
2

CoCoDoc: a framework for
collaborative compound document editing
based on OpenDoc and CORDA

G.H ter Hofte, HJ. van der Lugt
Telematics Research Centre
P.O. Box 589, 7500 AN, Enschede, the Netherlands
Phone: + 31-53-4850485, Fax: + 31-53-4850400
E-mail: {HterHofte, H vanderLugt}@trc.nl

Abstnct
We propose collaborative compound document editing as a new paradigm for editing
environments and describe the design and implementation of CoCoDoc, a framework based on
OpenDoc and CORBA. CoCoDoc supports reuse of existing editors as simple collaborative
editors and supports development of new collaborative compound part editors with flexible
collaboration facilities, thus facilitating a gradual migration towards collaborative editing
environments that are both rich in editing support and rich in collaboration support.

Keywords
CSCW, collaborative editing, component software, compound documents, OpenDoc,
CORBA, couplable object groups, multicast ORB

1 INTRODUCTION

Until recently, conventional editors and word processors primarily assisted an individual in
producing polished final copy and provided little support for collaborative editing. Yet, many
documents result from a collaborative effort. In some fields of science, for example, 65% of
articles are written by two or more authors (Fish eta!., 1988).

Increased penetration of networks enlarged the potential for richer computer support of
collaborative work in general (CSCW) and for collaboratively editing a shared document in
particular. However, developing collaborative editors is a complex and challenging task:
developers are faced with many distributed systems issues, such as distribution, replication,
consistency, concurrency and communication protocols.

J. Rolia et al. (eds.), Open Distributed Processing and Distributed Platforms
© IFIP International Federation for Information Processing 1997

16 Part 1 Programming Systems

Most developers of collaborative editors either focused on editing functions (i.e. provide rich
support for media types and editing operations on media) or focused on collaboration
functions (i.e. provide rich support for coupling of operations and control over coupling). In
this paper, we propose 'collaborative compound document editing' as a new paradigm that
facilitates the development of collaborative editing environments that are both rich in editing
support and rich in collaboration support. The paradigm is inspired by a specific combination
of emerging distributed computing platforms and compound document editing frameworks,
viz. CORBA (Orfali et al., 1996) and OpenDoc (Nelson, 1995; MacBride et al., 1996). In
particular, we present CoCoDoc, a framework that supports developers in constructing
collaborative compound document editing systems. Work on CoCoDoc was part of the
Platinum project, a joint research project on multimedia CSCW applications over broadband
networks (Ouibrahim et al., 1995), in which Lucent Technologies, the Telematics Research
Centre, the University of Twente and Deutsche Telekom participated. CoCoDoc is part of a
larger platform for collaborative multimedia applications that was developed in the Platinum
project. The platform is based on Co4, a generic model for groupware functionality
(Ter Hofte et al., 1996b), which distinguishes four broad areas of groupware functionality:

• conference management: creating, terminating, and modifying conferences: associations
between users, shared workspaces, conversation channels and coordination policies;

• cooperation support in shared workspaces: joint manipulation of shared artifacts;
• conversation support: conversation channels for direct communication between users, such

as audio, video and textual chat channels;
• coordination support: mechanisms and policies, e.g., floor control policies and workflows.

CoCoDoc provides the platform's support for shared workspaces.
The body of this paper is structured as follows. First, we introduce collaborative editing and

compound document editing. Then, we describe the advantages of combining these into
collaborative compound document editing. Subsequently, we describe the design and
implementation of the CoCoDoc framework. Finally, we describe how CoCoDoc supports the
implementation of a simple collaborative compound outline editor.

2 COLLABORATIVE EDITING

A collaborative editing system can be modeled as a distributed computer system with multiple
user interfaces: one for each user. Due to different actions by different users, the user
interfaces diverge, and sooner or later, the collaborative editing system must synchronize the
user interfaces so a user interface not only reflects a user's own actions (i.e. give feedback),
but also the actions of other users (i.e. give feedthrough) (Dourish, 1995). Major functions of
collaborative editors are synchronizing the user interfaces and thus keeping the representations
of the document 'consistent' to some degree, providing awareness of other user's actions, as
well as coordinating actions when it is desirable that not all users can perform all actions at any
moment (e.g. avoid unwanted conflicts when two users want to edit the same
document(part)). Other functions of collaborative editors, such as conference management and
conversation support, are not discussed in this paper.

From analysis (Ter Hofte, 1996) of existing collaborative editing prototypes and commercial
products (Koch, 1994), three typical architectures for collaborative editing systems emerged:

CoCoDoc: a framework for collaborative compound document editing 17

• the shared file system software architecture;
• the collaboration-aware software architecture;
• the shared user interface software architecture.

In each architecture, a different part of a typical single-user software architecture (consisting
of a file system, an application and a user interface) is made collaboration-aware. The shared
file system and shared user interface approach both employ collaboration-unaware editors (i.e.
editors that were not designed to be used by multiple collaborating users) and combine them
with application-independent collaboration services. This approach allows for existing editors
to be used in collaborative settings.

2.1 Shared file system architecture

In the shared file system architecture, an unmodified single-user editor application (e.g., MS
Word) is combined with a shared file system (e.g. NFS, NetWare), as illustrated in Figure 1.

Figure 1 Shared file system software architecture.

