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Abstract 
Network and systems management environments, e.g. for telecommunications systems, have 
to deal with a huge amount of event notifications, i.e. hundreds of alarms per second. Conven­
tional network management systems do not cope with this kind of workload due to their cen­
tralized nature. Therefore, distributed approaches are needed. We present a novel approach to 
event recognition, where not only event recording but also recognition of complex events is 
done in a distributed fashion. Often, exceptional system behavior cannot rely only on event 
notifications but has to become active to exactly determine the cause of an event. Therefore, a 
so-called active monitoring agent can either read additional data or trigger test operations. We 
describe the implementation of our distributed event recognition system on the ANSAware 
platform. The presentation of several measurement experiments in a MAN and WAN scenario 
will complete this work. Recognition time and buffer utilization is measured in different work­
load scenarios having deterministic arrivals, arrivals according to a Poisson Process and to a 
Markov-Modulated Poisson Process. 
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1 INTRODUCTION 

The on-going interconnection of isolated local networks to regional or even international intra­
nets and intemets enables applications to become distributed. Therefore, distributed platforms 
like the Common Object Request Broker Architecture (CORBA), ANSAware and the Distrib­
uted Computing Environment (DCE) are becoming increasingly popular because they free 
application programmers from certain aspects of distribution. Gaining distribution transpar-
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ency results in loosing control over the system's performance. Because state-of-the-art distrib­
uted platforms are lacking means for controlling application and platform performance, it is 
hard to run mission-critical distributed information systems with satisfactory performance. 

Network and systems management tools are used to detect faulty system states or perfor­
mance bottlenecks in a distributed system, see e.g. (Sloman, 1994) or (Hegering, 1995). Never­
theless, current management systems assume a human system operator to make decisions to 
improve system performance and availability. For managing a distributed platform, a reactive 
management system that detects bottlenecks or faults by itself and reconfigures it according to 
rule defined by the operator seems more promising. 

On key element in network and systems management is monitoring. The process of moni­
toring can be further subdivided into event recording, recognition, analysis and presentation. 
Recording is done by sensors attached to a distributed system to be monitored forwarding 
event occurrences to the recognition system. The recognizer tries to match the incoming event 
stream with given event patterns. These patterns might rather be complex events requiring sev­
eral different events to occur. The recognizer forwards a message to the analysis system once a 
certain pattern has been detected. Figure I shows a sample configuration of a distributed event 
recognition system. In contrast to recognition, analysis deals e.g. with gathering statistics on 
event occurrences. In addition, analysis is based on a model of the whole system under control 
whereas events generally only focus on parts of the system under control. Common distributed 
system models are e.g. graphs, Petri nets or process algebras. Presentation and graphical user 
interface allow system operators to control the inspected system. Several monitoring tools for 
parallel or distributed systems have been developed in the last years, e.g. ZM4 (Hofmann et a!, 
1994), JEWEL (Lange, 1992), Pablo (Reed eta!, 1992) or OMS (Friedrich eta!, 1996). 

node 1 node 2 node3 

c event - sensor 6, recognizer 

Chapter two introduces a new classification schema for event recognition systems used for 
comparing the most important event management systems. In the following chapter we present 
design and implementation of the distributed event recognition system (DERS) we have devel-
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oped at RWTH Aachen. Besides defining an event definition notation we mainly on DERS con­
figuration and distributed event recognition. DERS has been implemented on top of the 
ANSAware distributed platform. In chapter four we describe measurements we did based on 
this implementation. Measurements have been done for different workload scenarios and dis­
tributed systems of different geographical size including local, campus-wide and nation-wide 
scenario. 

2 STATEOFTHEART 

Event recognition systems recently gained much attention in the area of network and systems 
management, debugging tools and active database systems. They are part of advanced monitor­
ing systems and consist of sensors attached to the application under control and one or more 
components analyzing the event stream coming from sensors, see also Figure l. These recog­
nizers are able to e.g. detect complex events or do event filtering. Finally, events are forwarded 
to managers that decide what to do next. Approaches developed can basically be distinguished 
by 

the kinds of events they are able to recognize, and 
the model they use for event recognition. 

