
15

Design and Evaluation of a Distributed
Event Recognition System

Ingo Burger, Bernd Meyer
RWTH Aachen, Computer Science Department,
Communication Systems, Ahornstr. 55, D-52056 Aachen, Germany
Telephone: +49/24118021415, FAX: +49/241/8888220
e-mail: bernd@ i4. informatik. rwth-aachen. de

Abstract
Network and systems management environments, e.g. for telecommunications systems, have
to deal with a huge amount of event notifications, i.e. hundreds of alarms per second. Conven­
tional network management systems do not cope with this kind of workload due to their cen­
tralized nature. Therefore, distributed approaches are needed. We present a novel approach to
event recognition, where not only event recording but also recognition of complex events is
done in a distributed fashion. Often, exceptional system behavior cannot rely only on event
notifications but has to become active to exactly determine the cause of an event. Therefore, a
so-called active monitoring agent can either read additional data or trigger test operations. We
describe the implementation of our distributed event recognition system on the ANSAware
platform. The presentation of several measurement experiments in a MAN and WAN scenario
will complete this work. Recognition time and buffer utilization is measured in different work­
load scenarios having deterministic arrivals, arrivals according to a Poisson Process and to a
Markov-Modulated Poisson Process.

Keywords
Network and Systems Management, Monitoring, Event Recognition, Measurement, Perfor­
mance Evaluation, Distributed Platforms,

1 INTRODUCTION

The on-going interconnection of isolated local networks to regional or even international intra­
nets and intemets enables applications to become distributed. Therefore, distributed platforms
like the Common Object Request Broker Architecture (CORBA), ANSAware and the Distrib­
uted Computing Environment (DCE) are becoming increasingly popular because they free
application programmers from certain aspects of distribution. Gaining distribution transpar-

J. Rolia et al. (eds.), Open Distributed Processing and Distributed Platforms
© IFIP International Federation for Information Processing 1997

196 Part Five Services I

ency results in loosing control over the system's performance. Because state-of-the-art distrib­
uted platforms are lacking means for controlling application and platform performance, it is
hard to run mission-critical distributed information systems with satisfactory performance.

Network and systems management tools are used to detect faulty system states or perfor­
mance bottlenecks in a distributed system, see e.g. (Sloman, 1994) or (Hegering, 1995). Never­
theless, current management systems assume a human system operator to make decisions to
improve system performance and availability. For managing a distributed platform, a reactive
management system that detects bottlenecks or faults by itself and reconfigures it according to
rule defined by the operator seems more promising.

On key element in network and systems management is monitoring. The process of moni­
toring can be further subdivided into event recording, recognition, analysis and presentation.
Recording is done by sensors attached to a distributed system to be monitored forwarding
event occurrences to the recognition system. The recognizer tries to match the incoming event
stream with given event patterns. These patterns might rather be complex events requiring sev­
eral different events to occur. The recognizer forwards a message to the analysis system once a
certain pattern has been detected. Figure I shows a sample configuration of a distributed event
recognition system. In contrast to recognition, analysis deals e.g. with gathering statistics on
event occurrences. In addition, analysis is based on a model of the whole system under control
whereas events generally only focus on parts of the system under control. Common distributed
system models are e.g. graphs, Petri nets or process algebras. Presentation and graphical user
interface allow system operators to control the inspected system. Several monitoring tools for
parallel or distributed systems have been developed in the last years, e.g. ZM4 (Hofmann et a!,
1994), JEWEL (Lange, 1992), Pablo (Reed eta!, 1992) or OMS (Friedrich eta!, 1996).

node 1 node 2 node3

c event - sensor 6, recognizer

Chapter two introduces a new classification schema for event recognition systems used for
comparing the most important event management systems. In the following chapter we present
design and implementation of the distributed event recognition system (DERS) we have devel-

Design and evaluation of a distributed event recognition system 197

oped at RWTH Aachen. Besides defining an event definition notation we mainly on DERS con­
figuration and distributed event recognition. DERS has been implemented on top of the
ANSAware distributed platform. In chapter four we describe measurements we did based on
this implementation. Measurements have been done for different workload scenarios and dis­
tributed systems of different geographical size including local, campus-wide and nation-wide
scenario.

