BODs are a canonical representation: two equivalent for­
mulas are represented with the same BOD:

f ¢:> g iff bdd(f) = bdd(g)

Moreover, most boolean operations can be performed efficiently with BODs.
Let lbl denote the size of BOD b:

• bdd(--.J) is computed in constant time 0(1)*.
• bdd(f V g) is realized in O(lbdd(f)l-lbdd(g)l).
• bdd(3x, f) is performed in O(lbdd(f)i2).

In this paper, we will use usual boolean operators to denote the corresponding
operation on BODs, e.g. bdd(f) V bdd(g) = bdd(f V g).

We explain the basic principles of the BOD representation on an example.
Fig. 1 presents the binary decision tree for the 2-bit comparison: x1 <=> y1 1\

x2 ¢:> y2 • The binary tree representation of a formula is exponential in the
number of free boolean propositions in the formula.

Figure 1 Binary tree for x1 <=> Yl 1\ x2 <=> Y2.

The corresponding BOD is obtained by repeatedly applying the following
rules:

• Actually, negation on BDDs as presented in (Bryant 1986) is a linear operation. However,
Madre (1990) proposed a slight modification of the data structure that resulted in reducing
the negation to a constant operation. Schematically, the modification consists in tagging
edges and identifying the representations of f and -.f. Current BDD packages integrate
this modification.

Using induction and BDDs to model check invariants 207

• remove duplicate terminal vertices,
• remove duplicate vertices bottom-up,
• remove opposite vertices,
• remove redundant tests.

Fig. 2 presents the BDD of the 2 bit comparator with ordering x 1 < y1 < x2 <
y2 • For ann-bit comparator, the BDD representation is linear with ordering
x1 < Yl < . . . < Xn < Yn and thus is exponentially better than the binary
tree representation. However, with ordering x1 < ... < Xn < Y1 < ... < Yn,
the BDD representation is exponential. ·

Figure 2 BDD for x1 <::} Y1 A x2 <::} Y2·

Bryant (1986} showed that some functions have an exponential BDD rep­
resentation for any variable ordering, and that finding the optimum variable
ordering is NP-hard. However, in practice, heuristic methods generally achieve
a good variable ordering, when such ordering exists.

In a Kripke structure, states, transitions and sets thereof can be character­
ized with propositional logic formulas. These formulas can be represented and
manipulated via their BDD representation. Therefore, BDDs are an efficient
data structure to perform computations on Kripke structures.

4 LATTICES AND FIXPOINTS

A lattice is a set, a partial order on the elements of this set, a least element
1., and a greatest element T.

Let P be a finite set of atomic propositions. Let M = (8, T, I, L} be a finite
Kripke structure over P. We consider the lattice (25 , ~) of subsets of S with
set inclusion as the ordering. The empty set {} and S are respectively the least
and greatest elements of this lattice. Since a subset of S can be identified with
its characteristic function, this lattice can also be interpreted as the lattice

208 Part Four Decision Graphs

of characteristic functions, with boolean implication as ordering, false is the

least element, and the characteristic function of S is the greatest element.
A function r : 28 -t 28 is called a predicate transfonner. r is monotonic

iff P ~ Q implies r(P) ~ r(Q). Tarski (1955) showed that if r is monotonic,

r has a least fixpoint, denoted lfpZ[r(Z)], and a greatest fixpoint, denoted
gfpZ[r(Z)]:

lfpZ[r(Z)] = n{Z I r(Z) = Z}
gfpZ[r(Z)] = U{Z I r(Z) = Z}

5 COMPUTATION TREE LOGIC

5.1 Syntax

= Uiri(Jalse)
niri(true)

The set Tcti(P) of Computation Tree Logic (CTL for short) formulas over a

set of propositions P is the smallest set such that P ~ Tct1(P) and, iff and

g are in Tctl(P), then.,/, f /\ g, EX/, EG/, and E[/Ug] are in Tcti(P).

