
24

Federated Naming in an ODP Environment

P. Kahkipuro, L. Kutvonen, L. Marttinen
Department of Computer Science, University of Helsinki
P.O. Box 26, FIN-00014 University of Helsinki, FINLAND
phone: +358 9 708 51, fax: +358 9 708 44441
{Pekka.Kahkipuro, Lea.Kutvonen, Liisa.Marttinen} @cs.Helsinki.FI

Abstract
Open distributed computing heavily relies on a shared infrastructure model. Within the infra­
structure, a naming service is the most fundamental component because other components,
such as trading and type repository services, rely on it. Currently a naming framework is under
standardization within ODP-RM (Open Distributed Processing Reference Model of ISO and
ITU). The key requirement-and problem-for a naming framework is an effective model for
name federation between sovereign computing systems. This paper proposes a federative
model for naming in an ODP environment. The model separates user-level naming, i.e. Joe\}!
needs, from the infrastructure level name management that solves problems arising from global
integration. Although the paper was induced by questions related to standardization, the more
important goal of this paper is to show two important aspects of distributed systems. First, we
illustrate how system autonomy manifests itself; second, we show how to deal with federation.

Keywords
Open Distributed Processing (ODP), Autonomous systems, Distributed platforms, Naming

1 INTRODUCTION

The current architecture for open distributed computing represented by the Open Distributed
Processing Reference Model (ODP-RM) (ISO/IEC, 1995a, 1995b) supports the integration of
services across organizations. This architecture relies on a shared infrastructure model, but al­
lows the participating computing systems to stay sovereign. Each participant implements and
administers the basic infrastructure services autonomously. Every infrastructure server controls
and serves only the resources and the active objects of the local computing system-thus con­
trolling a domain. In addition to serving its own domain, the server can request services from
other federating servers in order to support a global service across domains.

Naming is one of the most fundamental functions in the infrastructure, and other infra­
structure functions rely on naming. For example, the trading service requires the interpretation
of type names; the type repository service requires the resolutions of description language
names; and the federated binding function requires the translation of interface location names
to physical addresses.

J. Rolia et al. (eds.), Open Distributed Processing and Distributed Platforms
© IFIP International Federation for Information Processing 1997

Federated naming in an ODP environment 315

A name is a relationship between a term and an entity. The format of the terms is restricted
by naming conventions that may be independently designed for different kinds of entities or for
different kinds of technical solutions. The named entities may include users, hardware compo­
nents, protocols, applications-even names. For each class of named entities, there is an author­
ity that is responsible for interpreting the names, such as type managers and traders. The term­
entity relationships can have additional properties meaningful to the authority that interprets
the relationship. The structure of terms is an example of such a property.

Names that have a common term structure can be gathered into collections that are called
naming contexts. A naming context is the scope in which a name needs to be resolved. Logi­
cally enough, we may also give names for naming contexts. For addressing entities outside the
current naming context, compound names can be used. A compound name is a structured
composition of simple names that can be resolved to denote a single entity. For example, a
compound name in a UNIX file system is a sequence of simple names, where the last name de­
notes an arbitrary entity, and all other names denote naming contexts. Thus, compound names
allow us to give structure for the names in a system.

There are two traditional solutions for handling names in distributed systems, global naming
and context-relative naming. In both solutions, names are compound. In global naming, terms
for named entities are arranged into a single tree hierarchy of contexts. To refer to an entity,
terms are concatenated along the path from the root to the entity. Context-relative naming
supports arbitrary context networks instead of a single hierarchy. The global naming scheme is
thus a special case of the context-relative naming scheme.