2 STATEOFTHEART

Event recognition systems recently gained much attention in the area of network and systems
management, debugging tools and active database systems. They are part of advanced monitor­
ing systems and consist of sensors attached to the application under control and one or more
components analyzing the event stream coming from sensors, see also Figure l. These recog­
nizers are able to e.g. detect complex events or do event filtering. Finally, events are forwarded
to managers that decide what to do next. Approaches developed can basically be distinguished
by

the kinds of events they are able to recognize, and
the model they use for event recognition.

All recognition systems are processing basic events, i.e. events directly emitted by system sen­
sors. Furthermore, event recognition systems allow

the clustering of events using propositional logic operators, e.g. and, or, or not,
the use operators specifying a causal ordering on events, e.g. before, or after,
temporal or modal logic operators, e.g. next, eventually or always
timed events, i.e. events occurring at a certain time or in a given time interval,
event condensation, e.g. filtering or compression of events,

Often interval-based events are combined with a causal ordering operator, e.g. the occurrence
of event b within 10 ms after the occurrence of event a. Once an event has been specified, its
description has to be transformed into an executable program that is able to recognize this
event. These programs can be constructed on base of several (theoretical) models. Common
models for the recognition of complex event structures are e.g.

graphs,
finite state automata,
Petri Nets, or
rule-based models.

In the sequel, we give a representative comparison of approaches to event recognition using the
above defined classification, see Table l. The GEM approach (Mansouri-Samani, 1995) offers
a rich event model to be recognized. Eveent evaluation is performed by a graph model, that is

198 Part Five Services I

not realized in a distributed fashion since it requires incoming events to be totally ordered. The
focus in the SEMS (Yernini et al, 1996) lies on efficient decoding of the event-cause relation.
Therefore, they use elements from coding theory to reduce redundancy in event-correlation
graphs and gain fault tolerance. This advantage has been gained by restricting the event model
to clustering and system flexibility. Jordaan et al (Jordaan et al, 1995) use the information

model of OSI Systems Management, namely the Guidelines for the Definition of Managed
Object (GDMO) and the General Relationship Model (GRM). The resulting Management
Information Base (Mill) is organized as a graph. This approach offers maximum flexibility, but
only provides central analysis facilities. In contrast to the above approaches, IMPACT (Jakob­
son et al, 1995) is based on a rule-based approach to event recognition. It offers a rich event
model, which is mapped onto the AR-TIM expert system. (Moller et al, 1995) also use a rule­
based approach, but fall back onto a proprietary rule language. In essence, the main concept is
an autonomous rule-based filter agent.

Table 1: Comparing event recognition systems

approach event types recognition model special features

GEM clustering, graph (tree) delay window
timed events,
causal ordering,
time-triggered

SEMS/DECS clustering graph ("codebook") fast recognition

Jordaan et al basic events, graph (MIB) GDMO,GRM
object relations

IMPACT clustering, rule (expert system) AR-TIM expert system
causal ordering,
time-based events

Molleretal clustering, rule (proprietary) autonomous filter
filtering agents

EBBA clustering, graph (tree) sharing of subtrees
filtering

Gehani et al clustering, finite state automaton
causal ordering,
condensation

SAM OS see Gehani et al Petri Net

Whereas the above approaches originate from network and systems management, the EBBA

system (Bates, 1989) has been developed for debugging distributed programs. Both next
approaches have been developed for centralized active databases. They offer a rich event model
but analysis is done in a centralized fashion. The only difference from our classification point
of view is the recognition model. Whereas SAMOS (Gatziu et al, 1994) uses Petri Nets,
Gehani et al (Gehani et al, 1992) falls 'back on finite state automata.

Design and evaluation of a distributed event recognition system 199

3 DESIGN AND IMPLEMENTATION

In this section we are going to describe the Distributed Event Recognition System (DERS) we
have developed at RWTH Aachen. It enhances the ANSAmon distributed monitor that has been
developed before, see (Meyer et a!, 1995).

