
12

Implementation of a
Multiple-Domain Decision
Diagram Package

Stefan H oreth
Department of Electrical Engineering
Darmstadt University of Technology
Merckstr. 25, 64283 Darmstadt, Germany
E-Mail: sth@rs.E-Technik. TH-Darmstadt.DE

Abstract
Graph-based symbolic techniques are part of many synthesis and verification
tools. Problems occur if an application requires multiple graph types to model
complex designs, since there are many exponential gaps (for time and space)
between different types of decision diagrams.

This paper presents hybrid graph manipulation algorithms that integrate
common decision diagrams into a single graph manipulation package. An im­
portant feature of the presented work is that graph operations are no longer
restricted to a single graph type or to a single decomposition type list. Oper­
ations on multiple graph types are using an implicit type conversion scheme
that prevents from many exponential gaps between different types of decision
diagrams.

The package implementation provides the graph types BDD, FDD,
OKFDD, MTBDD, EVBDD, BMD, *BMD, p*BMD, HDD, K*BMD and
ZDD in order to represent boolean and integer functions as well as sets. Ap­
plications of the presented method exist virtually in any approach based on
decision diagrams. The paper investigates manipulation of bit-level and word­
level functions as well as bit selection from arithmetic expressions.

A convenient extension of DD packages is the ability to dynamically adapt
variable ordering. This technique called 'sifting' has been first introduced for
BDDs. This paper defines an extension to *BMDs, called positive *BMDs
(p*BMDs), that allows for dynamic variable reordering. Reordering techniques
in the package can be applied even if multiple graph types are used together.

Keywords
Hybrid graph algorithms, p*BMD, dynamic reordering, decision diagrams

@IFIP 1997. Published by Chapman & Hall

186 Part Four Decision Graphs

1 INTRODUCTION

Graph-based representations of discrete functions have always been a major
concern for VLSI CAD. State-of-the-art symbolic techniques for the synthesis
and verification of digital circuits are often based on decision diagrams (DDs).

Naturally, different graph types have been proposed for solving specialized
design tasks. Most notably, BDDs (Bryant 1986) are used for efficient repre­
sentation and manipulation of boolean functions, while OKFDDs (Sarabi et
al. 1994) have been proven to be the most compact boolean decision diagram
(cf. (Drechsler et al. 1995)). OKFDDs can be used to resemble BDDs as well
as functional decision diagrams (FDDs) (Kebschull et al. 1992).

Arithmetic decision diagrams are mappings from boolean values into the
integer domain. They can be used to model bit-level (boolean) functionality
as well as word-level (arithmetic) circuit specifications. Examples of arith­
metic decision diagrams are *BMD (Bryant et al. 1995), MTBDD (McMillan
el al. 1993), EVBDD (Sastry et al. 1992), HDD (Zhao et al. 1995) or
K*BMD (Drechsler et al. 1996). Arithmetic decision diagrams have been suc­
cessfully applied where (vectors of) boolean dec~sion diagrams fail, e.g. for
verification of the multiplier function (Chen et al. 1994) or in word-level model
checking (Zhao et al. 1996).

On the contrary, there exist applications, where boolean decision diagrams
are more compact than arithmetic graph types. For example, selecting the
least significant bit (LSB) in a BMD by performing a modulo-2 operation is
an easy task if the result is represented as an FDD. In this case, the final graph
is obtained simply by replacing the (integer) terminal nodes of the BMD with
their LSB and reducing the graph. The FDD representation of the selected
bit is guaranteed to be smaller (or equal) to the size of the original BMD,
while the size of representations like *BMD or BDD can be much larger (i.e.
worst-case exponential in the number of variables). An overview of exponential
gaps between decision diagrams is given in (Enders et al. 1997). The paper
proves, that there exists no single graph type that can represent arithmetic
and boolean functions with the same efficiency.

Consequently, it is necessary to include multiple graph types in a single
graph manipulation package. For the design of such a package, it is crucial
to support a flexible graph manipulation scheme that avoids explicit type
conversions as much as possible.

Package implementations exist, that provide a basic set of graph types
(e.g. the CUDD package or the work of Zhao on HDDs). However, these
implementations are restricted in the sense tliat arguments of operations must
be of the same graph type and type conversions are always explicit.