As soon as one user saves the document, the shared file gets updated and other users can
observe the updated document. Exclusive shared file editing is a form of coordination that
allows one user at a time to get the exclusive permission (the write lock) to update the
document, in order to avoid conflicting updates or the emergence of different versions of the
document. Versioned shared file editing allows multiple versions to emerge and provides
rudimentary version navigation and/or version merging services.

2.2 Shared user interface architecture

In the shared user interface architecture, an unmodified single-user editor application (e.g.,
Xemacs) is combined with a shared user interface system (e.g., SharedX), as illustrated in
Figure 2. In fact, this architecture allows sharing the user interface of any application, not only
editors.

18 Part 1 Programming Systems

Figure 2 Shared user interface software architecture.

With a shared user interface, as soon as one user performs an action, the user interface state
gets updated and all users can observe the updated user interface. This property is also known
as WYSIWIS (What You See Is What I See) (Stefik et al., 1987). Examples of shared user
interface systems are screen sharing systems such as NLS (Engelhart, 1975) and shared
window systems (e.g. X windows-based systems (Baldeschwieler et al., 1993).

Floor-controlled shared user interface editing is a form of coordination over shared user
interface editing that allows only one user at a time to get an exclusive permission to perform
actions (that user holds the 'floor') and that provides mechanisms to pass the floor.

2.3 Collaboration-aware editors

A collaboration-aware editor, i.e. an editor that is designed for concurrent use by multiple
collaborating users, can offer more forms of collaboration support. For example, a
collaboration-aware text editor may allow simultaneous access to a document, e.g. different
users may simultaneously edit different sentences in the same document, or different users may
simultaneously edit the same sentence. Additionally, collaboration-aware editors can provide
users with awareness of who is editing what, who has modified what, at what time, etc. Figure
3 illustrates a collaboration-aware software architecture.

Figure 3 A collaboration-aware software architecture.

However, development of such applications is complex. In fact, researchers approached the
complexity of the problem from either the shared file system approach or from the shared user
interface approach.

CoCoDoc: a framework for collaborative compound document editing 19

• The academic collaborative editing tools Quilt (Fish eta!, 1988; Leland, 1988) and PREP
(Neuwirth et a!., 1990) are typical examples of early collaboration-aware editors that exploit
shared file systems. They offer support for annotations, for communicating comments and
intentions, and revisions, as well as role-based access. They can be regarded as 'early'
collaborative editing tools and use standard shared file systems or shared databases, they
notify users only of committed changes made by other users, while carefully avoiding the
complexities involved in providing simultaneous access to documents and records. Broadly
speaking, such tools are generally referred to as 'asynchronous' collaborative editors.

• Another approach was taken by GROVE (Ellis et a!., 1990) and DistEdit
(Knister eta!., 1990). These are examples of collaborative editing tools that support
sessions of simultaneous access to a shared document as well as 'immediate' awareness of
interactions of other users with the shared document. Broadly speaking, these tools are
referred to as 'synchronous' collaborative editors.

• Only recently, 'multi-synchronous' collaborative editing tools have emerged that support
combinations of synchronous and asynchronous collaborative editing and transitions
between these modes (e.g., SEPIA (Haake eta!., 1992)).

2.4 Coupling levels: the zipper model

The above architectures are variants of the typical single-user software architecture (consisting
of three levels: file system, application and user interface). Other approaches show that
additional levels are possible, e.g. by separating the application level into an edit level and a
view level, as applied in GROVE and DistEdit. If state at a level is coupled, then state updates
(caused by operations) at that level are observable for all users. If state at a level is uncoupled,
then state updates at that level are unrelated, i.e. each user has its own state. Inspired by this
possibility to couple and uncouple more or less levels, (Patterson, 1995) coined this the
collaborative 'zipper' architecture, as illustrated in Figure 8.

An example of levels and associated operations is presented in Table 1, which classifies user
operations of a collaborative outline editor in four levels, ranging from those operations only
affecting the user interface to operations affecting the persistently stored document.

Table 1 A four-level zipper: state and operations per level

Coupling Level State Operations affecting state

file coupling stored state of document Externalize •

edit coupling editing state of document InsertUnit,DeleteUnit

EditUnit,MoveUnit,RenameUnit

view coupling view control state CollapseUnit,ExpandUnit

(e.g., expand/collapse state)

user interface user interface control state (e.g., Scroll content, Move mouse pointer
coupling mouse position, scroll bar state) Push button

• We use monospaced text to indicate method names and class names.

20 Part I Programming Systems

Later, collaborative zipper architectures were introduced with even more levels
(Dewan, 1996; Karsenty et al., 1995).

3 COMPOUND DOCUMENT EDITING

In compound document editing approaches such as OpenDoc and OLE2, a compound
document consists of a hierarchy of parts•• that may embed other parts. Each part has intrinsic
content of a particular part kind (e.g. an abstract data type, such as text, audio, video,
spreadsheet data, or any other editable abstract data type). In addition to having intrinsic
content, a part may embed other parts. The part at the top of a compound document hierarchy
is called the root part. A frame maintains the relation between an embedding part ('parent')

and an embedded part ('child'). A frame becomes visible as space that the (presentation of the)
embedded part has in the (presentation of the) embedding part. That is, an embedding part
contains a frame, and the frame contains the embedded part. Each part is handled (i.e.
displayed, edited, stored, printed) by its own part handler, a sort of mini-application. When a
user embeds a picture into a text document, it is the picture part handler that gets ' embedded'
into the text part handler. That is, once the picture is embedded in the document, the picture
part handler still is responsible for handling (i.e. displaying, editing, storing, printing) the
embedded picture. Another crucial user interface characteristic of compound document editing
is in-place editing: embedded parts can be completely handled at the location in which they are
inserted in the document, not in a separate window. Figure 4 illustrates a typical user interface

of a compound document editor.

part-specific menus

Word part

ISSI96XXX (nummer in OIUM'oog)

Figure 4 A compound document editing screen.