3.1 System components

The DERS consists of a configuration of system components like passive recognizes, active
monitoring agents, buffers, and sensors. Sensors are attached to the distributed system or appli­
cation to be monitored, see Figure 2. Sensors are used to record relevant application informa­
tion and forward them to the monitoring system. They are implemented by inserting trace
statement into the distributed systems' source code. If events are application-specific, instru­
mentation can be done either in the application source code or by creating an additional thread.
Of course, memory addresses of the relevant data must be known to this thread. Non applica­
tion-specific events can be inserted into the platform libraries or the platform run-time system.
Since ANSAware sources are available, platform instrumentation is possible.

DERS
configuration

system

I management interface

Figure 2. Sample configuration of a Distributed Event Recognition System (DERS)

Buffers can be inserted in order to decouple event-producing objects like sensors or recogniz­
ers and event-consuming objects like recognizers, agents or managers. Using no buffer would
either block the producer until the consumer is ready to receive new events or would block the
consumer until the producer is able to deliver new events. Therefore, we use an notification (or
announcement in ODP terms) for forwarding events from the producer to the buffer. Event
consumer can fetch events from a non-empty buffer by RPC (or interrogation in ODP terms).
Because ANSAware announcements are lost when the receiver is busy, we have replaced it by
an RPC, i.e. an ANSAware interrogation.

200 Part Five Services I

3.2 Event recognition

DERS expects each event to be described by its type, a timestamp set at occurrence time, iden­

tifiers for the application, the node, the capsule and the thread emitting this event. Finally, there

may also be information (of fixed size) specific to a certain event type. A complex event

extends a basic event by operands, i.e. links to other events, and an recognition interval, that

will be explained later in this section. Every event expression defined by using our event defini­

tion notation (EDN), partially shown in Table 2, can be transformed into an equivalent tree rep­

resentation named the event recognition tree (ERT). Defining a context-free grammar for the

EDN enables automatic parser generation. The resulting tree contains events as leave nodes

and operators as non-leave nodes. Each node (i.e. events and operators) representing a basic or

complex event contains a flag indicating whether the associated event has already been

detected or not. The values of all node flags determine the current state of an ERT. As soon as a

recognition tree has been installed at a recognizer, incoming events are matched against the

tree's leave nodes. Once a matching is detected, the state of the corresponding node becomes

true. Afterwards, the complete tree will again be evaluated. If the complete event represented

by the recognition tree has been detected, the tree's state has to be reset. We will discuss dis­

tributed event recognition later on.

Table 2: DERS event operators

event meaning event meaning

E /-. E event E occurs I does not occur E1 "E2 event E1 occurs before event E2

E1 v E2 at least one event occurs E1 :::~ E2 event E1occurs after event E2

E1" E2 both events occur E + tms occurrence of event E is extended
by tms

Remarks on event description semantics
The interpretation of a negative event needs some clarification. We assume negation to be the

non-occurrence within an certain time interval. This time interval is determined by the occur­

rence of the first and the last partial event of a complex event. As soon as the event occurs

although it should not, the whole event becomes invalid and the corresponding recognition tree

will be reset.
Whereas and and or operator semantics can be defined in a straightforward manner, recog­

nizing causal orderings is more difficult. First of all, the event description does not determine,

if the operator defines a total of a partial ordering, i.e. if all events are comparable or not. For

the DERS we have decided to apply total ordering semantics. Another decision to take is, what

to do with a second occurrence of an event that forms a part of a more complex event. One way

would be to create a second incarnation of the same complex event and the alternative is to dis­

card repetitions. We have decided to take the second alternative. The choice becomes clearer in

the light of the interpretation causal operator expression. Therefore, we have chosen to apply

the discarding-repetitions approach to the left side operand and the first occurrence on the right

side operand. This makes sense, because evaluation of a c: b does not change until b occurs. We

have found this interpretation to be the natural one in most cases.

Design and evaluation of a distributed event recognition system 201

Distributed event recognition
Everytime an event arrives at a recognizer, it checks, which subtree waits for the occurrence of
an event of this type. It evaluates the complete subtree in case the occurred event matches. If
this event occurrence completes the evaluation of the whole subtree, the recognizer forwards a
notification to all objects that have registered to receive it. Figure 7 shows a sample event that
has been distributed over three nodes. E.g. as soon as the recognizer on nodes_2 has locally
detected the event c, it forwards an event message to node_l. Once a subtree has been suc­
cessfully evaluated, it has to be reset in order to avoid event occurrences to be part of a second
evaluation of the same event tree. In addition, in case of a contradiction occurred while evaluat­
ing an event tree, see Figure 3, it also has to be reset.