This paper presents an integrating, algebraic approach to manipulation of
decision diagrams. Functions are represented by common decision diagrams,
but package operations are no longer restricted to a particular graph type
rather than the algebraic domain of the represented functions. For example,

A multiple-domain decision diagram package 187

a boolean AND operation can take a *BMD (representing a boolean func­
tion) and a BOD as arguments and return any graph type that can represent
boolean functions. Type conversion of arguments is done implicitly while con­
structing the result.

The package implementation supports the domains Boolean, Integer, and
Sets. Supported graph types are BODs, FDDs, OKFDDs, (*)BMDs, p*BMDs,
MTBDDs, EVBDDs, HODs, K*BMDs and ZOOs (Minato 1993). New graph
types can be easily added if they are based on Kronecker decompositions. The
package also supports multiple instantiations of the same graph type in order
to have multiple decomposition type lists for OKFDDs, HODs and K*BMDs.

A serious restriction of DO packages is that graphs must share a total or­
dering of variables. A convenient package extension is therefore the ability to
dynamically adapt the ordering of variables (Yajima et al. 1991) without user
intervention and without being visible to the user's application. This method
called 'sifting' has been first introduced for BODs (Rudell1993) and has been
extended to OKFDDs (Drechsler et al. 1995). However, efficient implementa­
tions of this functionality are missing for important graph types like *BMDs
or K*BMDs.

This paper presents a modification of *BMDs, called positive *BMDs
(p*BMDs), that allows to apply dynamic reordering techniques. Based on
this extension, the presented DO package supports local exchange of variables
even if different graph types share sets of variables. With the exception of
*BMDs and K*BMDs, local variable reordering is supported for all graph
types mentioned above.

2 ALGEBRAIC DOMAINS AND DECISION DIAGRAMS

Current decision diagram packages describe operations in terms of graphs and
restrict arguments of operations to a single graph type. However, from a math­
ematical point of view, this is not required. Arguments of operations must be
from a particular algebraic domain, not of a particular type of representation.
In order to support a more flexible manipulation scheme, the notion of the
native domain of a decision diagram is introduced. The native domain of a
decision diagram is the "largest" domain where this graph type can represent
all possible domain functions.

Figure 1 shows common decision diagrams and their native domains. Ex­
amples of boolean decision diagrams (native domain B) are BODs, FDDs and
OKFDDs. DDs representing integer function (native domain Z) are MTBDD,
EVBDD, *BMD, HDD or K*BMD. Zero-suppressed DDs (ZDD) are repre­
sentations of sets. This scheme could be extended to super-domains of the
integers like rational or complex numbers.

Although decision diagrams have a fixed native domain, they can be used to
describe functions in other domains as well. For example, a *BMD describing

188 Part Four Decision Graphs

,
I

I
I
I
I
I
I
I
1
I
1

' ' \

, ,

,,, .. ----- ..
,

,''Q ,

\
\
\

' ' ' ' ' ' \
\
\

, , ,

I
\

' I

, , ,

I

Figure 1 Algebraic Domains and Decision Diagrams.

a 0/1 integer-valued function is interpreted as a representation of a boolean
function if its current domain is B. Analogously a BDD can be treated as a
representation of a function in the integer domain. In general, any graph type
from a super-domain can be used to describe any function in a {true) sub­
domain. Clearly, graph types from sub-domains can only represent a restricted
set of functions in a super-domain.

The presented DD package allows any combination of graph types for pack­
age operations, as long as argument graphs have proper current domains. Op­
erations are classified according to the supported domains and can only return
graph types with proper native domain. Additionally, there exist functions to
explicitly change the domain and/or the type of graph representations.

Note that the current domain of aDD is a graph property that is kept at
the user level - it is not part of the graph representation.

2.1 Basic Definitions

This section defines basic notations and m8.1lipulation functions used for the
description of algorithms working on different graph types. In the sequel,
only reduced graphs are considered. Graph structure is defined in the usual
way, but - in addition - inner nodes are labelled with the graph type and
with the decomposition type. Edges denote functions and can contain edge
labels. Terminal nodes simply contain symbols representing constant values.
All graph types share the representation of constant symbols. In particular,
the representation of the boolean constants true and false is identical to the

A multiple-domain decision diagram package 189

integer constants '1' and '0', respectively. Constant symbols are interpreted
depending on their current domain or by the operation that encounters them.