5.2 Semantics

The semantics of CTL are defined with respect to a Kripke structure M =
(S, T, I, L) over a set of atomic propositions P. Iff is in Tctl(P), M, s f= f

means that f holds at state s of M.
Let f and g be in Tctl(P), then

1. M, s f= p iff p E L(s).
2. M, sF=.,/ iff M, s Ff·
3. M, s F= f /\ g iff M, s F= f and M, s F= g.

4. M, s f= EX/ iff there exists a state s' of M such that (s, 8 1) E T and
81 f= f. 8 has a successor where f is valid.

5. M, 8 f= EG/ iff there exists a path 1r of M such that 7r(1) = 8 and 'Vi ~
1, M, 1r(i) f= f. 8 is at the start of a path where f holds globally.

6. M, 8 f= E[!Ug] iff there exists a path 1r of M such that 7r(1) = 8 and and
3i ~ 1, M, 1r{l) I= g /\ 'Vj, i > j ~ 1, M, 1r(j) I= f. 8 is at the start of a path
where g holds eventually and f holds until g becomes valid.

A formula f is valid in structure M if it is valid for all initial states:

M f= f iff'</8 E I,M,8 f= f.
CTL symbolic model checking uses the BOD representations of the char­

acteristic functions of sets of states and transitions. The algorithm is based
on the fixpoint characterization of the different temporal operators of CTL

Using induction and BDDs to model check invariants 209

defined in (Clarke & Emerson 1981). For instance,

E(!Ug] = lfpZ[g V (! 1\ EXZ)]

Invariants in CTL: Note that, in CTL, an invariant has the form AGf,
which is ...,E[trueU -,f]. It therefore requires the computation of a least fixpoint
associated to the operator EU. This fixpoint can be implemented with a
loop construct that repeatedly performs inverse image computations until the
fixpoint is reached*. In the worst case, the number of iterations is lSI, the
number of states of the model.

6 SUFFICIENT CONDITION OF INVARIANCE

Let M = (S, T, I, L) be a Kripke structure over P. In this section, we introduce
a predicate transformer rover the lattice (25 , ~)and use it to characterize the
reachable states as a least fixpoint. We then show, using induction principles,
that if, in M, the initial states I satisfy f and iff is preserved by the transition
relation T, then f is an invariant of M. Representing characteristic functions
with BDDs, it is possible to decide whether this condition holds with the
conventional symbolic model checking algorithm.

6.1 Theoretical results

Let r be the predicate transformer defined as r(Z) = IUZUimg(Z). We are
first going to show that r is monotonic (Lemma 1). Then we prove that the
set of reachable states is the least fixpoint of r (Lemma 2 and Theorem 1).
We then give the sufficient condition for a property to be an invariant of M
(Lemma 3 and Theorem 2).

Lemma 1 The predicate transformer r(Z) =I U Z U Img(Z) is monotonic.

Proof: Let P1 ~ P2. To prove that r(PI) ~ r(P2), consider a states E r(PI).
Thus, s E I or s E P1 or s E Img(PI):

• if s E I, then s E r(P2).
• if s E P1, since P1 ~ P2, then s E P2 as well, and s E r(P2).
• if s E Img(PI), since P1 ~ P2, then Img(P1) E lmg(P2) and s E lmg(P2);

thus s E r(P2).

*!washita, Nakata & Hirose {1996) proposed a variant algorithm for a fragment of CTL,
based on image computations. In this work, the verification of invariant also requires a
fixpoint computation.

210 Part Four Decision Graphs

Lemma 2 The set of reachable states RS is a fixpoint of the predicate trans­
former r(Z) =I U Z U Img(Z).

Proof: From the definition ofT, the inclusion RS ~ r(RS) is trivial. From
the definition of RS, we also have the inclusions I~ RS and Img(RS) ~ RS.
Therefore r(RS) ~ RS. Thus, RS is a fixpoint. D

Theorem 1 (Characterization of the reachable states) The set of reach­
able states RS is the least fixpoint of the predicate transformer r(Z) = I U
ZUimg(Z).