Up to now, the recognition procedure has been straightforward. A problem occurs, when a
causal relation between events on different nodes have to be detected. Because we decided to
have a total ordering of events, we need to have a global system clock. We have developed an
novel global time estimation algorithm that we will not discuss here, see (Burger et al, 1997).

If the DERS is used in a larger distributed system containing communication links with dif­
ferent message delay or different link utilization, events happen to arrive in a different ordering
as they have been send. As soon as the delayed event arrives, ordering can be established due to
the global system time. But situations can occur where a delayed event cause an event not to be
recognized although it has occurred, see Figure 3. The event ((a A b) c:: c) is to be recognized
and all events occur on different nodes. Because event b arrives at the recognizer after event c,
the recognition tree has already been reset when event c arrives.

event: (a" b) r::: c
node 1

node 2

node3

recognizer

a

b

c··.

a c

reset tree, because (a a b) is evaluated to false J
Figure 3. Faulty recognition caused by message delay of event b

b
..

To avoid these kinds of faulty recognitions, we delay decisions on the satisfaction of an event
description until we are (almost) sure, that no delayed events will occur. The determination of
the recognition delay puts up a conflict between having maximum certainty, i.e. making the
interval long enough to detect delayed events and reducing recognition time of events aiming
at a short delay. Therefore, a good trade-off has to be found. If one could determine average
and standard deviation of the communication delay over a link, it would be possible to have
tight recognition intervals, e.g. the recognition delay could be calculated by

recognition _delay = average + 2*standard_deviation. (l)

202 Part Five Services I

3.3 Active Monitoring Agents

In centralized systems, all state information is kept locally and event detection can be done
without interactions with remote objects. This changes if event recognition is done in a distrib­
uted fashion. First, information is distributed all over the system and second, the communica­
tions subsystem causes additional failures. In conventional monitoring and management
models, recognizers detect an event and forwards it to the manager, see Figure 4 a. The man­
ager decides to retrieve additional information from a resource via RPC. All together, there are
four interactions. Having an active monitoring agent, information can directly be retrieved at
the resource and a precise event notification is sent to the manager, see Figure 4 b. Especially,
if manager and monitoring system reside on physically distant computer nodes connected by a
wide area network (WAN), WAN traffic is reduced from three to one event notification result­
ing in a better recognition time.

a b

Figure 4. Monitor interactions in a (a) conventional management system and (b) using active
monitoring agents

Active monitoring agents are either separate DERS components or are combined with passive
recognizers. In the later case, active events are recognized by a separate component because
recognition time depends on interaction durations with remote objects and would block the
detection of other events. Therefore, active monitoring agents have to be able to

receive event notifications from other DERS components,
forward events notifications to other DERS components,
read local and remote management attributes, and
call remote operations.

As an example, a client process detects a binding error emitted by the middleware. This error
can be caused by a breakdown of the called server, an RPC fault or a failure of the communica­
tion subsystem. Figure 5 describes this behavior as an active event rule. Once an active recog­
nizer receives the BindingError event notification from the client, it calls the ping
operation at the server node. This operation employs the Internet Control Message Protocol
(ICMP) on the network layer of the Internet Protocol Suite. If the call fails (on result

Design and evaluation of a distributed event recognition system 203

failure, Figure 5), the agent infers a server node failure, an network laver communications
fault or an communications device fault. The later two alternatives can be resolved, if a device
driver level test tool is available, but server or communications device fault cannot be distin­
guished from the client node. In case of a successful ping operation, the failure must be caused
on the transport layer or above it. To gain deeper insight, we assume a socket layer test opera­
tion (socketTest, Figure 5) to be available. If this operation fails, a transport layer fault has
been detected, whereas otherwise an RPC failure is likely.

on event BindingError (server) from client
do

call ping at server
on result failure do

forward event NodeFault+NetworkLayerFault+DeviceFault(client,server)
on result success
do

call socketTest at server
on result failure forward event TransportLayerFault(client,server)
on result success forward event RPC_Fault(client,server)