•• We will use OpenDoc terminology here, given our choice to use OpenDoc as a basis for implementation, as

explained later.

CoCoDoc: a framework for collaborative compound document editing 21

Thus, in a compound document editing session, different part handlers cooperate to create the
illusion of one seamless compound document being edited ·by one seamlessly integrated
application. This requires a single, well-defined inter-part handler interface, across which part
handlers can negotiate about screen space, share menu bars, share file storage, etc.

In the traditional editing approach, the inter-application interface is of a very different
nature, viz. exporting, importing and conversion of data between applications. Each data type
has its own application and there is typically one application that edits the entire final
document. This application takes care of displaying, printing, storing and (limited) editing of
embedded (or 'contained') data, that is usually cut, converted and pasted into the application.
A problem with this approach is the numerous conversion filters that are to be included in
applications, resulting in increasingly large applications. Moreover, updates in contained data
require dynamic update mechanisms, such as DDE.

The benefits of the compound document approach, compared to the traditional editing
approach are clear: less need for conversion filters, no loss of fidelity (each abstract data type
is edited by its native application) and polymorphic embedding: once a part handler can embed
another part handler, it can embed all part handlers, including future part handlers.

4 COLLABORATIVE COMPOUND DOCUMENT EDITING

Although both the benefits of collaborative editing and the benefits of compound document
editing are clear, the combination of the two editing paradigms has hardly been studied up to
now. To our knowledge only Taligent (Orfali et al, 1996, p. 307]) and the Technical
University ofMunich (Koch, 1995; Schlichte, 1996) have done work in this area.

A collaborative compound document editing environment consists of a collection of different
collaborative part editors, each with its own media editing capabilities and collaborative editing
capabilities. Within the same editing environment, collaboration-unaware and collaboration­
aware part editors can peacefully coexist. Even in the context of a single document, both
collaboration-unaware part editors and collaboration-aware part editors could be active editing
their parts. Collaboratively editing a document with MS-Word in file coupling mode (see Table
1), with an embedded picture that is collaboratively edited in view coupling mode (see Table
1), is perfectly conceivable and technically feasible. Each part of a document has its own
zipper, e.g. a rather inflexible zipper with two coupling modes as indicated in Figure 1 and
Figure 2, or a more flexible zipper with more coupling modes similar to Figure 8.

As a jump-start for constructing a collaborative compound document editing environment,
many existing and collaboration-unaware single user compound document editors (e.g. OLE2
based applications) can be used as a collaborative part editor. When such part editors are
combined with facilities such as a shared user interface system (see Figure 2) or a shared file
system (see Figure 1), these part editors can provide support for simple forms of collaborative
editing such as WYSIWIS editing and shared file editing. The environment can evolve over
time, by adding newly developed or upgraded versions of collaborative part editors, thus
extending the environment with new media editing capabilities and/or collaborative editing
capabilities. Figure 5 illustrates these two dimensions.

22

shared file

increasing ' development
complexity

collaboration
aware

increasing t
development
complexity

WYSIWIS

Part 1 Programming Systems

1111
11 11

11 11
1111 11
text spread- image drawing audio video _,..

sheet media complexity

Figure 5 Migration of a collaborative compound document editing environment: adding new
collaborative part editors (indicated by lighter squares) with new editing facilities (i.e. part
kinds) and/or new collaboration facilities.

For developers, the collaborative compound document editing paradigm offers the following
benefits:
• Reduced development effort: Developers can concentrate on providing editing functionality

in small, manageable chunks, without having to provide an entire editing environment to
have a marketable product. For example, developers could concentrate on a collaborative
editor of a specific part kind in which they happen to be good (e.g. a spreadsheet editor),
leaving editing of other parts in a user's editing environment to others.

• Decide on collaborative features on a part-by-part basis: The needs for collaborative
features often depend on the part kind. Decisions on collaboration-awareness or
collaboration-unawareness can be taken on a part-by-part basis.

For a group of collaborating users, the collaborative compound document editing paradigm
offers the following benefits:
• Coupling setting per part: With more advanced collaborative part handlers, users could

decide to collaborate more tightly over some parts (e.g. view coupling in a drawing), and to
collaborate more loosely over other parts (e.g. file coupling for other parts).

• Less steep learning curve: Collaborative editing requires learning to use new features
related to collaboration. A collaborative compound document editing environment can start
with familiar editors. When collaborative features are incrementally added, learning can also
be done incrementally.

• Increased composabi/ity and extensibility: The collaborative compound document editing
environment can be tailored to the group's needs, by selecting only a subset of available
part editors.