Semantics are given to the graph structure by associating nodes with func­
tion decompositions. In the following, a binary decomposition that can be
described in terms of equation {1), will be called a Kronecker decomposition.
Functions dlow(xi) and dhigh(Xi) only depend on the boolean variable Xi and
(or) on constant values. Operations + and • represent addition and multipli­
cation in the domain of function f.

f = dlow(Xi)*flow(Xl,···•Xi-l,Xi+l•···•Xn)+
dhigh(Xi) * fhigh(Xl, · · ·, Xi-1, Xi+l, · · ·, Xn) {1)

For Kronecker decompositions, not all pairs of functions dlow(xi), dhigh(xi)
are allowed or useful{Drechsler et al. 1995). In the sequel, a valid tuple

will be referred to as the type of the decomposition. Decomposition types
are associated to the variables Xi with the help of a decomposition type list
(DTL):

dtl := (dt(xt), ... ,dt(xn)).

Typically, only a limited number of decomposition types are used in a DTL.
For example, the DTL for BODs consist of Shannon decompositions only (i.e.
for all variables dtBDD(Xi) := [$,A, Xi, Xi]) while BMDs only use the integer
Davio decomposition dtBM D(xi) := [+, ·, 1, Xi]· Note that all graph types of
figure 1 are based on Kronecker decompositions.

While the decomposition type is used to describe the function of nodes,
attributed edges are often used to modify the function represented at the
edges of the graph.

Minato ((Sasao 1996), pg.lO) describes a general method to define an at­
tributed edge. It is based on mappings mt : :F -t :F where :F is the set of
functions to be represented:

1. Partition :F into a number of subsets :Fo, :Ft, ... , :Fn·
2. For any 1 ~ k ~ n, define a mapping mt : (:F -t :F), such that for any

function It E :Ft there is a unique /o E :Fo to satisfy It = mt(/o).

Consequently, an edge label mt modifies the function represented at a node
into the function !edge = mt(/node)·

Let M be the set of possible mappings mt supported by the graph repre­
sentation. Based on the definitions for the set M and decomposition type list

190 Part Four Decision Graphs

dtl, the graph type T can be defined as the pair

T := [M, dtl]. (2)

For example, the graph type BDD is easily described by the pair

TBDD = [{]}, S-dtlj,

where S-dtl denotes a DTL with Shannon decompositions only.
Based on the definitions for the graph type, basic graph manipulation func­

tions can be introduced.
The function edger is used to construct graphs of type r. It reduces the

node consisting of variable x and the successors Fi.~w, Fhigh and returns a
labelled edge Fr:

Other basic graph operations are functions to compute the representation
of cofactors F;=O• F;=l from the graph representation of Fr by replacing
variable x in Fr with constant symbols. Finally, the inverse function succr is
used to obtain graph successors from cofactor representations:

Note that functions edger and succr as well as the cofactor functions only
depend on a single graph type r. Their implementation is discussed in the
original work for the respective graph type and is typically very simple. For
example, the successor function for BDDs uses identity to obtain the pair
[F1~w• Fhigh] from (F;=O• F;=1).

2.2 Hybrid Graph Algorithms

Manipulation of decision diagrams is often based on depth-first algorithms.
An important class of these algorithms are so-called Apply algorithms which
proceed by recursively applying an operation to graph predecessor functions.

This section describes the core of the presented package, which is based on
three different flavours of Apply algorithms.

Virtually any graph operation is implemented as a recursive function that
consists of a termination test and a recursive part (the Apply step). Whenever
only a single graph type is involved, algorithms from the original work can be
used. Otherwise, arguments of an operation are expanded recursively until a
return value is obtained. If the graph type of the result is different from the

A multiple-domain decision diagram package 191

graph type(s) of the arguments, the function expansion is continued until the
return value is a constant function.

The most general (functional) approach to evaluate an operation is to follow
a domain-partitioning paradigm. This involves computing orthogonal expan­
sions for arguments and result and than convert the result to the desired
decomposition type, i.e. use function succr to obtain graph successor func­
tions.

Theorem 1 (Functional Apply) Any binary operation o can be evaluated
based on orthogonal {Shannon type) expansions of argument functions:

r = fog

= X* Uz=l 0 gz=I) + (•x) * Ux=O 0 gz=O)

Functions fz=o, fz=l and gz=O, 9z=l are the cofactors off and g, respectively.
•X denotes the complement of boolean variable x, i.e. •x = x if r is a boolean
function and •x = (1- x) if the operation returns an integer result.