The context-relative naming scheme has been chosen as a basis for the ODP Naming
Framework (ISO/IEC, 1996a). Most modem naming solutions use similar approaches, includ­
ing the Object Management Group's Name Service (1994) and the ANSA Naming Model (van
der Linden, 1993). However, the ODP and ANSA approaches use term-entity relationships as
names, while the OMG uses terms as names. The difference affects name communication. If
names are communicated by sending and receiving terms, additional mechanisms must be de­
vised to ensure that the receiver can interpret the terms correctly once they have. been received.
On the other hand, if communication uses term-entity pairs (i.e. relationships between terms
and entities), the receiver can immediately use the names because they carry their meaning with
them. A name is communicated correctly if it denotes the same entity before and after commu­
nication. The actual term may have changed. The use of name-entity pairs simplifies applica­
tions because the burden of name interpretation is partly delegated to the infrastructure. Our
approach is based on interpreting names as term-entity pairs.

The naming framework design should fmd a solution for two problems. First, the context­
relative naming is often used in a way that forces users (end users or application programmers)
to know from which context the name resolution should start and identify that context using
some form of global naming scheme. Second, in distributed environments we have multiple al­
ternatives for choosing how federation is modeled and designed.

In this paper, we propose a federative model for naming in open distributed environments.
Traditionally, applications have been dealing directly with federated names, such as URLs in
the Internet environment, and this has complicated application development. In our approach,
the problems caused by federation are solved in a generic manner and delegated to the infra­
structure. Hence, our model supports application development at a more abstract level.

The model separates user-level naming from the infrastructure-level name management, be­
cause these two are separate functions. The user-level naming service fulfills the local needs of
a user or a sovereign application object. The infrastructure level naming services solve the
problems faced when integrating existing name spaces of independent computing systems. The

316 Part Seven Services II

information needed for federation is embedded in the name objects themselves. This solution
makes federation protocols more flexible compared to the case where federation is realized at
the name server level.

Section 2 of this paper discusses the separation of user-level and infrastructure names, and

sections 3-5 concentrate on naming related activities. The proposed naming solution has its
foundations in the ODP Naming Framework, and the presentation follows the ODP viewpoints
because we believe that framework standards should be structured along the viewpoints. This

paper illustrates some generic features of ODP viewpoint specifications. In the proposed
model, most of the consequences of system integration are discussed in the information view­
point. It is typical for the infrastructure functions and frameworks that distribution is visible,
not only in the computational viewpoint, but also in the enterprise and information viewpoints.
Section 6 discusses the feasibility of the proposed approach and demonstrates that it is compa­
rable to existing naming solutions. Section 7 concludes the discussion.

2 USER-LEVEL AND INFRASTRUCTURE NAMES

To. understand the scope of naming, we distinguish betwel!n user-level names and infrastruc­
ture names. User-level names are intended for end users and applications. They are always in­
terpreted relative to a private naming context of the object. User-level names are typically sim­
ple and user-friendly. Infrastructure names are intended for system-wide use. A special user­
level name translation is needed to map user-level names into infrastructure names. All names
in a private naming context are mapped to a set of naming contexts in the infrastructure. These
contexts together constitute the local naming context offered to that particular user. Hence, lo­
cal naming context is a view that allows the user to exploit infrastructure names. The solution

transfers the burden of naming context management from users to the infrastructure. Similar

techniques have been applied in related areas.
The example in Figure I illustrates a configuration where user Ut has a private naming con­

text with user-level names n1 and Cz. The user-level name n1 corresponds to the infrastructure
name n1 that denotes some entity e1. The name c2 corresponds to the infrastructure name c2

that denotes some naming context C2• To reach from the context C1 the entity e3, a compound
name (c2, c3, n3) can be used. Users do not need names for their private or local contexts. For
example, u3 does not know that his local context has an infrastructure name (c2, c3) in the con­
text C1• In spite of this, u3 can access the name n3 in his local context.

User-level
names

Infrastructure
names

Users' private naming contexts

Local naming context for Ut Other naming contexts

Figure 1 Infrastructure mapping transforms user-level names into infrastructure names.