• Reduced vendor lock-in by use of open standards: Combined use of different part editors
from different vendors within a collaborative compound document editing environment is

CoCoDoc: a framework for collaborative compound document editing 23

possible if they conform to an open standard for inter-part editor interaction, such as the
Distributed Document Component Facility (DDCF) standard of OMG (Apple
Computer et al., 1995). Moreover, open standards for part kinds (persistent data formats)
would allow for the emergence of a software components market, from which users can
choose for the most suitable part editor on the market for a particular part kind. Finally,
open standards for intra-part editor collaboration protocols (i.e. between the local peer part
editors) would allow each user in a group of collaborating users to choose a different local
peer editor implementation, thus further reducing vendor lock-in.

5 THE COCODOC FRAMEWORK

CoCoDoc is a framework that supports the development of collaborative compound document
editing systems. It has been shaped considerably by our decision to design and implement it as
a collaborative extension of an existing compound document framework, rather than
developing it from scratch, or as a compound document editing extension of a collaborative
document editing framework or toolkit (such as DistEdit (Knister et al., 1990), GroupiE
(Rudebusch, 1995) or IRIS (Koch, 1995)). We considered both alternatives to be inefficient,
as the development of compound document editing document facilities requires a significant
amount of time without providing new insights compared to using existing compound
document frameworks. We also rejected the alternative of extending Taligent's implementation
of a rudimentary collaborative compound document editing framework, because it was not
easily available for R&D purposes and because it was not sufficiently in line with emerging
compound document editing standards.

In sections 5.1 and 5.2, we present the support CoCoDoc provides for developers of
collaborative component editors. In section 5.1, we focus on compound document editing
support and in section 5.2, we focus on collaborative document editing support. Subsequently,
in section 5.3, we briefly describe the current implementation ofCoCoDoc.

5.1 Compound document editing support

A compound document editing system consists of a number of part editors, each devoted to
editing a particular document part (e.g., a text part or a spreadsheet part), in close cooperation
with other part editors, as illustrated in Figure 6.

Figure 6 Non-distributed view: inter-part relations.

24 Part 1 Programming Systems

The compound document editing support that CoCoDoc needs to provide is primarily
concerned with inter-part relations, i.e. relations between different part editors involved in
editing a document.
• Embedding relations between parts. The CoCoDoc platform needs to support embedding

relations between parts (and consequently: between part editors); this involves creation, and
deletion of frames and negotiation about screen space.

• Compound document storage. Parts need to be supported in sharing document storage with
each other (e.g. sharing a file that stores a compound document).

• Compound document user interface: Parts need to be supported in sharing a document
editing user interface with each other. This involves part activation and dispatching input to
parts, and shl).ring user interface objects such as menus (e.g. making sure that the menu bar
always is the menu bar of the active part).

As a basis for the design and implementation of compound document editing support in
CoCoDoc, we decided to use OpenDoc (Nelson, 1995; Orfali et al., 1996), a new industry
standard for compound document editing, which was recently adopted as the basis for the
OMG standard for the CORBA Distributed Document Component Facility (DDCF) (Apple
Computer et al., 1995). In OpenDoc, part developers must implement a subclass of the
OpenDoc pure virtual baseclass ODPart, by overriding a minimum of 6 and a maximum of 60
methods defined in the interface of ODPart (Orfali et al., 1996, p. 346-350). These methods
are called by the OpenDoc framework and cover areas such as embedding, user interface event
handling, initialization and termination (constructors/destructors), frames, and imaging and
linking (Orfali et al., 1996).

5.2 Collaborative document editing support

A collaborative part editor typically consists of a number of peer part editors, each devoted to
supporting an individual user, in close cooperation with its peer part editors, as illustrated in
Figure 7.

Figure 7 Distributed view: intra-part relations.

The collaborative document editing support that CoCoDoc needs to provide is primarily
concerned with intra-part relations, i.e. relations between the different peer part editors:
• Collaborative part life cycle support. When a collaborative part editor is instantiated,

multiple peer part editors need to be instantiated (one for each user) and relations between

CoCoDoc: a framework for collaborative compound document editing 25

these peers need to be maintained. Also, when a new users joins or leaves, a new peer part
editor for that user needs to be instantiated or deleted, respectively.

• Shared file editing support for parts (similar to Figure 1). The peer part editors must share
storage for the part they are editing. In addition to 'traditional' shared file editing, the
support may provide collaborative storage services such as change notifications, versioning
and version merging.

• Shared user interface editing (WYSIWIS) support for parts (similar to Figure 2).
• Support for multiple levels of coupling in a part, and part coupling control (similar to

Figure 8).
• Document-wide coupling control. It may not always be desirable that each part editor is

coupled at its own level. Users must have the ability to set the coupling level for the entire
document. In CoCoDoc, four document-wide coupling levels are identified, which must be
supported by all collaboration-aware CoCoDoc-compliant part editors: file coupling, edit
coupling, view coupling and user interface coupling. An example of these levels was given
in Table 1.

• Document-wide outline control. The CoCoDoc framework should allow each part in an
embedding hierarchy to contain one or more outline levels and to be able to present an
outline view. The outline level should be controlled document-wide.

Collaborative part editor development in CoCoDoc is very similar to part editor development
in OpenDoc. In CoCoDoc, part developers must implement a subclass of the CoCoDoc pure
virtual baseclass cocooocPart, which is described below, in the section entitled
'CoCoDocPart baseclass'. Support for multiple levels of coupling in a part, and part coupling
control is provided by coup/able object groups, as described below, in the section entitled
'Couplable object groups and the Multicast Object Request Broker'. With these, CoCoDoc
covers most of the collaborative requirements as listed above, with the exception of
versioning, version merging and shared user interface editing (WYSIWIS) for parts, which are
not yet supported in the present version ofCoCoDoc.

