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Abstract 
We present an inductive characterization for an invariant to stand in a given 
finite-state transition system. We show how this characterization can be com­
puted by means of BDD-based operations, without performing a fixpoint it­
eration over sets of states as the CTL symbolic model checking algorithm 
does. 

1 INTRODUCTION 

Model checking is an algorithm for computing the truth of a formula expressed 
in some logic in a given model. Clarke & Emerson (1981) and Queille & Sifakis 
(1981) presented independently a fully automatic model checking algorithm 
for the branching time temporal logic CTL in finite-state transition systems, 
linear in the size of the formula and in the size of the model. This algorithm 
has been used to verify systems of up to several million states and transi­
tions (Clarke, Emerson & Sistla 1986), which is enough in practice only for 
small systems. 

A big step forward was made when McMillan (1993) proposed a new model 
checking algorithm for CTL, based on fixpoint computations of sets of states. 
In this algorithm, called symbolic model checking, binary decision diagrams 
(Bryant 1986) are used to represent both the transitions and the states of the 
model. Since sets of states are represented in intention by their characteristic 
functions, the size of the verified model is not bound by the memory of the 
computer carrying the verification and it is possible to verify systems that 
have several orders of magnitude more states. 

However, most of the systems designed today are much larger and, in or­
der to achieve verification, symbolic model checking must be combined, often 
manually, with other techniques, such as abstraction and composition. It is 
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important to note that most of the involved techniques are only good in a 
heuristic sense: although theoretically their computational complexity is ex­
tremely large, practically, on many examples, they prove to be efficient. Suc­
cessful verification of industrial hardware designs has been possible with these 
techniques. However, even with these combinations, the verification of large 
and complex designs for requires too much resources and is not possible, due 
to the complexity of the computations involved in the fixpoint computations. 

An important class of properties are invariants: a property is an invariant 
of a model if it holds for every reachable state. In practice, specifications are 
often composed of a large number of invariants, e.g. (Anderson, Beame, Burns, 
Chan, Modugno, Notkin & Reese 1996). In this paper we present a theorem 
that gives a sufficient condition for a given property to be an invariant of 
a given model. We then show how the symbolic model checking algorithm 
for CTL can be altered to include to check, using induction, if the sufficient 
condition is realized whenever the property to be proved is an invariant. 

Outline: In Sections 2 to 5, we overview the foundations of symbolic model 
checking: Kripke structures, the class of models considered; binary decision 
diagrams, an efficient data structure to represent such structures; elements of 
fixpoint theory in lattices;_ syntax and semantics of computation tree logic. 
In Section 6, we present the main result of the paper: a sufficient condition 
for a given property to be an invariant of a given model. We also show how 
to incorporate the computation of this sufficient condition in CTL model 
checking. 

2 KRIPKE STRUCTURES 

Let P be a finite set of boolean propositions. A Kripke structure over P is a 
quadruple M = (S, T, I, L) where: 

• S is a finite set of states. 
• T ~ S x S is a transition relation, such that 'V8 E S, 381 E S, (8, 81) E T. 
• I C S is the set of initial states. 
• L -;- S --+ 2P is a labeling function. L is injective and associates with each 

state a set of boolean propositions true in the state. 

A path 1r in the Kripke structure M is an infinite sequence of states 8 1 , 82, ... 

such that 'Vi ~ 1, (8i, 8i+I) E T. 1r(i) is the ith state of 1r. The set of states 
reachable from I, denoted RS, is the set of states 8 such that there is a path 
from an initial state to this state: 

RS = {8 E S l37r, ((1r(1) E I) 1\ 3i ~ 1, (1r(i) = 8))} (1) 

A property I is an invariant of M, if I is true of each state 8 of RS. 
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2.1 Characteristic functions 

Let M = (S, T, I, L) be a Kripke structure over P = {v1, .•. , vn}· Let v 

denote ( v1 , ... Vn). The characteristic function of a state s E S, denoted [ s], 
is defined as: 

[s](v) = (( 1\ v·) A ( 1\ v·)) 
v;EL(•) 

1 
v;fL(•) 

1 

The definition of the characteristic function is extended to sets of states with 
the following definitions: 

[{}](v) = false 

[{x} U X](v) = [x](v) V [X](v) 

Let P' = { v~, ... v~} be a set of fresh boolean propositions. The character­
istic function of a transition t = (s1 , s2 ) E T, denoted [t], is defined as: 

[t](v, v') = [s1](v) A [s2](v') 

This definition can be extended to represent sets of transitions as for sets of 
states. 

To simplify notations, in the rest of the paper we will identify [X] with X. 