Federated naming in an ODP environment 317

It is important to separate user-level names from infrastructure names, because otherwise
applications must use unnecessarily complex names. An indication of the complexity of con­
text-relative naming without the proposed distinction can be found in Siegel's example (1996).
In this example, a simple application was designed and implemented with eight different
CORBA environments. Naming service was identified as a key component in the design phase,
but the standard context-relative Naming Service was not used in the implementation. A simple
Pseudo Name Service was proposed as a replacement, and the main difference to the standard
is that it is not context-relative. The fact that the OMG Name Service forces applications to be
fully aware of naming contexts has lead to the use of a non-standard replacement.

User-level names are important for application developers, but a global naming solution al­
ways operates at the infrastructure level and only provides a mapping to the user level. When­
ever new applications are installed, user-level names are bound to the corresponding infra­
structure names. This may sometimes require additional configuration work, but the result is
application portability across different naming environments. The rest of this paper concen­
trates on infrastructure names because they provide the basis for successful naming.

3 SCOPE OF NAMING

This section focuses on the enterprise viewpoint of the proposed naming solution. It presents
the different roles (i.e. enterprise objects), activities, and policies that are needed for under­
standing the purpose and the scope of naming.

The primary purpose of naming is to provide means for identifying entities in information
systems. This is necessary for two reasons. First, to interact with an entity, we must distinguish
it from all other entities. Second, we need a way to denote an entity even when we are not di­
rectly interacting with it. Especially, naming is needed for binding to objects, identifying system
resources, selecting objects interactively, etc.

In particular, naming excludes two functions. First, naming is not used for security pur­
poses. For example, the knowledge of a particular name does not imply the right to communi­
cate with the entity it denotes. Second, naming is not used for typing purposes. Name alone
should not be the basis for determining the properties of the entity that it denotes. These two
restrictions allow us to simplify the naming solution and to make it easier to use.

We defme a naming context to be a 3-tuple (T, C, E) where Tis a set of possible terms, E is
a set of namable entities, and C is a relation between the other two. Hence, the naming context
C can be any subset of the Cartesian product T x E. A name is formally defined to be a term­
entity pair (t, e) belonging to C. If we have (t, e) E C, we say that the context C contains the
term t referring to the entity e. The choice of the set of terms Tis implementation dependent,
but it must be a subset of a single name space determining those terms that can be used as
names. The set E determines which entities can be named. In principle, E is allowed to contain
any entities, including names and naming contexts. In practice, implementations may set limits
to the extent of E.

Naming domain is the basic environment for all activities that are related to naming. Naming
domain is controlled by a single naming authority, and it uses a single naming convention that
determines the syntax of names. Formally, we represent naming domain with a 3-tuple
(T, Domv(C), E) where Dornv(C) denotes those entities in the context C that are controlled by
the naming authority of the domain D. Naming authority is an object responsible for control­
ling the domain's activities. It may impose different kinds of policies for the domain. For exam­
ple, homonyms may be forbidden or the number of synonyms may be restricted. Note that a

318 Part Seven Services II

single naming context may be divided into multiple parts, each of which is controlled by a dif­
ferent naming authority and hence belongs to a different naming domain.

We define naming federation to be a set of federated naming domains. The purpose of fed­
eration is to collectively support naming contexts. Each domain preserves its autonomy of
control, but there is a mutual accordance to allow some activities happen over domain borders.
Federation agreement determines these joint activities in more detail. Typically, name bindings
effectuated in one domain may be visible in other domains through name resolution.

The following roles can be identified for the users of the naming framework:

• Name creator associates names to entities.
• Name user uses the name resolution mechanism to know what the names denote.
• Name sender transmits names to other parties.
• Name receiver obtains names from name senders.
• Naming authority controls the naming domain.

The above roles are relative to a particular naming domain. It is practical that name creators
are also name senders, and name users are in most cases also name receivers. The identified
roles participate in the following activities:

• Name resolution attempts to fmd, for a given name, associations to those entities that
the name denotes.

• Name comparison attempts to resolve two names up to a point where it is possible to
determine if they denote the same entity or not. Even if the resolution succeeds, it may
still be impossible to establish whether they refer to the same entity. For example, it is
possible that an entity does not support operations for revealing its identity, or it may not
allow some users to invoke these operations. Hence, name comparison should have four
different outcomes: equal, not equal, undetermined, and resolution failed.

