
13

Towards Automatic Trading of QoS
Parameters in Multimedia Distributed
Applications1

P. Dini, A. Hafid*
Computer Science Research Institute of Montreal
1801, McGill College Street, #800, Montreal, (Qc), H3A 2N4, Canada
e-mail: dini@crim.ca
*universite de Montreal, Departement d'/nformatique et de Recherche Operationnelle,
Montreal, H3C 317, Canada
e-mail: hajid@ iro. umontreal.ca

Abstract
Several existing and emerging studies exhibit demands for the definition, measuring, testing, and
enhancement of QoS. Since real-time multimedia applications require guaranteed performance ser­
vices or graceful degradation services, many problems are particularly complex. ODP considers QoS
aspects embedded within the trading function. Emerging systems portray particular service parame­
ters, which must be considered by an ODP trader. The advent of multimedia leads to new junctional
services (guaranteed, predictive), new management services (QoS management, synchronization
management), new protocols (negotiation, re-negotiation), and new mechanisms (parameter transla­
tion, parameter matching). This paper deals with the matching function and particular trading aspects
in multimedia distributed applications. In order to offer a more flexible matching and reduce the nego­
tiation dialog, we propose a formal model for service parameters, defining special parameter fields.
Each new feature is analysed across multimedia examples, its particularities, its value space, and the
customer-provider issues related to it. Based on this model, a precise definition of the matching func­
tion which is useful to automate the negotiation of QoS is proposed. An algorithm implementing this
function is analysed. A model for the evaluation of contractual QoS at the parameter and service level,
and specific formulas are presented.

Keywords
Multimedia distributed applications, QoS trading, QoS matching, automatic negotiation

1 INTRODUCTION

Managing QoS is a complex task because dynamic changes or unexpected behaviors due to users and
to resource disponibilities are often possible within open distributed systems. User requests, as well as
interactions of system components need to be defined, controlled, and monitored. Commonly, the
notion of quality of services (QoS) is used to appreciate the interaction between two system entities.
QoS is used in ODP-based systems to perform the service trading.

Several existing and emerging studies exhibit demands for the definition, measuring, testing, and
enhancement of QoS. Current solutions partially cover some areas, such as open distributed systems,

I. This work was supported by a grant from the Canadian Institute for Telecommunication Research (CITR), under the
Networks of Centres of Excellence Program of the Canadian Government

J. Rolia et al. (eds.), Open Distributed Processing and Distributed Platforms
© IFIP International Federation for Information Processing 1997

Towards automatic trading of QoS parameters 167

multimedia applications, and distributed systems (DS) management. Real-time multimedia applica­
tions require guaranteed performance services or graceful degradation services. The advent of multi­
media leads to new functional services (guaranteed, predictive), new management services (QoS
management, synchronization management), new protocols (negotiation, ·re-negotiation), and new
mechanisms (parameter translation, parameter matching). The support of a distributed multimedia
application involves several system components which provide services under several constraints.
These constraints are usually expressed as parameter values associated with the provider services
(provider performance), and by parameter values specified by customers (customer desired QoS).

In order to automatically manage multimedia applications within large distributed systems such as
Common Work Supported Computing or Teleconferencing, several relevant ways are concerned with
precise definition of QoS, translation relations and matching functions, and mechanisms to update,
compute and control QoS parameters. In this paper we highlight the matching and QoS issues related
to the function of matching.

The current packet-switching networks providing the best-effort service are no longer adequate for
multimedia distributed applications having stringent performance requirements in terms of through­
put, delay jitter, delay and loss rate. Consequently, the functional and management perspectives must
be re-considered. For the former, two types of services have been proposed to cope with particular
requests of multimedia applications namely, the guaranteed service model and the predicted service
model (Zhang and Ferrari 1994). Additionally, the advent of multimedia applications generates new
management requirements with respect to the QoS, such as QoS definition, QoS model, QoS evalua­
tion, and QoS management (Bachmann and Hafid 1997). The major problem is how to evaluate the
QoS in order to appropriately manage multimedia applications and which rules govern such a manip­
ulation. In multimedia applications the service parameters could be offered at different satisfactory
levels with respect to requested constraints. Hence, the services translation, parameter translation,
and matching the parameter values are important mechanisms. Translation signifies agreements
between correspondent names of non-identical parameters or names of non-identical services,
whereas matching refers to agreements between values of identical or similar parameters. The result
of these two operations defines the QoS of a customer-provider cooperation.

Although the following basic terms are generally applicable for any kind of interactions between
system components, we use multimedia examples through our paper, since multimedia distributed
applications are more sensitive to the QoS aspects. QoS refers notably to service parameters, e.g.,
delay jitter, throughput, and audio-quality. Each multimedia component has its own services which
display property values, as prescribed by its specification. However, running systems offer only cur­
rent values of these parameters. Commonly, these values continuously vary, periodically, or non-peri­
odically, affecting the performance of the provider. This aspect represents a service degradation and it
is commonly known as QoS degradation. Multimedia applications consist of one or many customer­
provider relations which cooperate to a common target, as requested by the end-user. In a customer­
provider relation, QoS is defined by service parameters of the provider (called the system perfor­
mance-SP-at the QoS provider interface) which satisfy customer requests (QoS customer interface).