2.2 State space traversal 

Let M = (S, T, I, L) be a Kripke structure over P. The image of a set of states 
X ~ S is the set of states that can be reached in one transition from X: 

{s E S !3s' EX, (s', s) E T} 

The characteristic function of the image of X, denoted Img(X), is: 

Img(X)(v') = 3v,X(v) AT(v, v') 

Conversely, the inverse image of a set of states X ~ S, is the set of states 
from which X can be reached in one transition: 

{s E Sl3s' E X,(s,s') E T} 

The characteristic function of the inverse image of a set of states X, denoted 
Pre(X), is: 

Pre(X)(v') = 3v',X(v')AT(v,v') 
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3 BINARY DECISION DIAGRAMS 

Binary Decision Diagrams (BODs for short) form a heuristically efficient data 
structure to represent formulas of the propositional logic. Let P be a totally 
ordered finite set of boolean propositions. Let f be a boolean formula over P, 
bdd(f) is the BOD representing J, and lbdd(f)l is the size if this BOD. Bryant 
(1986) showed that BODs are a canonical representation: two equivalent for­
mulas are represented with the same BOD: 

f ¢:> g iff bdd(f) = bdd(g) 

Moreover, most boolean operations can be performed efficiently with BODs. 
Let lbl denote the size of BOD b: 

• bdd(--.J) is computed in constant time 0(1)*. 
• bdd(f V g) is realized in O(lbdd(f)l-lbdd(g)l). 
• bdd(3x, f) is performed in O(lbdd(f)i2). 

In this paper, we will use usual boolean operators to denote the corresponding 
operation on BODs, e.g. bdd(f) V bdd(g) = bdd(f V g). 

We explain the basic principles of the BOD representation on an example. 
Fig. 1 presents the binary decision tree for the 2-bit comparison: x1 <=> y1 1\ 

x2 ¢:> y2 • The binary tree representation of a formula is exponential in the 
number of free boolean propositions in the formula. 

Figure 1 Binary tree for x1 <=> Yl 1\ x2 <=> Y2. 

The corresponding BOD is obtained by repeatedly applying the following 
rules: 

• Actually, negation on BDDs as presented in (Bryant 1986) is a linear operation. However, 
Madre (1990) proposed a slight modification of the data structure that resulted in reducing 
the negation to a constant operation. Schematically, the modification consists in tagging 
edges and identifying the representations of f and -.f. Current BDD packages integrate 
this modification. 
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• remove duplicate terminal vertices, 
• remove duplicate vertices bottom-up, 
• remove opposite vertices, 
• remove redundant tests. 

Fig. 2 presents the BDD of the 2 bit comparator with ordering x 1 < y1 < x2 < 
y2 • For ann-bit comparator, the BDD representation is linear with ordering 
x1 < Yl < . . . < Xn < Yn and thus is exponentially better than the binary 
tree representation. However, with ordering x1 < ... < Xn < Y1 < ... < Yn, 
the BDD representation is exponential. · 

Figure 2 BDD for x1 <::} Y1 A x2 <::} Y2· 

Bryant (1986} showed that some functions have an exponential BDD rep­
resentation for any variable ordering, and that finding the optimum variable 
ordering is NP-hard. However, in practice, heuristic methods generally achieve 
a good variable ordering, when such ordering exists. 

In a Kripke structure, states, transitions and sets thereof can be character­
ized with propositional logic formulas. These formulas can be represented and 
manipulated via their BDD representation. Therefore, BDDs are an efficient 
data structure to perform computations on Kripke structures. 

4 LATTICES AND FIXPOINTS 

A lattice is a set, a partial order on the elements of this set, a least element 
1., and a greatest element T. 

Let P be a finite set of atomic propositions. Let M = (8, T, I, L} be a finite 
Kripke structure over P. We consider the lattice (25 , ~) of subsets of S with 
set inclusion as the ordering. The empty set {} and S are respectively the least 
and greatest elements of this lattice. Since a subset of S can be identified with 
its characteristic function, this lattice can also be interpreted as the lattice 
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of characteristic functions, with boolean implication as ordering, false is the 

least element, and the characteristic function of S is the greatest element. 
A function r : 28 -t 28 is called a predicate transfonner. r is monotonic 

iff P ~ Q implies r(P) ~ r(Q). Tarski (1955) showed that if r is monotonic, 

r has a least fixpoint, denoted lfpZ[r(Z)], and a greatest fixpoint, denoted 
gfpZ[r(Z)]: 

lfpZ[r(Z)] = n{Z I r(Z) = Z} 
gfpZ[r(Z)] = U{Z I r(Z) = Z} 

5 COMPUTATION TREE LOGIC 

5.1 Syntax 

= Uiri(Jalse) 
niri(true) 

The set Tcti(P) of Computation Tree Logic (CTL for short) formulas over a 

set of propositions P is the smallest set such that P ~ Tct1(P) and, iff and 

g are in Tctl(P), then.,/, f /\ g, EX/, EG/, and E[/Ug] are in Tcti(P). 