Proof: Since M is finite and Tis monotonic (from Lemma 1}, the least fix­
point is UiTi(/alse}. It is therefore sufficient to show that RS = lfpZ[r(Z)) =
Uiri(/alse).

• By application of Tarski's theorem, and since RS is a fixpoint ofT (from
Lemma 2}, then UiTi(/alse) = lfp(Z)[r(Z)) ~ RS.

• RS ~ Uiri(Jalse} is proved by induction on the position on the paths for
each the reachable states. From Equation 1, if 8 e RS, then there is a path
'II" = 81,82, ... with 81 E I and 3i ~ 1,8i = s. We show that, if 8 appears
at the i position on a path, then 8 E ri(/alse}.

- The basis case is trivial: If i = 1, then s E I, and therefore 8 E r 1 (false) =
I.

- The induction hypothesis states that the above property stands for every
s and every i ~ n. Let s be a state of a path s1, ... Sn, Sn+l• such that
8n+l = 8. By induction hypothesis, Sn E rn(false). Since (8n 1 8) E T,
then 8 E Img(rn(false)) and therefore s E r(rn(false)) = Tn+l(Jalse). D

Lemma 3 Let M = (S, T, I, L) be a Kripke structure. Iff is valid for all
initials states of M (i.e. I ~ I}, and T preserves f (i.e. Img(f) ~ f }, then f
is a fixpoint of the predicate transformer r(Z) =I U Z U Img(Z).

Proof: Trivially, I~ I U I U Img(f) = r(f}. Also, by hypothesis I~ f and
Img(f) ~I, thus r(f) =I U I U Img(f) ~f. D

Theorem 2 (SufBcient condition for invariance) Let M = {S, T, I, L)
be a Kripke structure. Iff is valid for all initials states of M (i.e. I~ f }, and
T preserves f (i.e. Img(f) ~f), then all reachable states verify 1: RS ~f.

Using induction and BDDs to model check invariants 211

routine ModelCheckA {var f: Tcn(P), var M: model}: boolean
var I: BDD
I t- M.I -- Initial states of M
if (f = AGg) then

else

var G: BDD;
G t- ModelCheck(g,M)
if (I :::} G) then

else

if (Img(G, M) :::} G) then
-t true

else
-t (I:::} ModelCheck{f, M))

end if

-t false
end if

-t (I:::} ModelCheck{f, M))
end if

end routine M odelCheckA

Figure 3 Modified model checking algorithm

Proof: Consider the predicate transformer T. Since I ~ f and Img(f) ~ J,
applying Lemma 3, f is a fixpoint of r. Also from Theorem 1, RS is the least
fixpoint ofT. Thus, RS ~f. 0

Note that the condition I~ f and Img(f) ~ f is only a sufficient and not
a necessary condition for RS ~f. As a matter of fact, let 8 E (S\RS) nf be a
non-reachable state where f stands. If I mg({ 8})-,~f, the sufficient condition
is not satisfied, but we cannot conclude about RS ~ f.

6.2 Application

Let M odelCheck be the conventional CTL symbolic model checking algo­
rithm defined in (McMillan 1993). This algorithm has been implemented in
several tools and successfully used to verify hardware, software and protocols
specifications.

ModelCheck takes as argument a CTL formula f to be verified and returns
true or false. Figure 3 presents M odelCheckA, an alternative algorithm. In
ModelCheckA, iff is of the form AGg, the conditions presented in Theorem 2
are tested. If they are verified, then g is an invariant of M and f = AGg holds.

Note that, on the one hand, the complexity of the test for the validity of
the sufficient condition is the complexity of one call to Img. On the other
hand, the complexity of conventional symbolic model checking, in the worst
case, corresponds to lSI calls to Img. Therefore, if the test for the sufficient

212 Part Four Decision Graphs

condition fails, the additional complexity is that of one call to I mg. However,
if the test succeeds, the gain can be equivalent to up to lSI - 1 calls to I mg.
Recall that, for a sequential circuit with n flip-flops, lSI = 2n. This series of
observations leads us to be optimistic about the usefulness of the proposed
modification.