Figure 2 outlines the Apply step based on theorem 1. The recursive function
computes the graph representation nr of function r with graph type T. p.P, Qt/J

are graph representations of type¢ and t/J for functions f and g, respectively.
• denotes an arbitrary binary graph operation. The algorithm assumes, that

1 funct functionaLapply(•, r, FtP, G"') =
2 comment: computes nr = FtP • G"'

3 Jif (Iookup_CT([•, r, FIP, GV>J) -t SUCCESS)

4 then

5 nr = CT_entryJor([•, T, p.P, G"']);

6 else

7 x = top_variable(FtP, GtP);

8 RT - p.P •Gt/1 . z=O - x=O x=O'

9 nr - p.P • c"' · x=l - x=l x=l'

10 [Riow• Rhigh] = succT(x, n;=O• n;=l);

11 Rr = edger(x, R[ow' Rhigh);

12 insertJn_CT(Rr, [•, r, F<P, G"']); fi· _,

13 RT; J.

Figure 2 Functional Apply Algorithm.

192 Part Four Decision Graphs

pt/J, G¢ are graphs with proper current domain and that type T can hold the
result. In the implementation, these conditions can easily be checked before
calling the operation.

Functional Apply is very similar to Apply algorithms known from literature
but in addition it handles graph types. The algorithm first checks a cache
(the s<rcalled Computed-Table, CT) if a previous operation can be reused.
Otherwise it selects the next variable x (found on top of either pt/J or G¢)
and recursively evaluates the operation based on cofactoring. The final result
is obtained through functions succr and edger.

Please observe that any graph constructing sub-function of the functional
Apply algorithm only depends on a single graph type. As a consequence, the
algorithm can handle arbitrary types and new types can easily be added by
providing the corresponding graph constructing functions.

While this algorithm is sufficient to compute any binary graph operation, it
can be improved depending on operation •· Simplified versions exist for addi­
tion and multiplication in the domain of function r. In both cases, computa­
tion of cofactors (lines 8,9 in figure 2) as well as computation of the successor
function succr (line 10) can be avoided.

Theorem 2 (Structural Apply for Addition) If both argument graphs
and the result use the same decomposition type for variable x, addition in
the native domain of graphs can be simplified according to:

f + 9 = (dlow(x) *flow+ dhigh(x) */high)+
(dlow(x) * 91ow + dhigh(x) * 9high)

= dlow(x) *(/low +glow)+ dhigh(x) *(/high+ 9high)·

Note that neither the graph types used for f and g, nor the whole DTLs need
to be the same.

As a special case of theorem 2, computation of function succr can also be
avoided if decomposition types of arguments can be converted before applying
addition.

Example 1 Consider addition of two functions f and g, where f is given
as a moment decomposition ("-+ BMD}, while g is represented using integer
Shannon expansion ("-+ MTBDD). After changing the decomposition type of
variable x in g, for the moment expanded result r one has

r Tlow + X • Thigh

[flow+ X· /high]+ [x · 9high + (1- x) · 91ow]

= (flow+ glow)+ X· [/high+ (ghigh -glow)].

Furthermore, if function g is independent of variable x, conversion of the

A multiple-domain decision diagram package 193

decomposition type can be skipped since ghigh = glow = g. In this case,
theorem 2 can be applied, even if the native domain of g differs from the
native domain of r. An important application of this observation is addition
and subtraction of a boolean graph type and an integer graph type (s.a.
section 5.2).

Similarly, there is a simplification for multiplication if one argument is in­
dependent of variable x:

Theorem 3 (Structural Apply for Multiplication) Multiplication in
the native domain of the result graph can be simplified, if at least one
argument has the same native domain as the result and if the other argument
is independent of variable x:

/ * c = (dzow(x) *flow+ dhigh(x) */high)* c
= dzow(x) * (/zow *c)+ dhigh(x) *(/high* c)

Thus, multiplication of Kronecker functions is an 'easy' operation, if both
functions depend on disjoint sets of variables.

As demonstrated in example 1, the decomposition type of f can be changed
if it doesn't match the decomposition type used in the result graph.

Please observe, that both structural Apply algorithms and their variants
for the special cases are advantageous to functional Apply. For all structural
Apply algorithms, at least the computation of function succr is avoided. In
some cases, decomposition types must be changed instead of computing co­
factors. On the assumption that the target graph type is adequate, arguments
of structural Apply are converted to the decomposition type of the result in
an early stage of the traversal.