CoCoDocPart baseclass
The methods that CoCoDocPart subclass developers must override are very similar to those of
ODPart; except for a few methods which have been replaced by ceo_ variants and a few
additional ceo_ methods which must be implemented, in the areas of (I) collaborative part life
cycle support, (II) shared file editing support for parts, (III) document-wide coupling control
and (IV) document-wide outline control, as indicated in Table 2. For the implementation of
these methods, the CoCoDoc framework provides developers with some additional
CoCoDocPart methods that are prefixed by 'coCoDoc _'.

26 Part 1 Programming Systems

Table 2 Overview of CoCoDocPart methods

I

CoCoDocPart method
that needs to be implemented

CCD_InitPart,
CCD_InitPartFromStoraqe

CCD_createObjectGroupMember

ll CCD_storaqeUnitChanqed

Ill CCD_setCouplinqLevel

IV CCD setOutline

When called; support provided by CoCoDoc

called at part creation: makes sure storage units
are coupled; framework takes care of interaction
with conference management facilities

called when the part needs to act as factory for an
object group member

called when coupled storage unit is updated

called recursively over all parts when a user
selects a document-wide coupling level from the
standard CoCoDoc menu, which can be installed
with the function CoCoDoc _ CopyBaseMenuBar

called recursively over all parts when a user
selects a document-wide outline level from the
standard CoCoDoc menu

Coup/able object groups and the Multicast Object Request Broker
The possibilities for coupling and coupling control depend on the physical distribution of state
over the user sites. Broadly, there are three options for physical distribution:
• centralization: the state in a coupling level is only present at one user site. It is accessed

and updated by the next lower layer in the collaborative zipper architecture.
• replication: the state in a coupling level is present at all user sites. All physical copies of the

logical state (replicas) must be kept in the same state, if coupled.
• distribution: there is one logical state, parts of which may be located at different locations;

distribution has both characteristics of centralization and replication; this option will not be
considered in this paper.

The type of distribution detennines which options are available for coupling of operations.
Centralization at a particular level implies coupling at that level and all higher (see Figure 8)
levels. For example, if part view control status is centralized, then only at the level of the user
interface there is an option concerning coupling. In this situation, it makes no sense to have
two document representations which may be coupled. Thus, in order to allow a high flexibility
in choice of coupling level, replication should be possible at many levels. Figure 8 illustrates a
situation where the part file state is centralized, while the other three levels are replicated and
may be coupled and uncoupled dynamically.

CoCoDoc: a framework for collaborative compound document editing 27

part file status

part edit status

part view control
status

part user interface
control status

interface
coupling

Tight coupling

view
coupling

edit
coupling

file
coupling

Loose coupling

Legend:

= uncoupled state

= coupled state by
means of
centralization

=coupled state by
means of
synchronization

Figure 8 A collaborative zipper with four coupling levels (rows); the distribution choices at
each level allow users to choose between four kinds of coupling (columns).

CoCoDoc supports implementation of this kind of collaborative systems (i.e. highly replicated,
with flexible coupling possibilities) by means of couplable object groups, which are an
extension of object groups (ISIS, 1993), a concept originating from fault tolerant computing.
An object group consists of a number of replicas: the member objects. To the world outside
the object group, an object group behaves as if it were a single object. Furthermore,
implementing an object group is largely similar to implementing a single object. A method
invocation on an object group is invoked on all replicas. This ensures state changes are applied
to all object replicas. Thus, a high availability of an object's state can be achieved, even if some
members are not available due to faults such as system or network crashes. In a coup/able
object group, coupling between replicas can be dynamically switched on or off during its
lifetime, with the methods startcouple and stopCouple, respectively.

A typical pattern of interaction occurring in collaborative compound document editing
systems, as illustrated in Figure 9, is an invocation (e.g. a call on the method CollapseUni t of
a view object cocoTreeUni tView of a collaborative outline editor), triggered by a user action,
that needs to be invoked 'simultaneously' on a number of objects, each located at a user's site,
containing a replica of the coupled object, in order to change the state of the shared artifact
globally and keep the coupling intact.

28 Part 1 Programming Systems

CoCoTreeUnitView
(in coupled mode)

User interface objects
(uncoupled)

Figure 9 Typical use of object groups.

site A : site B
I

. . • i

CoCoDoc provides support for such couplable object groups with a Multicast Object Request
Broker (MORB), an extension of current CORBA ORBs and an associated mixing baseclass
couplableObject. These facilities provide generic support for multicasting object
invocations, multipoint ordering services, response collation, object group membership
management and state transfer for newcomers, similar to the object group support provided in
the Multiware platform (Costa eta!., 1996). In addition to these services from the fault­
tolerant domain, it provides coupling and uncoupling of couplable object groups.

5.3 CoCoDoc prototype implementation

Our current prototype implementation of CoCoDoc is based on the Windows 1.1 version of
the OpenDoc developers kit, which is not fully CORBA/DDCF-compliant. No changes were
made to OpenDoc baseclasses; the cocooocPart baseclass was implemented as a subclass of
ODPart and couplableObject. Furthermore, no changes were made to the OpenDoc shell.
This arrangement required a relatively complex implementation of initiation of a collaborative
compound document editing conference as a number of related local OpenDoc shells.
CoCoDoc is embedded in the Platinum platform that was developed in the Platinum project,
which provided facilities for conference management and basic multicasting facilities for the
implementation of the MORB.