7 CONCLUSION

The idea at the basis of this paper is that if, in a given model M, for a given
property f on the states of M, we can show that f is valid for all initial
states, and that f is preserved by the transitions of M, then f is an invariant
of M. This test for validity seems to compare advantageously to conventional
symbolic model checking techniques.

After a rapid overview of different formal tools involved in symbolic model
checking, we define a sufficient condition for a property to be an invariant of a
finite Kripke structure. A proof provides a theoretical justification. We show
how to modify the conventional CTL symbolic model checking algorithm to
include a test for this condition. This test can be implemented using BDDs
and is based in an inductive characterization of invariants.

We are currently working to incorporate these ideas into the verification tool
SMV (McMillan 1993) as a heuristic to check a family of properties. Once this
implementation is realized, we plan to study the practical usefulness of the
heuristic, i.e. that some invariant properties can actually be checked without
computing the fixpoint of the conventional algorithm.

REFERENCES

Anderson, R. J., Beame, P., Burns, S., Chan, W., Modugno, F., Notkin,
D. & Reese, R. (1996), Model checking large software specifications,
in '4th Symposium on the Foundations of Software Engineering',
ACM/SIGSOFT, pp. 156-166.

Bryant, R. (1986), 'Graph-based algorithm for boolean function manipula­
tion', IEEE 7ransactions Computers C(35), 1035-1044.

Clarke, E. & Emerson, E. A. (1981), Design and synthesis of synchronization
skeletons for branching time temporal logic, in 'Logics of Programs:
Workshop', Vol. 131 of Lecture Notes in Computer Science, Springer
Verlag, pp. 52-71.

Clarke, E., Emerson, E. & Sistla, A. (1986), 'Automatic verification of finite­
state concurrent systems using temporal logic specifications', A CM
7ransactions On Programming Languages and Systems 8(2), 244-263.

!washita, H., Nakata, T. & Hirose, F. (1996), CTL model checking based on
forward state traversal, in 'ICCAD'96', p. 82.

Using induction and BDDs to model check invariants 213

Madre, J.-C. (1990), PRIAM Un outil de verification formelle des cir­
cuits integres digitaux, PhD thesis, Ecole nationale superieure des
telecommunications, Paris, France. 90 E 007.

McMillan, K. (1993), Symbolic Model Checking, Kluwer Academic Publishers.
Queille, J.-P. & Sifakis, J. (1981), Specification and verification of concurrent

systems in CESAR, in 'Procs. 5th international symposium on pro­
gramming', Vol. 137 of Lecture Notes in Computer Science, Springer
Verlag, pp. 244-263.

Tarski, A. {1955), 'A lattice-theoretical fixpoint theorem and its applications',
Pacific J. Math pp. 285-309.

8 BIOGRAPHY

David Deharbe got his PhD in Computer Science in 1996 from Universite
Joseph Fourier, Grenoble, France. He stayed for 2 years at Carnegie Mellon
University, School of Computer Science as a Visiting Researcher. Since March
1997, he is substitute professor at Universidade Federal do Rio Grande do
Norte, in the Department of Computer Science and Applied Mathematics
{DIMAp). His main research interests include formal verification of hardware
designs, and semantics of hardware description languages.

Anamaria Martins Moreira got her PhD in Computer Science in 1995 from
Institut National Polytechnique de Grenoble, Grenoble, France. She stayed
for 18 months at Carnegie Mellon University, School of Computer Science
as a Visiting Researcher. Since March 1997, she is working at Universidade
Federal do Rio Grande do Norte, in the Department of Computer Science and
Applied Mathematics (DIMAp). Her main research interests include formal
specification theory and applications.