On the contrary, functional Apply is restricted to orthogonal (Shannon­
type) expansions for the graph traversal phase, while different decompositions
might be used in the graph construction phase. Since exponential gaps exist
between graph types using different expansions, functional Apply is poten­
tially an exponential operation.

3 MULTIPLE GRAPH TYPES AND VARIABLE REORDERING

DD packages maintaining strong canonical forms are restricted to a total or­
dering of input variables. An important feature of aDD package is therefore
the ability to dynamically change variable ordering during or in-between oper­
ations without user intervention. Variable sifting has been shown to be very ef­
fective for BDDs (Rudell1993) and has been extended to OKFDDs (Drechsler
et al. 1995).

However, not all graph representations can be sifted. From the graph types
of figure 1, *BMDs and K*BMDs are such a case. A sufficient condition to

194 Part Four Decision Graphs

swap
~

0 X

[Q])n''
Figure 3 *BMD for f = x - 2y + 2xy

make dynamic reordering an automated (background) process is that incom­
ing edges to a sifted node must not change during variable swapping. If this
condition holds, the users application can safely copy and manipulate graph
pointers (edges) without interfering with the reordering mechanism.

For *BMDs, a function obtains its root label by computing the greatest
common divisor (gcd) of the root labels of successor functions. Conversely,
the function represented at an edge is obtained by multiplying the edge value
m with the node function:

Starting from terminal values, the root label is obtained in a bottom-up man­
ner. Since for *BMDs hold !tow = fz=O and /high = fz=l - fz=O• and

m gcd(/tow, /high)

gcd(/:z=O• fz=l - fz=O)
= gcd(/z=O• fz=t)

the root label of a *BMD can also be obtained from the Shannon expanded
tree representation of the graph. As a consequence, the root label of a *BMD
is simply the greatest common divisor of all function values. Its absolute value
is independent of variable ordering and will not change during sifting.

However, the sign of the root label is obtained from the sign of the successor
in the low direction. If !tow is the constant function zero, the sign is obtained
from !high· Since flow might change during sifting, the sign of the root label
will probably change as well.

Example 2 In Figure 3 two *BMDs for function f = x- 2y + 2xy under
different variable orderings are given. As can easily be seen the root node of
the two *BMDs differ, but the ordering of the left *BMD can be transformed
to the ordering of the right *BMD by only swapping one pair of neighbour-

A multiple-domain decision diagram package

swap
~

,
[Q]

\
\

Ell
Figure 4 p*BMD for f = x - 2y + 2xy

195

ing variables. Thus, dynamic variable reordering is not a local operation for
*BMDs.

To overcome this limitation, it is sufficient to restrict root labels to positive
values. By this modification, the size of the resulting graph is doubled at
most. Multiplying a positive *BMD (p*BMD) with a positive number is still
a constant-time operation, but multiplication with negative numbers addi­
tionally requires to copy the graph and to negate the terminal values.

Example 3 The p*BMDs for the function from Example 2 are given in Fig­
ure 4. The value at the root node does not change by an exchange of the
variables.

4 DATA STRUCTURES

In the previous sections it has been shown, that hybrid graph manipulation
can be based on a small number of Apply algorithms. Well-known function­
ality like sifting can be supported even in the presence of multiple graph
types. It turns out that also memory requirements for graph representation
are nearly the same as for conventional DD packages.

In the package implementation two byte per node are spent to represent the
additional information. The decomposition type and the type of edge labels
are kept in one byte each, limiting the maximum number of supported label
types and decomposition types very liberally.

Since the same data structures are used for all graphs, the size of an edge
depends on the most complex graph type being configured. Currently, up to
two edge weights are supported increasing the size of an edge from 4 byte to
either 8 byte for arithmetic DDs or 12 byte for K*BMDs. Depending on the
value of two lower bits, an edge weight can either be interpreted as the address
of a multiple precision number or as an 30 bit integer value; the remaining bit
is used for the sign. Constant functions are represented as a labelled edge to

196 Part Four Decision Graphs

a single terminal node. All together, node requirements are either 20, 28 or
36 byte including all memory management overhead.

5 APPLICATIONS AND EXPERIMENTS

Since the presented approach is a true superset of any approach based on Kro­
necker decision diagrams, applications of the package exist virtually in any en­
vironment where decision diagrams can be applied. This section demonstrates
its usefulness for manipulation of bit-level and word-level functions and for
bit selection from arithmetic expressions. Experiments have been made on a
Sun UltraSPARC-170 workstation.