• Name communication involves transmitting a name from a sender to a receiver through
the infrastructure. This may involve name transformations, especially if the sender and
the receiver are in different domains.

At the enterprise level, the proposed naming solution has important benefits for the users of the
naming framework:

• Name receivers, users, and senders do not need to know whether their naming domain
belongs to a federation or not, and whether the names are local or federated. They simply
receive, use, and send names as if they were always local.

• Name creators that create bindings for local entities can also ignore naming federation.
Name creators need to be aware of federation only if they initiate name bindings that in­
volve the activity of a different naming domain.

• Naming authorities need to be aware of naming federations at all times.

4 BASIC NAMING CONCEPTS

This section describes the information viewpoint of the proposed solution. We first defme the
basic semantics of name processing without federation and, then, we give the additional defmi­
tions needed for naming federations. Finally, the general information contents of names will be
discussed.

Federated naming in an ODP environment 319

4.1 Semantics of name processing

The purpose of name processing is to manage naming contexts. Naming contexts can be
changed by two atomic actions, name binding and name unbinding. The former adds a new
term-entity pair to a context, and the latter removes an existing one. For a given naming con­
text C, term t, and entity e, we define the actions as follows:

Bind(C, t, e): C H Cu {(t, e)},
Unbind(C, t, e): C H C- {(t, e)}.

Other actions can be defined using the above two actions. For example, a renaming action is an
atomic sequence of Unbind(C, nh e) and Bind(C, n2, e) for some entity e. A name rebinding
action is an atomic sequence of Unbind(C, t, e1) and Bind(C, t, e2) for some term t. In princi­
ple, every naming context is initially empty. In practice, however, naming contexts are seldom
created at system start-up time and they usually contain some pre-installed names that allow
the system to start its operation smoothly. For example, the name of the trading service is usu­
ally available so it can used it for reaching other services.

We can easily extend the set of entities that can be reached from a given naming context by
combining the naming context's name with the name of some entity in that context. Formally,
we defme a compound name in context C1 to be a sequence of terms (t1, ... , tk) where (t;, C;+1)
E C; for all i = 1, ... , k-1. Thus, we require that all name components except the last one are
bound to a naming context. Implementations often use character strings to represent both sim­
ple and compound names. Syntactical conventions indicate how the component names can be
found from the string. For example, slashes are used to separate individual terms in the UNIX
file system path names.

Name resolution is a process that attempts to fmd, for a given term t and a given naming
context C, all pairs (t, e) that belong to C. We use the symbol Res(C, t) to denote the set of
found term-entity pairs. Name resolution does not necessarily find all suitable pairs because it
may be affected by other concerns, such as those related to security. To support compound
names, we specify recursively the results of the name resolution process:

Res(CJ. t) c {(t, e) I (t, e) E CJ},
Res(CJ, f], ... , tk) c {(tk, e) I :3 ck: (tk, e) E ck and (tk-J, Ck) E Res(CJ, tl, ... , tk-1)}.

The first line specifies name resolution for simple names. The second line corresponds to com­
pound names. The intention of the second line is to separate the last element from the full se­
quence so that the recursive defmition can be applied again to the fust part of the compound
name. In practice, name resolution is a stepwise process where each step corresponds to one
application of the recursive defmition. The process starts from the first element t1 of a com­
pound name (t1, .•• , t;), and it proceeds by creating one by one the needed intermediate results
Res(C1. t1), Res(C1, t1. t2), etc.

Name resolution can terminate in three ways: success, failure, and undetermined. If the
whole compound name can be processed and the final set Res(CJ, t1, ... , tk) is non-empty, the
resolution succeeded. If the final set is empty, the resolution failed. Finally, if the name cannot
be processed because one of the intermediate sets Res(CJ. t1. ... , ti), where i < k, is empty, the
result of name resolution is undetermined.