To achieve minimal additional learning efforts from OpenDoc programmers to use
CoCoDoc, the cocooocPart interface closely resembles the ooPart interface. For example,
the implementation requirements for ceo_ methods such as ceo_ Ini tPart closely resemble
those of their OpenDoc relatives, i.e. Ini tPart. Moreover, other interface extensions (such as
those for document-wide coupling and outline control) are kept to a minimum.

6 DEVELOPING A SIMPLE COLLABORATIVE OUTLINE EDITOR

This section briefly describes the process of developing a simple collaborative outline part
editor with the CoCoDoc framework (see Figure 10, for a snapshot of its user interface; for a
more extensive methodological discussion, we refer to (Moelaert-El Hadidy et al, 1996)).

CoCo Doc: a framework for collaborative compound document editing 29

First, we define (in CORBA IDL) a subclass of cocooocPart, say cocoTreePart.

Implementing CoCoTreePart is quite similar to implementing a normal subclass of ODPart

(Orfali eta!., 1996, p. 346-350). Since CoCoTreeParts must be able to embed other parts (e.g.
other CoCoTreeParts, since we decide that each CoCoTreePart handles only one level of an
outline, and delegates the handling of sub-levels to other parts), the optional ooPart methods
related to embedding must be implemented. The most significant differences compared to
OpenDoc programming are the implementation of the additional methods
CCD_createObjectGroupMember, CCD_storageUnitChanged, CCD_setOutline and
ceo_ setcouplingLevel on the one hand and the implementation of part coupling by using
the couplable object group paradigm on the other hand. We will focus primarily on the latter.

Functions for editing of
different parts or the
document

Collapse/expand
button

Collapsed leaf unit

Expanded unit

Collapsed unit

Setting of outline or
normal view

Setting the couple level: file , edit.
view or user Interface

Compound Document Storage
Collaborative Document Management

Conclusions

leaf unit
content

UnittiUe

Figure 10 User interface snapshot of a collaborative outline editor based on cocoTreePart.

First, we decide what object (state) can be independently coupled and uncoupled for individual
CoCoTreeParts and define separate object groups for these. Since we are implementing a
collaboration-aware CoCoDoc-compliant part editor, we need to distinguish at least the three
kinds of state as identified in Table 1, associated with the standard document-wide coupling
levels: file coupling, edit coupling and view coupling (user interface coupling is currently not
supported). There is no need to define a separate object group for file coupling; this is
provided by the CoCoDoc framework in the form of coupled storage units (which cannot be
uncoupled). For cocoTreePart, no part coupling levels are defined other than the standard
levels. So, we have to define a couplable object group (i.e. subclass of the baseclass
couplableObject) that encapsulates the editing state of the CoCoTreePart, say
cocoTreeUnitoata, and a couplable object group that encapsulates the view control state of
the CoCoTreePart, say CoCoTreeUnitView. For each couplable object group, we define
methods that can update its state (see the second and third row of the last column in Table 1).
These methods define the minimum granularity of updates and feedthrough. For example,

30 Part 1 Programming Systems

defining a method Renameunit of CoCoTreeUnitData implies that other users, if coupled at
edit level, can only observe the result of a complete rename operation; they cannot observe
updates to individual letters in the unit title. All the newly defined methods of
CoCoTreeUnitData and CoCoTreeUnitView must be implemented, including overridden
baseclass methods from couplableObject.

The coCoTreePart is responsible for creation of the object groups cocoTreeUnitData and
CoCoTreeUni tView; this must be implemented in ceo_ Ini tPart and
ceo_ Ini tPartFromStorage by instantiating the proper subclass and calling its
createObjectGroup method, while indicating in a parameter the object group that serves as
factory (itself, in this case). This will result in a call to ceo_ crea teObjectGroupMember at all
peer factories (its peer parts, in this case).

For part coupling, we need to add code to implement additional menu options under the
'Collaboration' menu, such as 'part edit coupling' and 'part view coupling'. Handling these
menu selections for part coupling as well as handling ceo_ setcouplingLevel is implemented
in the same way, viz. with calls to startcouple and Stopcouple on the appropriate couplable
object groups.

Being able to embed other OpenDoc parts as unit content requires only a minimal
implementation effort; most of the embedding code is already implemented for embedding
outline sub-trees. Since OLE2 applications can be embedded in OpenDoc parts as if they were
OpenDoc parts, we can use a large variety of content from existing applications (e.g. MS
Word) as unit content of our simple collaborative outline editor.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed collaborative compound document editing as new paradigm for
editing environments. We also presented the design and implementation of CoCoDoc, a
framework based on OpenDoc and CORBA that supports developers in constructing
collaborative compound document editing systems. CoCoDoc contributes to various research
and development communities.
• To the research and development of collaborative editing environments, CoCoDoc provides

a means to reuse existing single user editors in such environments and supports the
development of new collaborative part editors. Thus, CoCoDoc facilitates a gradual
migration towards collaborative editing environments that are both rich in editing support
and rich in collaboration support. Moreover, CoCoDoc and its associated MORB provide
couplable object groups as an effective and efficient means to design and implement CSCW
applications based on component software.

• To compound document editing in general an OpenDoc in particular, CoCoDoc contributes
a standardizable way towards collaborative editing, which requires only minimal extensions
to existing interfaces and minimal additional implementation effort from part developers.