5.1 Control and Data Variables

It is well known, that orthogonal (BDD-like) expansions are very efficient for
the representation of control logic while moment (*BMD-like) decompositions
are often effective for representing data path logic at the word-level.

Hybrid Decision Diagrams are a means to represent arithmetic expressions
that contain control and data variables. As a prerequisite, the variable space
has to be partitioned and decomposition types are used according to the
functionality of the individual variable.

The approach presented in this paper naturally supports representation and
manipulation of those expressions even if variables are both part of the control
logic and part of the data path of a circuit.

Example 4 In figure 5 the Hybrid Decision Diagram for the expression
if (a(O] EB a(1]) then b(O : 1] and for the multiplier function a[O : 1] * b(O : 1]
are shown. The HDD for the conditional expression uses moment decompo­
sitions (pD) to represent the word encoded vector b and integer Shannon de­
compositions (S) to represent the conditional part. In a conventional approach,
this would collide with the representation of the multiplier function which also
depends on variables a[O], a[l]. In the approach presented in this paper, this is
easily solved by using graphs defined over appropriate DTLs. Formally, both
decision diagrams are treated as different graph types.

5.2 Bit-Level and Word-Level Operations

In a first experiment, the word-level representation of a multiple-output
function is computed starting from different graph representations of bit­
level logic. Column Bit-level compares the efficiency of BDDs, FDDs, MTB-

A multiple-domain decision diagram package 197

If (a[O]$a[1]) then b[0:1] a[0:1]*b[0:1]

Figure 5 Multiple Decomposition Types for Individual Variables.

DDs, *BMDs and p*BMDs for representing bit-level output functions. Based
on these differing bit-level representations, the unsigned integer encoding
o = Li 2i · Oi has been computed from the vector of output functions Oi. The
arithmetic function o is represented using MTBDDs, *BMDs and p*BMDs.
Columns time and size depict construction time and final graph size of bit­
level and word-level expressions, respectively. Machine limits have been set to
128 MByte and 1 CPU hour.

Table 1 shows examples with different runtime and space requirements. As
expected, graph types differ significantly for their word-level and bit-level
behaviour. While MTBDD construction at the word-level is often very fast,
*BMDs and p*BMDs tend to be more compact at reasonable runtimes. The
situation is often reversed at the bit-level, where orthogonal expansions are
advantageous.

It is interesting to see, that in all of the examples a combination of different
graph types obtains the best results for runtime and/or graph size.

5.3 Bit Selection

Bit selection is another example where multiple graph types are useful. Sup­
pose we want to select the least significant bit (LSB) from the BMD repre­
sentation of an arithmetic function f. If f is given as an unsigned integer
representation, selecting the LSB is equivalent to computing the parity of f:

odd{!) = odd{ftow +X· !high)

198 Part Four Decision Graphs

Circuit Bit-level Word-level
in out MTBDD *BMD p*BMD

mul8 16 16 time size time size time size time size

BOD 1.7s 9257 8.1s 65280 40.4s 16 39.0s 16
FDD 17.9s 16588 13.4s 47.5s 45.3s
MTBOD 3.6s 11033 8.1s 31.4s 31.6s
*BMD 138.2s 51571 39.4s 6.1s 13.1s
p*BMD 124.7s 56314 33.0s 12.1s 6.0s

C880 60 26 time size time size time size time size

BOD 0.9s 8654 >128M 319.9s 57634 63.2s 113162
FDD 6.9s 27326 319.9s 58.1s
MTBDD 1.8s 8676 364.3s 167.0s
*BMD 352.7s 51591 17l.Os 481.5s
p*BMD 139.3s 99488 174.9s 16.2s

tooJarge 38 3 time size time size time size time size

BOD 19.2s 7082 0.7s 14122 27.8s 11126 12.8s 22241
FDD 18m10s 13926 3.1s

I
31.6s I 17.1s I MTBDD 58.8ls 7158 0.6s 47.9s 31.2s

*BMD > 1h
p*BMD > 1h

div8 16 9 time size time size time size time size

BOD 2.1s 3195 0.5s 4981 4.6s 7263 4.4s 9012
FDD 20.34s 3062 1.1s 5.4s 5.4s
MTBDD 3.72s 3295 0.5s 2.2s 2.2s
*BMD 99.2s 7244 4.1s 0.5s 1.6s
p*BMD 118.6s 9193 4.5s 1.2s 0.6s

Table 1 Multiple graph types in bit- and word-level operations.