Figure 5. Sample active event description for a binding error

3.4 The DERS configuration system

A management interface is required for every DERS component, see Figure 2, in order to
enable dynamic reconfiguration of the DERS. First, every component offers operations to
enable and disable itself and operations for users to register and deregister for an event, see
Figure 6. In addition, sensors, recognizers or active monitoring agents offer operations to add
and remove events, recognition trees resp. rules. The buffer is characterized by its maximum
size, a current size limit, and the current buffer size. Whereas the limit can be modified at run­
time, the maximum size is determined at creation time. Of course, the limit cannot be larger
than the maximum size. In addition to configuring the installed DERS, each node should offer
a factory enabling local and remote object creation. This allows the DERS configuration sys­
tem to extend the current configuration.

Up to now, we have focused on describing complex but not distributed events. Therefore,
we are extending our notation by the @ operator determining the node at which an event
occurs. It can be applied to any event description, basic or complex ones, and is used as an
expression postfix. If a new complex event is to be added to the DERS, its configuration system
transforms the event description into a recognition tree, divides this tree into subtrees to be rec­
ognized by each node and forwards these subtrees to the corresponding recognizers. The event
description is called static if all events have a location annotation. In order to achieve an opti­
mal recognition system configuration it is necessary to decide where to place the event recog­
nizers depending on the structure of a complex event and the current system configuration, e.g.
the event message delay on communication links between two nodes. Therefore, a more
dynamic event description that only determines the occurrence location basic events, i.e. events
directly emitted by a sensor, is needed.

204 Part Five Services I

/oERS component'\
operationaiState
getState
setState
registerForEvent
deregisterForEvent

A
I I I

/ Sensor Recognizer I' ActiveAgent'\ I' Buffer ' currentSize l addEvent addERT addAER I currentSizeLimit '-removeEvent removeERT ~emoveAER maxSize

getSize

AER -Active Event Rule
getMaxSize
setSizeLimit

ERT - Event Recognition Tree ~etSizeLimit
DERS - Distributed Event Recognition System /

Figure 6. Information view on management interfaces of DERS components

In the sequel, we define rules for configuring the DERS with a complex events not taking per­
formance and utilization information on nodes and links into account. Therefore, we need to
compute the number of basic events for each node involved in the recognition of a complex
event.

event: (a@node_111 b@node_2) r::: (c@node_3 v d@node_1)

node_ node_2 node_3

Figure 7. Sample distribute recognition tree

The DERS configuration is guided by the following rules,

negation of an event should be recognized locally,
and or or combined events should be recognized by the node that records most of the
events of a composite event, and
causal operators should be recognized at the node of the left operand.

Design and evaluation of a distributed event recognition system 205

The last rule derives itself from the operator's semantics using the last occurrence of the left
side and the first occurrence of the right side. If the rule had been defined the other way, all
events on the left side would have to be transferred although they would be discarded.

4 EVALUATION

4.1 Measurement scenario and workload characterization

Performance measurements of the DERS have been done in three geographical scenarios, a
LAN-based scenario between veilchen and prirnel, a campus-size MAN scenario
between prirnel and lyra at RWTH Aachen clinic (about 5 km distance) and a nation-size
WAN scenario between prirnel and tunix at FemUniversitlit at Hagen (about 200 km dis­
tance), see Figure 8.

RWTH Aachen FemUni Hagen

Computer Science Department Clinic

Figure 8. Measurement scenario

~
LAN /Iii LAN

B
LAN

Computer Center • interworking unit

We used three different kinds of workload in order to investigate DERS' response behavior in
more detail. The first scenario, called deterministic workload, assumes events to arrive with
constant inter-arrival times. Time-triggered monitoring can modeled with this kind of work­
load. Nevertheless, constant interarrival time are not suitable for event-triggered monitoring, so
we used Poisson workload in order to model independent event occurrences. Poisson workload
means, that inter-arrival times are exponentially distributed. Even the independence assump­
tion between event occurrences made for Poisson workload does not hold in realistic scenarios
because it does not take into account, that the occurrence of one event in general will cause
other events to occur, e.g. a communication link failure will cause every message transported
over it to produce a fault indication. More realistic workload models should have bursty and
non-bursty event occurrences. We have chosen Markov-modulated Poisson process (MMPP) to
model this kind of behavior. MMPP models switch non-deterministically between different
Poisson process with different rates using a Markov model. Which Poisson process (i.e. state)
to switch to next only depends on the current Poisson process (i.e. state) and the transition
probabilities between the different Poisson processes (i.e. states).