Name communication transmits names from senders to receivers through the infrastructure.
The communication takes place between the private contexts. During communication, the in-

320 Part Seven Services II

Figure 2 User u2 cannot receive a synonym for t1.

frastructure may attempt to optimize the name (e.g. to minimize the resolution time) by re­
placing it with a synonym. For simple names, this means that the term t1 may be received as a
different term t2 if both (t1, e) and (t2, e) exist in the naming context for some entity e. For
compound names, also the number of elements in the sequence may change if the infrastructure
is able to optimize the name. The name may change significantly during communication, espe­
cially if the communication takes place between users having different local contexts.

Name communication often induces several name bindings at the infrastructure level. Sup­
pose that we have two local naming contexts C1 and C2, such that C1 has a name for C2 but C2
has no name for C1. This is illustrated in Figure 2, where the context C1 sees the context C2
and may have access to its names through compound names. On the other hand, the context C2
cannot see the context C1 and, consequently, cannot see the term t1 in C1. Suppose that u1

sends the term t1 denoting the entity e to user u2• As far as naming is concerned, this is possible
because C1 can denote u2 with the compound name (c2, m). However, there is no way for C2 to
offer u2 a meaningful synonym for t1 in the given situation.

The solution is to create a new name binding during name communication. The purpose is
to produce a new synonym for the term t1 in u2's local naming context C2. Name communica­
tion can then proceed normally by delivering the new synonym to u2• There are two possibili­
ties. The first possibility is to use Bind(C2, t2, e) to bind a new term t2 directly to e. In this case,
user u2 receives the term t2• The second possibility is to support indirect access through C1 by
using Bind(C2, c~, CJ). In this case, user u2 receives the compound name (c~, t1). These two
possibilities are indicated by the two alternatives in Figure 3. The choice depends on the im­
plementation. In traditional context-relative naming, u2 would receive both the context C1 and
the term t1. This would force u2 to be aware of two local naming contexts. In the long run,
there would be a multitude of naming contexts for every user in the system-obviously an un­
satisfactory solution.

4.2 Federated name resolution

Naming federations make name processing more complicated. Naming domains are character­
ized by those term-entity pairs that are controlled by the domain's naming authority. The
authority ensures that the terms conform to the naming convention and that naming policies are

User u2 has direct access to e User u2 has indirect access to e

Figure 3 User u2 gets synonyms for t1 after new bindings.

Federated naming in an ODP environment 321

Legend

0 Naming context boundary

0 Naming domain boundary

• Name-entity pair

Figure 4 Naming federation is controlled by naming authorities a1 and a2•

respected. The federation agreement determines the ownership of all existing and future term­
entity pairs in each naming context. Naming contexts may be divided into multiple partitions,
and each partition may be controlled by a different authority. Figure 4 illustrates a configura­
tion with two naming authorities and three naming contexts. Authority a1 controls the context
Cz and part of C3, and authority az controls the context C1 and part of C3.

Naming federation affects the name resolution process because every naming authority de­
termines which term-entity pairs in its domain can be used in name resolution. Since the com­
ponents of a compound name can be controlled by multiple authorities, name processing has to
be distributed. Therefore, name resolution is no longer an atomic operation and name resolu­
tion changes accordingly. The result of name resolution can sometimes be undetermined. For
example, the communication may fail or some of the naming authorities may decide to hide
information from the resolution process.

We use the symbol Dornv(C) to denote the set of term-entity pairs (t, e) E C that are con­
trolled by the naming authority of the domain D. A naming context may have elements from
multiple naming domains, but every element must belong to one domain. Hence, for every
naming context C,

C= UDomv(C).
D

To control the name resolution process, each domain authority defmes a view for every princi­
pal (i.e. name user) initiating name resolution. The view determines what term-entity pairs can
be used in name resolution. We use the symbol Viewv.p(C) to denote those pairs
(t, e) E Dom0 (C) that the principal p is allowed to use during name resolution.