5.2 Semantics 

The semantics of CTL are defined with respect to a Kripke structure M = 
(S, T, I, L) over a set of atomic propositions P. Iff is in Tctl(P), M, s f= f 

means that f holds at state s of M. 
Let f and g be in Tctl(P), then 

1. M, s f= p iff p E L(s). 
2. M, sF=.,/ iff M, s Ff· 
3. M, s F= f /\ g iff M, s F= f and M, s F= g. 

4. M, s f= EX/ iff there exists a state s' of M such that (s, 8 1) E T and 
81 f= f. 8 has a successor where f is valid. 

5. M, 8 f= EG/ iff there exists a path 1r of M such that 7r(1) = 8 and 'Vi ~ 
1, M, 1r(i) f= f. 8 is at the start of a path where f holds globally. 

6. M, 8 f= E[!Ug] iff there exists a path 1r of M such that 7r(1) = 8 and and 
3i ~ 1, M, 1r{l) I= g /\ 'Vj, i > j ~ 1, M, 1r(j) I= f. 8 is at the start of a path 
where g holds eventually and f holds until g becomes valid. 

A formula f is valid in structure M if it is valid for all initial states: 

M f= f iff'</8 E I,M,8 f= f. 
CTL symbolic model checking uses the BOD representations of the char­

acteristic functions of sets of states and transitions. The algorithm is based 
on the fixpoint characterization of the different temporal operators of CTL 
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defined in (Clarke & Emerson 1981). For instance, 

E(!Ug] = lfpZ[g V (! 1\ EXZ)] 

Invariants in CTL: Note that, in CTL, an invariant has the form AGf, 
which is ...,E[ trueU -,f]. It therefore requires the computation of a least fixpoint 
associated to the operator EU. This fixpoint can be implemented with a 
loop construct that repeatedly performs inverse image computations until the 
fixpoint is reached*. In the worst case, the number of iterations is lSI, the 
number of states of the model. 

6 SUFFICIENT CONDITION OF INVARIANCE 

Let M = (S, T, I, L) be a Kripke structure over P. In this section, we introduce 
a predicate transformer rover the lattice (25 , ~)and use it to characterize the 
reachable states as a least fixpoint. We then show, using induction principles, 
that if, in M, the initial states I satisfy f and iff is preserved by the transition 
relation T, then f is an invariant of M. Representing characteristic functions 
with BDDs, it is possible to decide whether this condition holds with the 
conventional symbolic model checking algorithm. 

6.1 Theoretical results 

Let r be the predicate transformer defined as r(Z) = IUZUimg(Z). We are 
first going to show that r is monotonic (Lemma 1). Then we prove that the 
set of reachable states is the least fixpoint of r (Lemma 2 and Theorem 1). 
We then give the sufficient condition for a property to be an invariant of M 
(Lemma 3 and Theorem 2). 

Lemma 1 The predicate transformer r(Z) =I U Z U Img(Z) is monotonic. 

Proof: Let P1 ~ P2. To prove that r(PI) ~ r(P2), consider a states E r(PI). 
Thus, s E I or s E P1 or s E Img(PI): 

• if s E I, then s E r(P2). 
• if s E P1, since P1 ~ P2, then s E P2 as well, and s E r(P2). 
• if s E Img(PI), since P1 ~ P2, then Img(P1 ) E lmg(P2) and s E lmg(P2); 

thus s E r(P2). 

*!washita, Nakata & Hirose {1996) proposed a variant algorithm for a fragment of CTL, 
based on image computations. In this work, the verification of invariant also requires a 
fixpoint computation. 
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Lemma 2 The set of reachable states RS is a fixpoint of the predicate trans­
former r(Z) =I U Z U Img(Z). 

Proof: From the definition ofT, the inclusion RS ~ r(RS) is trivial. From 
the definition of RS, we also have the inclusions I~ RS and Img(RS) ~ RS. 
Therefore r(RS) ~ RS. Thus, RS is a fixpoint. D 

Theorem 1 (Characterization of the reachable states) The set of reach­
able states RS is the least fixpoint of the predicate transformer r(Z) = I U 
ZUimg(Z). 

Proof: Since M is finite and Tis monotonic (from Lemma 1}, the least fix­
point is UiTi(/alse}. It is therefore sufficient to show that RS = lfpZ[r(Z)) = 
Uiri(/alse). 

• By application of Tarski's theorem, and since RS is a fixpoint ofT (from 
Lemma 2}, then UiTi(/alse) = lfp(Z)[r(Z)) ~ RS. 