All recognition systems are processing basic events, i.e. events directly emitted by system sen­
sors. Furthermore, event recognition systems allow 

the clustering of events using propositional logic operators, e.g. and, or, or not, 
the use operators specifying a causal ordering on events, e.g. before, or after, 
temporal or modal logic operators, e.g. next, eventually or always 
timed events, i.e. events occurring at a certain time or in a given time interval, 
event condensation, e.g. filtering or compression of events, 

Often interval-based events are combined with a causal ordering operator, e.g. the occurrence 
of event b within 10 ms after the occurrence of event a. Once an event has been specified, its 
description has to be transformed into an executable program that is able to recognize this 
event. These programs can be constructed on base of several (theoretical) models. Common 
models for the recognition of complex event structures are e.g. 

graphs, 
finite state automata, 
Petri Nets, or 
rule-based models. 

In the sequel, we give a representative comparison of approaches to event recognition using the 
above defined classification, see Table l. The GEM approach (Mansouri-Samani, 1995) offers 
a rich event model to be recognized. Eveent evaluation is performed by a graph model, that is 
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not realized in a distributed fashion since it requires incoming events to be totally ordered. The 
focus in the SEMS (Yernini et al, 1996) lies on efficient decoding of the event-cause relation. 
Therefore, they use elements from coding theory to reduce redundancy in event-correlation 
graphs and gain fault tolerance. This advantage has been gained by restricting the event model 
to clustering and system flexibility. Jordaan et al (Jordaan et al, 1995) use the information 

model of OSI Systems Management, namely the Guidelines for the Definition of Managed 
Object (GDMO) and the General Relationship Model (GRM). The resulting Management 
Information Base (Mill) is organized as a graph. This approach offers maximum flexibility, but 
only provides central analysis facilities. In contrast to the above approaches, IMPACT (Jakob­
son et al, 1995) is based on a rule-based approach to event recognition. It offers a rich event 
model, which is mapped onto the AR-TIM expert system. (Moller et al, 1995) also use a rule­
based approach, but fall back onto a proprietary rule language. In essence, the main concept is 
an autonomous rule-based filter agent. 

Table 1: Comparing event recognition systems 

approach event types recognition model special features 

GEM clustering, graph (tree) delay window 
timed events, 
causal ordering, 
time-triggered 

SEMS/DECS clustering graph ("codebook") fast recognition 

Jordaan et al basic events, graph (MIB) GDMO,GRM 
object relations 

IMPACT clustering, rule (expert system) AR-TIM expert system 
causal ordering, 
time-based events 

Molleretal clustering, rule (proprietary) autonomous filter 
filtering agents 

EBBA clustering, graph (tree) sharing of subtrees 
filtering 

Gehani et al clustering, finite state automaton 
causal ordering, 
condensation 

SAM OS see Gehani et al Petri Net 

Whereas the above approaches originate from network and systems management, the EBBA 

system (Bates, 1989) has been developed for debugging distributed programs. Both next 
approaches have been developed for centralized active databases. They offer a rich event model 
but analysis is done in a centralized fashion. The only difference from our classification point 
of view is the recognition model. Whereas SAMOS (Gatziu et al, 1994) uses Petri Nets, 
Gehani et al (Gehani et al, 1992) falls 'back on finite state automata. 
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3 DESIGN AND IMPLEMENTATION 

In this section we are going to describe the Distributed Event Recognition System (DERS) we 
have developed at RWTH Aachen. It enhances the ANSAmon distributed monitor that has been 
developed before, see (Meyer et a!, 1995). 

3.1 System components 

The DERS consists of a configuration of system components like passive recognizes, active 
monitoring agents, buffers, and sensors. Sensors are attached to the distributed system or appli­
cation to be monitored, see Figure 2. Sensors are used to record relevant application informa­
tion and forward them to the monitoring system. They are implemented by inserting trace 
statement into the distributed systems' source code. If events are application-specific, instru­
mentation can be done either in the application source code or by creating an additional thread. 
Of course, memory addresses of the relevant data must be known to this thread. Non applica­
tion-specific events can be inserted into the platform libraries or the platform run-time system. 
Since ANSAware sources are available, platform instrumentation is possible. 