206 Part Five Services I

4.2 Recognition delay measurement for different workload scenarios

The most important performance metric for the integration of a event recognition system into a
reactive management tool is its recognition delay. It determines responsiveness to event occur­
rences. We have measured the recognition delay, i.e. the time it takes for an event to get from
the sensor to the manager, for all three workload scenarios in a MAN environment. Similar
measurements have been done for LAN and WAN scenarios as well, see (BUrger, 1996). Figure
9 shows the average recognition delay of measurement series in the MAN scenario under
deterministic and Poisson workload. A 95% confidence interval is given for all values.

a
7ii 160 .s 140
~ 120
{j 100
c 80
C) 60

~ 40
ai 20

b
7ii 160 .s 140
~ 120
{j 100
c 80

8 60
~ 40

iO 0 +--+---1--_.,1------1----1 ~ 2~ -~--~-~-~-.,~---~
10 25 50 75 100 125

event arrival rate [1/s]
10 25 50 75 100 125

event arrival rate (1/s]

Figure 9. Average recognition delay (95% confidence intervals) in MAN scenario under
(a) deterministic and (b) Poisson workload

A comparison of detenninistic and Poisson workload shows, that DERS performs faster with
Poisson workload than with deterministic workload when arrival rate increases over 50 events
per second. Nevertheless, confidence intervals are smaller for deterministic load.

_.200 ~-----------------~
(/) .s
~ 150
a;
"0
c: 100
0
~ ·;:
C) 50
8
~

200 400 60
sample sequence number

Figure 10. Recognition delay samples in MAN scenario for MMPP workload

Doing the same for MMPP workload would be pointless since confidence intervals are huge
because the recognition delay switches between bursty and non-bursty intervals. In Figure 10
one notices, that DERS is fast enough in recognizing events, so that a burst with a rate of 125
events per second only has little influence on the succeeding interval with normal arrival rate,
i.e. 10 events a second.

Design and evaluation of a distributed event recognition system 207

4.3 Buffer utilization for different distributed system size

Another important DERS performance metric is the buffer utilization. It is especially important
for the DERS management system for finding a suitable buffer size. We have chosen a buffer
size of 32 event records for the following measurements. Measurements presented in Figure 11
and Figure 12 show buffer utilization for a MAN and a WAN-based environment. Whereas a
buffer size of 16 is sufficient for MAN (and of course for LAN) scenarios and arrival rates up
to 125 events per second, events are lost for a arrival rate over 70 events per second in a WAN
scenario.

36

32 ... --- - ---
a; 28 bulle limit

= 24 :::>
.0 20
.!:
!!! 16
c:

12 Cl>
>
Cl> 8

4

0
50 75 100 125

sample sequence for each event arrival rate [1/s)

Figure 11. Buffer utilisation in campus-size MAN scenario

36

32 ---- ---- _ _ _ _ b.uUiltJiruit

a; 28

= 24 :::>
.0

.!: 20
<I) 16 c
Cl> 12 >
Q)

8

4

0
10 20 30 40 50 60 7 0

sample sequence for each event arrival rate (1/s)

Figure 12. Buffer utilisation in nation-size WAN scenario

5 CONCLUSIONS

Event recognition is the most important part of monitoring systems. In this paper, we have pre­
sented a novel approach to event recognition in distributed system that also performs recogni­
tion and not only event recording in a distributed fashion. In addition, we proposed to use

208 Part Five Services I

active monitoring agents in order to reduce network traffic, that is especially important in

WAN-based environments. Adding location annotations to events allows us to automatically

configure a our recognition system for the detection of a certain complex event. We have pre­

sented measurements performed using three different workload scenarios, i.e. deterministic,

Poisson and Markov-modulated Poisson workload, in a campus-size MAN scenario. We

showed, that DERS is well suited for LAN and MAN-sized environments, where a buffer size

of 16 are sufficient up to arrival rates of 125 events per second. Naturally, in a WAN scenario it

only copes with lower rates, but in a WAN scenario we expect our active monitoring agent con­

cept to be powerful enough to reduce WAN-based traffic to achieve reasonable recognition

times. DERS has been implemented on ANSAware and is currently adapted to Orbix 2.0 MT

and Orbix Talk. Future work will be done on an automatic instrumentation tool for DERS and

its integration into a reactive management system prototype.