Views have an important role in the semantics of name processing. First, they reflect the
dynamic nature of distributed systems, because the expression Viewv,p(C) is typically evaluated
at run-time and it may change its contents from one evaluation to another. Second, views pro­
vide means for hiding naming information. For example, adding a term-entity pair to a context
does not necessarily induce any changes in the views. Third, views can also model name
transformations that take place in many real systems. An element (t, e) in context C does not
necessarily cause the same element to be visible in Viewv,p(C). For example, the authority of
the domain D may decide that p must not see the entity e and decides to include another pair
(t, e') in the view instead. In other words, a view is a realization of a name interceptor that can
both transform and conceal naming information.

To model name resolution initiated by a principal p, we must consider the total view seen by
p. The symbol Viewp(C) denotes all pairs (t, e) E C that p can use for name resolution:

Viewp(C) = U Viewv.p(C).
D

322

By definition, we have

Viewo.p(C) c Domo(C) c C,
Viewo.p(C) c Viewp(C) c C

Part Seven Services II

for every principal p and domain D. We have now the means to define name resolution in the
presence of naming federation and naming authorities. When a principal p initiates name reso­
lution, the resulting term-entity pairs are characterized by the following recursive definition:

Resp(C~o t) c {(t, e) I (t, e) e Viewp(C1)},

Resp(C~oti, ... ,tk) c {(tk. e) 13 ck: (tt, e) E Viewp(Ck) and (tk-!.Ck) E Resp(CI,tl, ... ,tk-1)}.

The definition is the same as in section 4.1 except that the naming contexts in each resolution
step are replaced by views that are visible to the principal p. This way, naming authorities can
control the progress of name resolution. The resolution of traditional path names, such as
"/usr/sharelman", proceeds component by component, and the intermediate results correspond
directly to the path name. However, the resolution process and the views involved can some­
times produce very unconventional intermediate results. This may happen, for example, when
the resolution step moves from one naming convention to another.

4.3 Information contents of term-entity pairs

The use of federated naming and the cooperation between naming domains changes the struc­
ture of naming information. Properties that were previously defined for complete name servers
must now be specified for individual names. This allows the naming authority to fully control
naming activities. In this section, properties are defmed for each term-entity pair individually,
but implementations may support grouping for easier management. For example, an imple­
mentation with a tree-structured name space may allow properties to be defmed for complete
sub-trees.

Mutability policy determines when and how term-entity pairs can be changed:

• Immutable. No changes are allowed.
• Conditionally mutable. Changes are allowed, but the naming authority must perform

some additional actions when changes occur. This may involve negotiation with other
authorities, announcements, or keeping record of the change for some given time period.
Conditionally mutable names usually have additional properties related to the change
protocol in use.

• Mutable. Changes are allowed.

Similar mutability policies are also used in the ODP Type Repository Function (ISO/IEC,
1996b). In addition to the mutability policy, also the target of the policy must be selected:

• If the policy is tenn related, it controls only the terms, and the corresponding entities
can change without restrictions. For example, the pair (t, e) is term-immutable if the term
tis guaranteed to denote some entity (not necessarily e). A term-immutable pair can be
removed from the context, but this can only happen through name rebinding.

• If the policy is name related, both the term and the entity are considered important. For
example, a name-immutable pair cannot be removed or changed.

Federated naming in an ODP environment 323

Name-immutable pairs can be safely replicated for implementing efficient and reliable name
resolution in distributed environments. Term-immutability, on the other hand, is useful for
guaranteeing that a given service can always be reached through a known naming context, but
the service implementation can still evolve over time. Sometimes term-immutability is strength­
ened with conditions that determine the type of the entity that can be bound to the fixed name.

To complete the semantic discussion, we briefly describe two additional properties that
characterize term-entity pairs in a naming context. First, every term-entity pair has a controller
that controls its life cycle, and decides whether it participates in a given name resolution proc­
ess or not. The controller's impact on name processing has already been covered with naming
domains. Second, an identifier of the entity e may be considered as a property of the pair (t, e).
Its purpose is to identify unambiguously the entity. In practice, name resolution is often imple­
mented as a function that transforms the term t to a low-level identifier of e. There may be ad­
ditional predicates for term-entity pairs in a naming context, but they depend on the selected
implementation and name resolutions techniques.