DERS 
configuration 

system 

I management interface 

Figure 2. Sample configuration of a Distributed Event Recognition System (DERS) 

Buffers can be inserted in order to decouple event-producing objects like sensors or recogniz­
ers and event-consuming objects like recognizers, agents or managers. Using no buffer would 
either block the producer until the consumer is ready to receive new events or would block the 
consumer until the producer is able to deliver new events. Therefore, we use an notification (or 
announcement in ODP terms) for forwarding events from the producer to the buffer. Event 
consumer can fetch events from a non-empty buffer by RPC (or interrogation in ODP terms). 
Because ANSAware announcements are lost when the receiver is busy, we have replaced it by 
an RPC, i.e. an ANSAware interrogation. 
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3.2 Event recognition 

DERS expects each event to be described by its type, a timestamp set at occurrence time, iden­

tifiers for the application, the node, the capsule and the thread emitting this event. Finally, there 

may also be information (of fixed size) specific to a certain event type. A complex event 

extends a basic event by operands, i.e. links to other events, and an recognition interval, that 

will be explained later in this section. Every event expression defined by using our event defini­

tion notation (EDN), partially shown in Table 2, can be transformed into an equivalent tree rep­

resentation named the event recognition tree (ERT). Defining a context-free grammar for the 

EDN enables automatic parser generation. The resulting tree contains events as leave nodes 

and operators as non-leave nodes. Each node (i.e. events and operators) representing a basic or 

complex event contains a flag indicating whether the associated event has already been 

detected or not. The values of all node flags determine the current state of an ERT. As soon as a 

recognition tree has been installed at a recognizer, incoming events are matched against the 

tree's leave nodes. Once a matching is detected, the state of the corresponding node becomes 

true. Afterwards, the complete tree will again be evaluated. If the complete event represented 

by the recognition tree has been detected, the tree's state has to be reset. We will discuss dis­

tributed event recognition later on. 

Table 2: DERS event operators 

event meaning event meaning 

E /-. E event E occurs I does not occur E1 "E2 event E1 occurs before event E2 

E1 v E2 at least one event occurs E1 :::~ E2 event E1occurs after event E2 

E1" E2 both events occur E + tms occurrence of event E is extended 
by tms 

Remarks on event description semantics 
The interpretation of a negative event needs some clarification. We assume negation to be the 

non-occurrence within an certain time interval. This time interval is determined by the occur­

rence of the first and the last partial event of a complex event. As soon as the event occurs 

although it should not, the whole event becomes invalid and the corresponding recognition tree 

will be reset. 
Whereas and and or operator semantics can be defined in a straightforward manner, recog­

nizing causal orderings is more difficult. First of all, the event description does not determine, 

if the operator defines a total of a partial ordering, i.e. if all events are comparable or not. For 

the DERS we have decided to apply total ordering semantics. Another decision to take is, what 

to do with a second occurrence of an event that forms a part of a more complex event. One way 

would be to create a second incarnation of the same complex event and the alternative is to dis­

card repetitions. We have decided to take the second alternative. The choice becomes clearer in 

the light of the interpretation causal operator expression. Therefore, we have chosen to apply 

the discarding-repetitions approach to the left side operand and the first occurrence on the right 

side operand. This makes sense, because evaluation of a c: b does not change until b occurs. We 

have found this interpretation to be the natural one in most cases. 
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Distributed event recognition 
Everytime an event arrives at a recognizer, it checks, which subtree waits for the occurrence of 
an event of this type. It evaluates the complete subtree in case the occurred event matches. If 
this event occurrence completes the evaluation of the whole subtree, the recognizer forwards a 
notification to all objects that have registered to receive it. Figure 7 shows a sample event that 
has been distributed over three nodes. E.g. as soon as the recognizer on nodes_2 has locally 
detected the event c, it forwards an event message to node_l. Once a subtree has been suc­
cessfully evaluated, it has to be reset in order to avoid event occurrences to be part of a second 
evaluation of the same event tree. In addition, in case of a contradiction occurred while evaluat­
ing an event tree, see Figure 3, it also has to be reset. 

Up to now, the recognition procedure has been straightforward. A problem occurs, when a 
causal relation between events on different nodes have to be detected. Because we decided to 
have a total ordering of events, we need to have a global system clock. We have developed an 
novel global time estimation algorithm that we will not discuss here, see (Burger et al, 1997). 