• In the area of distributed computing platforms in general and CORBA in particular,
CoCoDoc and its associated MORB demonstrate how a distributed computing platform
could be extended with couplable object groups to support the needs of an important class
of applications of distributed systems, viz. CSCW applications in general and collaborative
editors in particular (see also (Ter Hofte et al., 1996a)).

CoCoDoc: a framework for collaborative compound document editing 31

• And last but not least, for end-users, CoCoDoc enables collaborative compound document
editing environments that provide a flexible coupling setting per part, less steep learning
curves, a means to tailor (i.e. compose and extend) collaborative editing environments to
user needs and the emergence of a component software market for collaborative part
editors based on open standards.

We implemented a research prototype of CoCoDoc based on the Windows 1.1 version the of
the OpenDoc developers kit and implemented a simple collaborative outline part editor on top
of it.

Future research and development on CoCoDoc will include making a fully CORBA/DDCF­
compliant implementation of CoCoDoc (depending on availability of CORBA/DDCF­
compliant framework implementations); enabling WYSIWlS user interface sharing for parts;
developing additional collaborative part editors; and extending CoCoDoc with support for
timeframes as a means to enable editing of multimedia documents with temporal relations
between parts, e.g., to facilitate collaborative timeline editing of multimedia documents.

Acknowledgements
This work was partially funded by the Dutch Ministry of Economic Affairs. The authors wish
to thank all Platinum project participants, in particular, Harm Bakker, Raymond Otte, Feria!
Moelaert, Wouter Teeuw and Maurice Houtsma.

8 REFERENCES

Apple Computer, Component Integration Laboratories, ffiM, and Novell. (1995) OMG RFP
submission : Compound presentation and compound interchange facilities (OMG
document No. 95-12-30). Object Management Group, Framingham, MA, USA.
http://www.omg.org/docs/1995/95-12-30. ps.

Baldeschwieler, I.E., Gutekunst, T., and Plattner, B. (1993, April) A survey of X protocol
multiplexors. ACM SIGCOMM Computer Communication Review, 23(2), 16-24.

Costa, F.M., and Madeirea, E.R.M. (1996). An object model and its implementation to
support cooperative applications on CORBA. In Distributed Platforms: IFIPIIEEE
International Conference on Distributed Platforms, Dresden, February 1996 (eds. A.
Schill, C. Mittasch, 0. Spaniol, and C. Popien), (p. 213-228). Chapman & Hall, London.

Dewan, P. (1996) Multiuser architectures. In Engineering for HCI: 1FIP WG2. 7 Working
Conference on Engineering for Human-Computer Interaction, Grand Targhee Resort,
Wyoming, USA 1995, August 14-18, (eds. C. Unger, and L.J. Bass), (p. 247-270).
Chapman & Hall, London. ftp://ftp.cs.unc.edu/pub/users/dewan/papers/arch.ps.Z.

Dourish, P. (1995) The parting of the ways: Divergence, data management and collaborative
work. In ECSCW'95 : Proceedings of the fourth European conference on computer­
supported cooperative work, 10-14 September 1995, Stockholm, Sweden (eds. H.
Marmolin, Y. Sundblad, and K. Schmidt), (p. 215-230). Kluwer Academic, Dordrecht,
the Netherlands. ftp://parcftp.xerox.com/pub/europarc/jpd/ecscw95-divergence.ps.

32 Part 1 Programming Systems

Ellis, C.A., Gibbs, S.J., and Rein, G.L. (1990) Design and use of a group editor. In
Engineering for human-computer interaction : proceedings of the IFIP TC2/WG2. 7
working conference on engineering for human-computer interaction, Napa-Valley, USA,
August 1989 (ed. G. Cockton), (p. 13-28). North-Holland, Amsterdam, the Netherlands.

Engelhart, D.C. (1975) NLS teleconferencing features : The journal, and shared-screen
telephoning. In CompCon75 Digest, September 9-11, 1975 (p. 173-176). IEEE,
http://www.bootstrap.org/NLS.ps.

Fish, R.S., Kraut, R.E., Leland, M.D.P., and Cohen, M. (1988) Quilt: A collaborative tool for
cooperative writing. In SIGOIS bulletin: 9(2&3}. Conf on office information systems,
March 1988, Palo A/to, USA (ed. R.B. Allen), (p. 30-37). ACM Press, New York.

Haake, J.M., and Wilson, B. (1992) Supporting collaborative writing of hyperdocuments in
SEPIA. In CSCW'92 : Proceedings of the conference on computer-supported
cooperative work, October 31 to November 4 1992, Toronto, Canada (eds. J. Turner,
and R.E. Kraut) ,(p. 138-146). ACM Press, New York.

Ter Hofte, G.H. (1996) Generic service features of CSCW applications: An analysis of co­
authoring tools (Platinum Deliverable D2.2/011: PLATINUMIN008NOO). Telematics
Research Centre, Enschede, the Netherlands.

Ter Hofte, G.H., van der Lugt, H.J., and Bakker, H. (1996a). A CORBA platform for
component groupware. In OzCHJ'96 Workshop on the Next Generation of CSCW
Systems, Hamilton, New Zealand 1996, November 25, [Working Paper 96/26] (ed. J.C.
Grundy), (p. 31-36). University of Waikato, Hamilton, New Zealand.
http://www. trc. nl/publicat/ozchi96.zip.