5 NAME SERVICE

Name service is the computational equivalent of the controller of a naming domain. It offers a
name service interface for its clients with operations for binding, unbinding, resolving, compar­
ing and communicating names. When using the interface, the client is always attached to an im­
plicit local naming context that determines how names are interpreted and where name resolu­
tion starts. The client does not identify its local naming context in any way. Special operations,
externalize and internalize, can be used for name communication between two or more users.
The externalize operation converts a name into a generic name-string that can be sent to any­
one through the infrastructure. The receiver can use the internalize operation to convert the
generic name-string back to a name that can be used in the receiver's private naming context.

Naming service is made responsible for creating and interpreting any internal structures that
may be present in the name. Typically, compound names are created by separating name com­
ponents with a separator character, but this choice is implementation dependent. The client
simply uses both compound and simple names as if they were character strings.

Name communication does not require the existence of a universal name representation or a
naming tree with a global root. The reason is simple: if two infrastructure implementations can
send and receive data, they also have the means to mutually agree on any conversations be­
tween different name representations. In practice, when two infrastructures implementations
are linked together, they also agree on how names externalized in one environment are inter­
nalized in the other environment.

6 DISCUSSION

In our proposal, the name service takes responsibility for functions that were previously dele­
gated to applications and are not included in traditional name services. Transparent name
translation is needed to provide clients with their single local naming context, and name com­
munication is also necessary. Questions may rise about the feasibility and the performance of
the proposed solution. We discuss this topic through four different aspects.

The first aspect is concerned with applications that are aware of naming domains. A tradi­
tional name service returns a reference to an entity when given a valid name and a starting
context. This approach is very simple, but it cannot be used as such in fault tolerant applica-

324 Part Seven Services II

tions that provide alternative ways to access services when the normal methods cannot be
used. This is because real names have different degrees of reliability. For example, there are
names that can always be trusted (e.g. my own name), reliable local names, less reliable names
within the same domain, and unreliable names in external domains. Fault tolerant naming aware
applications must distinguish between these names and maintain name related information to
support actions during partial failures. However, traditional name services do not provide such
information at name level and, consequently, the application cannot implement fault tolerant
behavior even if this was possible in theory.

In the proposed solution, the name service (not the application) is fully aware of the differ­
ent name categories and the existence of naming federation. Therefore, it can provide the
needed fault tolerance behavior for the applications. The fact that predicates are now defmed at
the name level allows the name service to be flexible. The new and the traditional approaches
probably use similar algorithms for overcoming system failures and their resource consumption
is at the same level. Hence, the fact that naming federation is now handled within the infra­
structure, increases system flexibility and simplifies the applications. The amount of processing
and, consequently, the system efficiency remains approximately the same.

The second aspect deals with the quality of service (QoS) concerns. Traditional name serv­
ices do have some QoS functionality, e.g. related to the name's origin, but usually this is re­
lated to the whole service and not to individual names. The proposed solution supports the
specification and utilization of QoS attributes at the name level, such as the name's mutability.
This offers increased functionality than was previously implemented at the applications, and
sometimes was not possible to implement because of the lack of necessary information.

The third aspect deals with ordinary applications without any special concerns for naming or
name federation. Such applications usually do not require efficient name processing because
they use the name service fairly seldom, mainly to discover system resources at startup time.
Hence, they use the name service as such, without any additional tricks. There is no observable
performance penalty for these applications when the improved name service is introduced.
However, the applications become more intelligent because the improved name service can
offer them improved functionality without any need to change the application logic. Typically,
such applications become more fault tolerant because now the name service can attempt alter­
native techniques when a traditional name service would simply report an error.