If the DERS is used in a larger distributed system containing communication links with dif­
ferent message delay or different link utilization, events happen to arrive in a different ordering 
as they have been send. As soon as the delayed event arrives, ordering can be established due to 
the global system time. But situations can occur where a delayed event cause an event not to be 
recognized although it has occurred, see Figure 3. The event ((a A b) c:: c) is to be recognized 
and all events occur on different nodes. Because event b arrives at the recognizer after event c, 
the recognition tree has already been reset when event c arrives. 

event: (a" b) r::: c 
node 1 

node 2 

node3 

recognizer 

a 

b 

c··. 

a c 

reset tree, because (a a b) is evaluated to false J 
Figure 3. Faulty recognition caused by message delay of event b 

b 
.. ..... 

To avoid these kinds of faulty recognitions, we delay decisions on the satisfaction of an event 
description until we are (almost) sure, that no delayed events will occur. The determination of 
the recognition delay puts up a conflict between having maximum certainty, i.e. making the 
interval long enough to detect delayed events and reducing recognition time of events aiming 
at a short delay. Therefore, a good trade-off has to be found. If one could determine average 
and standard deviation of the communication delay over a link, it would be possible to have 
tight recognition intervals, e.g. the recognition delay could be calculated by 

recognition _delay = average + 2*standard_deviation. (l) 
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3.3 Active Monitoring Agents 

In centralized systems, all state information is kept locally and event detection can be done 
without interactions with remote objects. This changes if event recognition is done in a distrib­
uted fashion. First, information is distributed all over the system and second, the communica­
tions subsystem causes additional failures. In conventional monitoring and management 
models, recognizers detect an event and forwards it to the manager, see Figure 4 a. The man­
ager decides to retrieve additional information from a resource via RPC. All together, there are 
four interactions. Having an active monitoring agent, information can directly be retrieved at 
the resource and a precise event notification is sent to the manager, see Figure 4 b. Especially, 
if manager and monitoring system reside on physically distant computer nodes connected by a 
wide area network (WAN), WAN traffic is reduced from three to one event notification result­
ing in a better recognition time. 

a b 

Figure 4. Monitor interactions in a (a) conventional management system and (b) using active 
monitoring agents 

Active monitoring agents are either separate DERS components or are combined with passive 
recognizers. In the later case, active events are recognized by a separate component because 
recognition time depends on interaction durations with remote objects and would block the 
detection of other events. Therefore, active monitoring agents have to be able to 

receive event notifications from other DERS components, 
forward events notifications to other DERS components, 
read local and remote management attributes, and 
call remote operations. 

As an example, a client process detects a binding error emitted by the middleware. This error 
can be caused by a breakdown of the called server, an RPC fault or a failure of the communica­
tion subsystem. Figure 5 describes this behavior as an active event rule. Once an active recog­
nizer receives the BindingError event notification from the client, it calls the ping 
operation at the server node. This operation employs the Internet Control Message Protocol 
(ICMP) on the network layer of the Internet Protocol Suite. If the call fails (on result 
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failure, Figure 5), the agent infers a server node failure, an network laver communications 
fault or an communications device fault. The later two alternatives can be resolved, if a device 
driver level test tool is available, but server or communications device fault cannot be distin­
guished from the client node. In case of a successful ping operation, the failure must be caused 
on the transport layer or above it. To gain deeper insight, we assume a socket layer test opera­
tion (socketTest, Figure 5) to be available. If this operation fails, a transport layer fault has 
been detected, whereas otherwise an RPC failure is likely. 

on event BindingError (server) from client 
do 

call ping at server 
on result failure do 

forward event NodeFault+NetworkLayerFault+DeviceFault(client,server) 
on result success 
do 

call socketTest at server 
on result failure forward event TransportLayerFault(client,server) 
on result success forward event RPC_Fault(client,server) 

Figure 5. Sample active event description for a binding error 

3.4 The DERS configuration system 

A management interface is required for every DERS component, see Figure 2, in order to 
enable dynamic reconfiguration of the DERS. First, every component offers operations to 
enable and disable itself and operations for users to register and deregister for an event, see 
Figure 6. In addition, sensors, recognizers or active monitoring agents offer operations to add 
and remove events, recognition trees resp. rules. The buffer is characterized by its maximum 
size, a current size limit, and the current buffer size. Whereas the limit can be modified at run­
time, the maximum size is determined at creation time. Of course, the limit cannot be larger 
than the maximum size. In addition to configuring the installed DERS, each node should offer 
a factory enabling local and remote object creation. This allows the DERS configuration sys­
tem to extend the current configuration. 