6 ACKNOWLEDGMENTS

This work is funded by the Deutsche Forschungsgemeinschaft under grant no. Sp 230/8-2.

7 REFERENCES

Bates, P. (1989) Debugging Heterogeneous Distributed Systems Using Event-Based Models of Behavior. SIC­

PLAN Notices, 24,1, 11-22.

Biirger, I. (1996) Development of active monitoring agents in consideration of clock synchronization in distrib­

uted system.(in German), Diploma Thesis, RWTH Aachen.

Biirger, I.; Fasbender, A.; Meyer, B. and Rulands, I. (1997) Distributed Event Recognition in Packet-Switched

Networks. (in German), accepted for: GI/ITG Conference on Communications in Distributed Systems,

Braunschweig 1997.

Friedrich, R. and Rolia, J. (1996) Peiformance evaluation of a distributed application peiformance monitor, in

Distributed Platforms (eds. Schill, A., Mittasch, C.; Spaniol, 0. and Popien, C.), Chapman & Hall, pp. 259-

71.

Gatziu, S. and Dittrich, K. (1994) Detecting Composite Events in Active Database Systems using Petri Nets. Pro­

ceedings of the 4th International Workshop on Research Issues in Data Engineering, pp. 2-9.

Gehani, N.; Jagadish, H. and Shrnueli, 0. (1992) Composite Event Specification in Active Databases: Model &

Implementation. Proceedings of International Conference on Very Large Databases (VLDB '92), pp. 327-38.

Hegering, H. and Abeck, S. (1995) Integrated Network and Systems Management. Addison Wesley.

Hofmann, R.; Klar, R.; Mohr, B. eta! (1994): Distributed Performance Monitoring: Methods, Tool and Applica­

tions./£££ Transactions on Parallel and Distributed Systems, 5, 6, pp. 585-98.

Jakobson, G. and Weissmann, M. (1995) Real-Time Telecommunication Network Management: Extending

Event Correlation with Temporal Constraints. in Integrated Network Management IV (eds. Sethi, A.;

Raynaud, Y. and Faure-Vincent, F.), Chapman & Hall, pp. 290-301.

Jordaan, J. and Paterok, M. (1993) Event Correlation in Heterogeneous Networks Using the OS/ Management

Framework. in Integrated Network Management III (eds. Hegering, H.; Yemini, Y.), North-Holland, pp. 683-

95.

Lange, F.; Kroger, R. and Gergeleit, M. (1992) JEWEL: Design and Implementation of a Distributed Measure­

ment System. IEEE Transactions on Parallel and Distributed Systems, 3, 6, pp. 657-71.

Design and evaluation of a distributed event recognition system 209

Mansouri-Samani, M. and Sloman, M. (1995) GEM: A Generalized Event Monitoring Language for Distributed
Systems. hnperial College Research Report No. DoC 95/8.

Meyer, B.; Heineken, M. and Popien, C. (1995) Performance Analysis of Distributed Applications using
ANSAmon. in Open Distributed Processing - Experiences with distributed environments (eds. Raymond, K.
and Armstrong, L.), Chapman & Hall, pp. 309-20.

Moller, M.; Tretter, S. and Fink, B. (1995) Intelligent Filtering in Network Management Systems. in Integrated
Network Management N (eds. Sethi, A.; Raynaud, Y. and Faure-Vincent, F.), Chapman & Hall, pp. 304-15.

Reed, D.; Aydt, R.; Madhyastha, T.; Noe, R.; Shields, K. and Schwartz, B. (1992) An Overview of the Pablo
Performance Analysis Environment, Technical Report, University of Illinois, Urbana, Pablo Research Group.

Sloman, M. (ed.) (1994) Network and Distributed System Management. Addison Wesley.

Yemini, S.; Kliger, S.; Mozes, E.; Yemini, Y. and Ohsie, D. (1996) High Speed and Robust Event Correlation.
IEEE Communications Magazine, 34, 5, pp. 82-90.