• RS ~ Uiri(Jalse} is proved by induction on the position on the paths for 
each the reachable states. From Equation 1, if 8 e RS, then there is a path 
'II" = 81,82, ... with 81 E I and 3i ~ 1,8i = s. We show that, if 8 appears 
at the i position on a path, then 8 E ri(/alse}. 

- The basis case is trivial: If i = 1, then s E I, and therefore 8 E r 1 (false) = 
I. 

- The induction hypothesis states that the above property stands for every 
s and every i ~ n. Let s be a state of a path s1, ... Sn, Sn+l• such that 
8n+l = 8. By induction hypothesis, Sn E rn(false). Since (8n 1 8) E T, 
then 8 E Img(rn(false)) and therefore s E r(rn(false)) = Tn+l(Jalse). D 

Lemma 3 Let M = (S, T, I, L) be a Kripke structure. Iff is valid for all 
initials states of M (i.e. I ~ I}, and T preserves f (i.e. Img(f) ~ f }, then f 
is a fixpoint of the predicate transformer r(Z) =I U Z U Img(Z). 

Proof: Trivially, I~ I U I U Img(f) = r(f}. Also, by hypothesis I~ f and 
Img(f) ~I, thus r(f) =I U I U Img(f) ~f. D 

Theorem 2 (SufBcient condition for invariance) Let M = {S, T, I, L) 
be a Kripke structure. Iff is valid for all initials states of M (i.e. I~ f }, and 
T preserves f (i.e. Img(f) ~f), then all reachable states verify 1: RS ~f. 
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routine ModelCheckA {var f: Tcn(P), var M: model}: boolean 
var I: BDD 
I t- M.I -- Initial states of M 
if (f = AGg) then 

else 

var G: BDD; 
G t- ModelCheck(g,M) 
if (I :::} G) then 

else 

if (Img(G, M) :::} G) then 
-t true 

else 
-t (I:::} ModelCheck{f, M)) 

end if 

-t false 
end if 

-t (I:::} ModelCheck{f, M)) 
end if 

end routine M odelCheckA 

Figure 3 Modified model checking algorithm 

Proof: Consider the predicate transformer T. Since I ~ f and Img(f) ~ J, 
applying Lemma 3, f is a fixpoint of r. Also from Theorem 1, RS is the least 
fixpoint ofT. Thus, RS ~f. 0 

Note that the condition I~ f and Img(f) ~ f is only a sufficient and not 
a necessary condition for RS ~f. As a matter of fact, let 8 E (S\RS) nf be a 
non-reachable state where f stands. If I mg( { 8} )-,~f, the sufficient condition 
is not satisfied, but we cannot conclude about RS ~ f. 

6.2 Application 

Let M odelCheck be the conventional CTL symbolic model checking algo­
rithm defined in (McMillan 1993). This algorithm has been implemented in 
several tools and successfully used to verify hardware, software and protocols 
specifications. 

ModelCheck takes as argument a CTL formula f to be verified and returns 
true or false. Figure 3 presents M odelCheckA, an alternative algorithm. In 
ModelCheckA, iff is of the form AGg, the conditions presented in Theorem 2 
are tested. If they are verified, then g is an invariant of M and f = AGg holds. 

Note that, on the one hand, the complexity of the test for the validity of 
the sufficient condition is the complexity of one call to Img. On the other 
hand, the complexity of conventional symbolic model checking, in the worst 
case, corresponds to lSI calls to Img. Therefore, if the test for the sufficient 



212 Part Four Decision Graphs 

condition fails, the additional complexity is that of one call to I mg. However, 
if the test succeeds, the gain can be equivalent to up to lSI - 1 calls to I mg. 
Recall that, for a sequential circuit with n flip-flops, lSI = 2n. This series of 
observations leads us to be optimistic about the usefulness of the proposed 
modification. 

7 CONCLUSION 

The idea at the basis of this paper is that if, in a given model M, for a given 
property f on the states of M, we can show that f is valid for all initial 
states, and that f is preserved by the transitions of M, then f is an invariant 
of M. This test for validity seems to compare advantageously to conventional 
symbolic model checking techniques. 

After a rapid overview of different formal tools involved in symbolic model 
checking, we define a sufficient condition for a property to be an invariant of a 
finite Kripke structure. A proof provides a theoretical justification. We show 
how to modify the conventional CTL symbolic model checking algorithm to 
include a test for this condition. This test can be implemented using BDDs 
and is based in an inductive characterization of invariants. 

We are currently working to incorporate these ideas into the verification tool 
SMV (McMillan 1993) as a heuristic to check a family of properties. Once this 
implementation is realized, we plan to study the practical usefulness of the 
heuristic, i.e. that some invariant properties can actually be checked without 
computing the fixpoint of the conventional algorithm. 
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