Up to now, we have focused on describing complex but not distributed events. Therefore, 
we are extending our notation by the @ operator determining the node at which an event 
occurs. It can be applied to any event description, basic or complex ones, and is used as an 
expression postfix. If a new complex event is to be added to the DERS, its configuration system 
transforms the event description into a recognition tree, divides this tree into subtrees to be rec­
ognized by each node and forwards these subtrees to the corresponding recognizers. The event 
description is called static if all events have a location annotation. In order to achieve an opti­
mal recognition system configuration it is necessary to decide where to place the event recog­
nizers depending on the structure of a complex event and the current system configuration, e.g. 
the event message delay on communication links between two nodes. Therefore, a more 
dynamic event description that only determines the occurrence location basic events, i.e. events 
directly emitted by a sensor, is needed. 
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/oERS component'\ 
operationaiState 
getState 
setState 
registerForEvent 
deregisterForEvent 

A 
I I I 

/ Sensor Recognizer I' ActiveAgent'\ I' Buffer ' currentSize l addEvent addERT addAER I currentSizeLimit '-removeEvent removeERT ~emoveAER maxSize 

getSize 

AER -Active Event Rule 
getMaxSize 
setSizeLimit 

ERT - Event Recognition Tree ~etSizeLimit 
DERS - Distributed Event Recognition System / 

Figure 6. Information view on management interfaces of DERS components 

In the sequel, we define rules for configuring the DERS with a complex events not taking per­
formance and utilization information on nodes and links into account. Therefore, we need to 
compute the number of basic events for each node involved in the recognition of a complex 
event. 

event: (a@node_111 b@node_2) r::: (c@node_3 v d@node_1) 

node_ node_2 node_3 

Figure 7. Sample distribute recognition tree 

The DERS configuration is guided by the following rules, 

negation of an event should be recognized locally, 
and or or combined events should be recognized by the node that records most of the 
events of a composite event, and 
causal operators should be recognized at the node of the left operand. 
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The last rule derives itself from the operator's semantics using the last occurrence of the left 
side and the first occurrence of the right side. If the rule had been defined the other way, all 
events on the left side would have to be transferred although they would be discarded. 

4 EVALUATION 

4.1 Measurement scenario and workload characterization 

Performance measurements of the DERS have been done in three geographical scenarios, a 
LAN-based scenario between veilchen and prirnel, a campus-size MAN scenario 
between prirnel and lyra at RWTH Aachen clinic (about 5 km distance) and a nation-size 
WAN scenario between prirnel and tunix at FemUniversitlit at Hagen (about 200 km dis­
tance), see Figure 8. 

RWTH Aachen FemUni Hagen 

Computer Science Department Clinic 

Figure 8. Measurement scenario 

~ 
LAN /Iii LAN 

B 
LAN 

Computer Center • interworking unit 

We used three different kinds of workload in order to investigate DERS' response behavior in 
more detail. The first scenario, called deterministic workload, assumes events to arrive with 
constant inter-arrival times. Time-triggered monitoring can modeled with this kind of work­
load. Nevertheless, constant interarrival time are not suitable for event-triggered monitoring, so 
we used Poisson workload in order to model independent event occurrences. Poisson workload 
means, that inter-arrival times are exponentially distributed. Even the independence assump­
tion between event occurrences made for Poisson workload does not hold in realistic scenarios 
because it does not take into account, that the occurrence of one event in general will cause 
other events to occur, e.g. a communication link failure will cause every message transported 
over it to produce a fault indication. More realistic workload models should have bursty and 
non-bursty event occurrences. We have chosen Markov-modulated Poisson process (MMPP) to 
model this kind of behavior. MMPP models switch non-deterministically between different 
Poisson process with different rates using a Markov model. Which Poisson process (i.e. state) 
to switch to next only depends on the current Poisson process (i.e. state) and the transition 
probabilities between the different Poisson processes (i.e. states). 
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4.2 Recognition delay measurement for different workload scenarios 