The last aspect is concerned with the implementation of efficient naming. If the proposed
name service is used within a single naming convention, the extra overhead is typically the ad­
dition of a prefix before giving the name to the application, and the mapping of this prefix to a
context identifier when receiving the name from the application. This kind of additional proc­
essing is very small compared to the cost of node-to-node communication. On the other hand,
if a name uses an external naming convention or is otherwise complex to process, the extra
overhead is significantly bigger. However, the same overhead would probably also incur with
traditional name services, but it would have to be implemented within the application.

Since the proposed name service is able to optimize its behavior across applications, caching
and other similar techniques can improve its performance. The key issue is the locality of
names. The working set for names is usually relatively small because users in one organization
tend to work with the same things. Hence, name caching across applications and users can
yield significant performance improvements. In addition, applications often organize their
names in contexts that reflect the application structure, and name pre-fetching can be imple­
mented on a per-context basis. If resources are accessed by navigating through naming con­
texts (e.g. in interactive systems), context pre-fetching may result in dramatic performance im­
provements. As a result, the overall performance of the new naming solution may be superior.

Federated naming in an ODP environment 325

7 CONCLUSION

In this paper, we have presented a federative naming solution. It is based on traditional con­
text-relative naming, but it uses term-entity pairs instead of terms as names. Furthermore, the
solution makes a distinction between user-level and infrastructure names. We have also pre­
sented a semantic model for the solution to illustrate how federation affects different naming
related activities, and we have briefly sketched an example name service.

The main contribution of this paper is to demonstrate that complex naming solutions can be
simplified by understanding that names are in reality term-entity pairs. For example, traditional
naming solutions, such as global naming, support only "term communication" and the neces­
sary name conversions are left to the applications. The presented approach allows applications
and end users to employ names that are best suited for their work. For example, the OMG's
name service standard uses a complex data structure for representing arbitrary names. Appli­
cations that use the OMG name service must always convert names between this particular
data structure and other formats that are used by other system service. On the other hand, our
solution takes automatically care of the necessary conversions and, therefore, it is directly
compatible with a large number of already existing interfaces using names.

The proposed solution fits well to the RM-ODP's infrastructure model that attempts to
delegate all tedious tasks to the computational infrastructure instead of forcing applications to
do them. The simplicity of the proposed solution implies that it can also be used inside the in­
frastructure without significant performance penalty. Compared to traditional naming, we have
relocated two name related functions. First, the responsibility for naming federation and for
handling the cooperation of multiple naming domains has been moved from the applications to
the infrastructure. Second, the quality of service concerns and name attributes are now speci­
fied at name level and handled by the infrastructure. The proposed solution is congenial with
the ODP Naming Framework. The contribution of this paper is to further develop certain parts
of the framework, particularly the ones related to naming federation.

While the solution increases name processing in some cases, we have demonstrated that the
efficiency of the new solution is comparable to the existing alternatives. In some cases, the
performance of the new solution can even be better by using caching and other techniques that
were not reasonable in traditional solutions. Our solution gives enhanced functionality with less
overhead costs than would incur if applications themselves implemented the same functionality.

8 REFERENCES

ISO!IEC (1995a) Reference Model of Open Distributed Processing Part 2. Foundations. In­
ternational Standard IS 10746-2.

ISO/IEC (1995b) Reference Model of Open Distributed Processing Part 3. Architecture. In-
ternational Standard IS 10746-3.

ISOIIEC (1996a) JTC1/SC21 N 10390, ODP Naming Framework, May 1996.
ISOIIEC (1996b) JTC1/SC21 N 10389, ODP Type Repository Function, May 1996.
Object Management Group (1994) Common Object Services Specification, Volume/. OMG

Document 94.1.1, Framingham, Massachusetts, USA.
van der Linden, R. (1993) The ANSA Naming Model, APM.1003.01. Architecture Projects

Management Ltd., Cambridge, United Kingdom.
Siegel, J. (1996) COREA Fundamentals and Programming. John Wiley & Sons Inc., New

York, USA.