Since the parity of a sum is equal to the exclusive-or of the parities, one has:

odd(!) = odd(flow) EB odd(x ·/high) (3)

With x E B, odd(x ·!high) = x 1\ odd(fhigh):

odd(!) = odd(/low) EB (x 1\ odd(fhigh)).

This is already the Reed-Muller decomposition of function odd(!). Con­
sequently, the FDD representation of odd(!) is obtained by (structurally)
traversing the BMD for f until the parity of a terminal case (i.e. the LSB of
an integer number) can be returned. After reducing the graph, the result can­
not be larger than the BMD for f. Typically the FDD will be much smaller,
since the number of different leaf values has been reduced.

Arditi {1996) defines the odd function for *BMDs. For arithmetic graph
types, the exclusive-or in equation (3) can be replaced according to a EB b =

A multiple-domain decision diagram package

a+ b- 2 ·a· b (cf. Chen et al. (1994)).

odd(!) odd(flow) + odd(x ·/high)- 2 · odd(flow) · odd(x ·!high)
odd(/low) +X· [odd(fhigh)- 2 · odd(/low) · odd(fhigh)]

199

Therefore, computing the *BMD of odd(!) requires the multiplication
odd(flow) · odd(fhigh)· Since multiplication of *BMDs can be an exponential
operation, time and/or space requirements to compute odd(!) can be expo­
nentially large as well.

Table 2 summarizes the results for bit selection from arithmetic expressions.
For the presented examples and based on the multiplication algorithm pro­

posed in (Bryant et al. 1995) we have not been able to get beyond word sizes
of 64 bit. The time requirements for bit selection grow exponentially with the
word size. Using the Apply algorithms presented in this paper, word sizes of
up to 256 bit could easily be handled.

The following program has been executed to successively select bits of the
arithmetic expressions msbs0 =a+ band msbso =a· b (a, bare n-bit vectors
given as an unsigned integer encoding):

rror i = 0 to n do

lsbi = odd(msbs;);

msbsi+l = (msbs; -lsbi)/2; od; J

Table 2 compares results for representing bits lsbi with BDDs, FDDs, BMDs
and *BMDs. All functions msbsi are represented with *BMDs. The subtrac­
tion msbsi -lsb; is a hybrid operation between the different graph types used
in the bit level and in the word level representation.

Columns lsb show the total time for bit selection as well as the maximum
size of a single bit. Columns msbs present time and space requirements for
computing the (word encoded) remaining bits. Since, in the example, division
by two is a constant time operation, nearly all of the msbs time is spent for
the subtraction of the word-level *BMD and the bit-level graph type in the
corresponding row.

The examples show, that the hybrid approach clearly outperforms methods
based on a single graph type. As expected, FDDs are ideally suited for bit
selection from *BMDs. If the size of the selected bit is small compared to the
size of a BMD, this approach even outperforms *BMD/*BMD subtraction,
which is implicitly based on a BMD expansion.

200 Part Four Decision Graphs

a+b 32 64 128 256 z,5 m•5• z,5 m•5• z,5 m•5• z,5 m•5•
BDD time 0.258 0.68 1.2s 2.7s 7.58 12.2s 52.0s 52.48

size 95 126 191 254 383 510 767 1022
FDD time 0.11s 0.8s 0.48 3.3s 1.7s 13.9s 7.1s 61.7s

size 95 126 191 254 383 510 767 1022
BMD time 9.9s 0.7s 327.8s 5.68 > 1h > 1h

size 1521 126 6113 254
*BMD time 1.158 0.68 7.9s 5.1s 65.2s 49.1s 584.8s 490.7s

size 126 126 254 254 510 510 1022 1022

a*b 7 8 9 10 z,5 m•5• z,5 m•5• z,5 m•5• z,5 m•5•
BDD time 0.238 4.68 0.9s 21.58 3.38 93.8s 13.38 410.1s

size 744 3490 1774 14157 4221 56653 9955 228135
FDD time 0.07s 4.9s 0.2s 21.9s 0.8s 98.6s 3.58 432.9s

size 602 3490 1842 14157 5958 56653 20049 228135
BMD time 3.68 0.38 21.68 1.48 120.48 6.6s 625.58 32.9s

size 4183 3490 16284 14157 63825 56653 250232 228135
*BMD time 4.7s 0.3s 28.9s 1.2s 164.38 5.8s 899.7s 26.2s

size 3301 3490 13186 14157 52773 56653 211047 228135

Table 2 Bit selection and hybrid operations.