The most important performance metric for the integration of a event recognition system into a 
reactive management tool is its recognition delay. It determines responsiveness to event occur­
rences. We have measured the recognition delay, i.e. the time it takes for an event to get from 
the sensor to the manager, for all three workload scenarios in a MAN environment. Similar 
measurements have been done for LAN and WAN scenarios as well, see (BUrger, 1996). Figure 
9 shows the average recognition delay of measurement series in the MAN scenario under 
deterministic and Poisson workload. A 95% confidence interval is given for all values. 

a 
7ii 160 .s 140 
~ 120 
{j 100 
c 80 
C) 60 

~ 40 
ai 20 

b 
7ii 160 .s 140 
~ 120 
{j 100 
c 80 

8 60 
~ 40 

iO 0 +--+---1--_.,1------1----1 ~ 2~ -~--~-~-~-.,~---~ 
10 25 50 75 100 125 

event arrival rate [1/s] 
10 25 50 75 100 125 

event arrival rate (1/s] 

Figure 9. Average recognition delay (95% confidence intervals) in MAN scenario under 
(a) deterministic and (b) Poisson workload 

A comparison of detenninistic and Poisson workload shows, that DERS performs faster with 
Poisson workload than with deterministic workload when arrival rate increases over 50 events 
per second. Nevertheless, confidence intervals are smaller for deterministic load. 

_.200 ~-----------------~ 
(/) .s 
~ 150 
a; 
"0 
c: 100 
0 
~ ·;: 
C) 50 
8 
~ 

200 400 60 
sample sequence number 

Figure 10. Recognition delay samples in MAN scenario for MMPP workload 

Doing the same for MMPP workload would be pointless since confidence intervals are huge 
because the recognition delay switches between bursty and non-bursty intervals. In Figure 10 
one notices, that DERS is fast enough in recognizing events, so that a burst with a rate of 125 
events per second only has little influence on the succeeding interval with normal arrival rate, 
i.e. 10 events a second. 
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4.3 Buffer utilization for different distributed system size 

Another important DERS performance metric is the buffer utilization. It is especially important 
for the DERS management system for finding a suitable buffer size. We have chosen a buffer 
size of 32 event records for the following measurements. Measurements presented in Figure 11 
and Figure 12 show buffer utilization for a MAN and a WAN-based environment. Whereas a 
buffer size of 16 is sufficient for MAN (and of course for LAN) scenarios and arrival rates up 
to 125 events per second, events are lost for a arrival rate over 70 events per second in a WAN 
scenario. 

36 

32 ... --- - .... ---
a; 28 bulle limit 

= 24 :::> 
.0 20 
.!: 
!!! 16 
c: 

12 Cl> 
> 
Cl> 8 

4 

0 
50 75 100 125 

sample sequence for each event arrival rate [1/s) 

Figure 11. Buffer utilisation in campus-size MAN scenario 
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a; 28 
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.0 

.!: 20 
<I) 16 c 
Cl> 12 > 
Q) 

8 

4 

0 
10 20 30 40 50 60 7 0 

sample sequence for each event arrival rate (1/s) 

Figure 12. Buffer utilisation in nation-size WAN scenario 

5 CONCLUSIONS 

Event recognition is the most important part of monitoring systems. In this paper, we have pre­
sented a novel approach to event recognition in distributed system that also performs recogni­
tion and not only event recording in a distributed fashion. In addition, we proposed to use 
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active monitoring agents in order to reduce network traffic, that is especially important in 

WAN-based environments. Adding location annotations to events allows us to automatically 

configure a our recognition system for the detection of a certain complex event. We have pre­

sented measurements performed using three different workload scenarios, i.e. deterministic, 

Poisson and Markov-modulated Poisson workload, in a campus-size MAN scenario. We 

showed, that DERS is well suited for LAN and MAN-sized environments, where a buffer size 

of 16 are sufficient up to arrival rates of 125 events per second. Naturally, in a WAN scenario it 

only copes with lower rates, but in a WAN scenario we expect our active monitoring agent con­

cept to be powerful enough to reduce WAN-based traffic to achieve reasonable recognition 

times. DERS has been implemented on ANSAware and is currently adapted to Orbix 2.0 MT 

and Orbix Talk. Future work will be done on an automatic instrumentation tool for DERS and 

its integration into a reactive management system prototype. 
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