Ter Hofte, G.H., van der Lugt, H.J., and Houtsma, M.A.W. (1996b) Co4, a comprehensive
model for groupware functionality. In Telematics in a multimedia environment:
Euromedia 96, London, United Kingdom 1996, December 19-21, (ed. A. Verbraeck), (p.
231-238). Society for Computer Simulation International, Ghent, Belgium.

ISIS Distributed Systems. (1993) Object groups : A response to the ORB 2.0 RFI (OMG
document No. 94-03-01). Object Management Group, Framingham, MA, USA.
http://www.omg.org/docs/1993/93-04-11.ps.

Karsenty, A., and Beaudouin-Lafon, M. (1995) Slice: A logical model for shared editors. In
Groupware for real time drawing: A designer's guide (eds. S. Greenberg, S. Hayne, and
R. Rada), (p. 156-173). McGraw-Hill, New York. http://www.lri.fr/-ak/publis/cscw­
book.ps.

Knister, M.J., and Prakash, A. (1990) DistEdit : A distributed toolkit for supporting multiple
group editors. CSCW'90 : Proceedings of the conference on computer-supported
cooperative work, October 7-10, 1990, Los Angeles, CA, USA: , (p. 343-354).
Association for Computing Machinery, New York.

Koch, M. (1994) The unOfficial Yellow Pages of CSCW: Enhanced inteiface. WWW­
document. http :1/www 1l.informatik. tu-muenchen. de/cscw/yp/.

Koch, M. (1995, April 24) The collaborative multi-user editor project IRIS (Technical
Report, TUM-I9524). Technische Universitat Miinchen, Miinchen, Germany.
ftp :/ /hpschlichter 18.informatik. tu-muenchen.de/pub/papers/koch95. ps.gz.

Leland, M.D.P., Fish, R.S., and Kraut, R.E. (1988) Collaborative document production using
Quilt. In CSCW 88 : Proceedings of the conference on computer-supported cooperative
work, September 26-29, 1988, Portland, Oregon (p. 206-215). ACM Press, New York.

CoCoDoc: a framework for collaborative compound document editing 33

MacBride, A., and Susser, J. (1996) Byte guide to OpenDoc. Osborne McGraw-Hill,
Berkeley, CA, USA.

Moelaert-El Hadidy, F., Teeuw, W.B., & Bakker, H. (1996) An innovative approach for
designing collaborative applications using OpenDoc: from theory to practice. To be
published in the proceedings ofSEE'97, Cottbus, Gennany, April8-9, 1997.

Nelson, C. (1995, January) OpenDoc and its architecture. The X resource, 107-126.
Neuwirth, C.M., Kaufer, D.S., Chandhok, R., and Morris, J.H. (1990) Issues in the design of

computer support for co-authoring and commenting. In CSCW'90 : Proceedings of the
conference on computer-supported cooperative work, October 7-10, 1990, Los Angeles,
CA, USA (p. 183-195). ACMPress, New York.

Orfali, R., Harkey, D., and Edwards, J. (1996) The essential distributed objects survival
guide. Wiley, New York.

Ouibrahim, H., and Schot, J. (1995) Tete-teaching and the electronic superhighway : Towards
a vertical approach. In IDC'95 : First International Distributed Conference on High­
Performance Networking for Teleteaching, Madeira, Portugal; Madrid, Spain; Sophia
Antipolis, France; Brussels, Belgium, 1995, November 16-17.

Patterson, J.F. (1995, April) A taxonomy of architectures for synchronous groupware
applications. SIGOIS Bulletin, 15, 27-29.

Riidebusch, T. (1995) Cooperation support. In Cooperative computer-aided authoring and
learning: A systems approach (ed. M. Miihlhauser), (p. 249-272). Kluwer Academic,
Dordrecht, the Netherlands.

Schlichte, M. (1996) Mehrbenutzerfiihige Verbunddokument-Architekturen [Multi-user
compound document architectures]. M.Sc. Thesis (in German), Technische Universitiit
Miinchen, Munich, Germany, ftp://ftp11.informatik.tu-muenchen.delpub/papers/da­
schlichte96. ps.gz.

Stefik, M., Bobrow, D.G., Foster, G., Lanning, S., and Tatar, D. (1987, April) WYSIWIS
revisited : Early experiences with multiuser interfaces. ACM transactions on office
information systems, 5(2), 147-167.

9 BIOGRAPHY

G. Henri ter Hofte has been an associate member of scientific staff at the Telematics Research
Centre since 1993. His professional interests include CSCW, distributed object
computing, telework, software engineering and human factors. His Ph.D. research
concerns platform support for component-based groupware applications. He holds a cum
laude masters degree in Computer Science of the University ofTwente, the Netherlands,
where he graduated on distribution aspects of graphical user interface software.

Hermen J. van tier Lugt is Member of the Scientific Staff of the Telematics Research Centre.
He received his Ph.D. in Experimental Physics at the National Institute for Nuclear
Physics and High Energy Physics (NIKHEF) in Amsterdam. Topic of his thesis was the
design and implementation of a real-time distributed computing network for the data­
acquisition of the ZEUS experiment at a electron-proton collider in Hamburg, Germany.
He currently coordinates the TRC CSCW research, focusing on modeling, organizational
and infrastructure aspects of CSCW applications in organizations, and is involved in
several TRC projects in this area.