6 CONCLUSION

Theoretical results support the conjecture, that there exist no single graph
type that can represent boolean and arithmetic functions with the same effi­
ciency. Therefore, it is important to provide a framework for the integration
of multiple graph types.

This paper presented an implementation of a multiple domain graph ma­
nipulation package that integrates a variety of decision diagrams. Hybrid ma­
nipulation algorithms have been given, so that type conversion of graphs is
an implicit operation. New graph types can easily be added to this concept if
they are based on Kronecker decompositions.

The package implementation has been shown to be very effective in appli­
cations that manipulate bit-level functions as well as word-level expressions.
From a theoretical point of view, the presented approach overcomes many
exponential gaps that exist between different graph types and between graph
types using different DTLs.

Furthermore, this paper introduced dynamic variable reordering for
*BMDs, that is the most promising minimization technique for decision dia­
grams. Dynamic reordering is supported even if multiple graph types are used
together.

There are a number of applications where the presented work is also very
promising. Current research concentrates on verification of assembly instruc­
tions of microprocessors.

A multiple-domain decision diagram package 201

REFERENCES

L. Arditi. *DMDs can delay the use of theorem proving for verifying arith­
metic assembly instructions. Formal Methods in Computer-Aided De­
sign, pages 34--48, November 1996.

B. Decker and R. Drechsler. How many decomposition types do we need?
European Design and Test Conference, pages 438--443, 1995.

B. Becker, R. Drechsler, and R. Enders. On the representational power of
bit-level and word-level decision diagrams. Asian and South Pacific
Design Automation Conference, 1997.

R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE 1hmsactions on Computers, C(35):677-691, August 1986.

R. E. Bryant and Y.-A. Chen. Verification of arithmethic functions with bi­
nary moment diagrams. Technical Report CMU-CS-94-160, Carnegie
Mellon University, May 1994.

R. E. Bryant and Y.-A. Chen. Verification of arithmetic functions with binary
moment diagrams. ACM/IEEE Design Automation Conference, pages
535-541, 1995.

E. Clarke, M. Fujita, and X. Zhao. Hybrid decision diagrams - overcoming
the limitations of MTBDDs and BMDs. International Conference on
Computer Aided Design, November 1995.

E. Clarke, K. L. McMillan, X. Zhao, and J. C.-Y. Yang. Spectral transforms
for large Boolean functions with application to technology mapping.
ACM/IEEE Design Automation Conference, pages 54--60, June 1993.

E. Clarke, M. Kaira, and X. Zhao. Word level model checking - avoiding
the pentium fdiv error. ACM/IEEE Design Automation Conference,
pages 645-648, June 1996.

R. Drechsler and B. Becker. Dynamic minimization of OKFDDs. In Inter­
national Conference on Computer Design, pages 602--607, 1995.

R. Drechsler, B. Becker, and S. Ruppertz. K*BMDs a new data structure for
verification. European Design and Test Conference, 1996.

R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M.A. Perkowski. Effi­
cient representation and manipulation of switching functions based on
ordered kronecker functional decision diagrams. ACM/IEEE Design
Automation Conference, pages 415-419, 1994.

N. Ishiura, H. Sawada, and S. Yajima. Minimization of binary decision dia­
grams based on exchanges of variables. International Conference on
Computer-Aided Design, pages 472--475, 1991.

U. Kebschull, E. Schubert, and W. Rosenstiel. Multilevel logic synthesis based
on functional decision diagrams. European Conference on Design Au­
tomation, pages 43-47, 1992.

Y.T. Lai and S. Sastry. Edge-valued binary decision diagrams for multi-level
hierarchical verification. ACM/IEEE Design Automation Conference,
pages 608-613, June 1992.

202 Part Four Decision Graphs

S. Minato. Zero-suppressed BDDs for set manipulation in combinational
problems. ACM/IEEE Design Automation Conference, pages 272-
277, 1993.

R. Rudell. Dynamic variable ordering for ordered binary decision diagrams.
International Conference on Computer Aided Design, pages 42-47,
1993.

T. Sasao and M. Fujita {Editors). Representations of Discrete Functions.
Kluwer Academic Publishers, 1996.