Each time a relation is established, parameter values of the requested services are identified and
compared with performance parameters of the provider. The process is called negotiation and its
result is a cooperation contract. In order to initialize a contract, the partners could re-negotiate cus­
tomer demands with respect to the provider current performance. Negotiation and re-negotiation use
the operation called matching the parameter values. Matching the parameter values is a cornerstone
operation because of the diversity of parameters and their value spaces (Dini and Bachmann 1994).
When this operation is performed, the contractual values between a customer and its provider become
a basis to further evaluate the QoS. Our present paper focuses on the matching aspects.

The paper presents an well-defined approach to perform the matching of parameter values. Sec­
tion 2 presents some achievements and new challenges of existing solutions, and highlights different
development directions. In Section 3, a precise model for a service parameter and a matching function
are presented. An algorithm for applying the matching function is described. A model for the evalua­
tion of QoS at the parameter and service level is presented in Section 4. We conclude with respect to
our proposal, the state of the implementation, future related work, and an appendix concerning a con­
crete example of using the model presented in this paper.

168 Part Four QoS and Performance

2 MOTIVATION

Although the QoS is a global feature of component interactions, it becomes mostly relevant in critical

systems. Among these systems, multimedia distributed applications raise several constraints concern­

ing the synchronization, delay, or jitter, and other particular service constraints referring to the audio
quality, video color, or image clarity, which are not common to usual applications. On the other hand,

multimedia applications portray two features. i.e. (i) the service parameters of these applications are

well-defined for each kind of media, and (ii) the value space for each parameter is finite and well­

known. When multimedia features are enhanced gradually, the value space may vary, but its range is

always known.

2.1 Related work

The matching function is generally used in many domains, mainly in linguistics (speech recognition),

chemistry (molecular structures), and computers (traces, parameters, types). Speech recognition is pho­

nemes-based, molecular structures are fundamental structures-based, whereas traces are event or state

sequence-based. The operation of matching a certain sample into a large space could have invariants

which are non-negotiable. The present study refers to the matching of types and parameter values. In

the classical programming, the types of the current and formal parameters of a function must match.

For example, if the function is declared as f (x: REAL, y:INTEGER), and a: INTEGER and b: INTE­

GER, the invocation f (a, b) is wrong. Nowadays, the arrival of object-oriented programming allows to

use the parameter subtyping. If the types of parameters are valid in the conformance tree, the function

could be invoked (polymorphism). The implementation code of such a function is the same for INTE­

GERS and REALS. Consequently, with respect to types, a matching function has a certain maneuver­

ability within the subtyping tree, but the choice is not negotiable.

Moreover, an instance of a type is externally visible across its interface signature (operations). The

matching function is used to semantically identify the type the instance belongs to. Wang and Archer

(1994) have proposed five stages of matching which are driven by similarities, using the syntax and

semantics definition of an object. As a result, matching is performed between the requested object and

the classes implementing the model (ibidem). Since usually the system model is well-defined, their ap­

proach is static. There is no negotiation, but a certain flexibility degree of matching is given by seman­

tics similarities. Matching mechanisms are equally used in conformance test specification and QoS

testing methodologies. For example, the conformance test specification language TTCN (Tabular and

Tree Combined Notation) uses constraint matching mechanisms: a constraint ASP (Abstract Service

Primitive) parameter or PDU (Protocol Data Unit) field shall match the corresponding received ASP

parameter or PDU field if the received parameter or PDU field has exactly the same value to which the

expression in the constraint evaluates (Sarikaya and Wiles 1991). Constraints are predicate conditions

concerning values or ranges. We will take the range approach to perform a flexibility of matching in

multimedia applications. Montiel and Najm (1994) have built a TTCN-based language to test the QoS

for multimedia services, where constraints on QoS parameters could be explicitly declared. Because

up to date the matching has been performed strictly from functional perspectives, it is difficult to en­

hance QoS from the ODP Management perspective in the same framework. The current approaches do

not favor the negotiation and re-negotiation. We propose a model of service parameters concerning the

QoS which is more flexible. This model could be also fruitful to evaluate transitions in a QoS degra­

dation model (Hafid and Dini 1995), QoS itself (Section 4), or the quality of system configurations (Di­

ni and Bochmann 1995).

2.2 New challenges in multimedia applications

We distinguish two kinds of services in multimedia applications, i.e. interactive services, such as news­
an-demand, and cooperating services between two multimedia components of a system, called hereaf­

ter customer-provider cooperation relations.

Towards automatic trading of QoS parameters 169

In a news-on-demand multimedia example presented by Kerherve, Vogel, Bochmann, Dssouli, Gec­
sei, and Hafid (1994), the user intention is modelled by several parameters offered as choices, e.g. <me­
dia-type, textjormat, audio-quality, color, size, frame-rate, delay, cost>. Each tuple parameter has a
value space from which the user may select one value at a time. For example, the value space of the
color could be <black&white, gray, unc/earcolor, clear color, super-color>. A concrete user choice
could be, in this case, the tuple <video, gray, small, reduced-rate, 2 sec, 5$>. In news-on-demand ser­
vices, each matching failure is followed by a negotiation or re-negotiation of parameter values in order
to accommodate user needs to the provider performance. In this case, the provider must display its cur­
rent parameter value space (called current-space). The cooperation is performed only with the user
agreement via several re-negotiations. Re-negotiations are performed also when user needs or the pro­
vider performance change.

In customer-provider relati9ns, the quality requested by the customer and the performance offered
by the provider must be appropriately matched. In automatic trading systems, there are no human de­
cisions as a catalyst; consequently, particular details on each service parameter must be specified to
allow automation. These details could refer to type of parameter, e.g., negotiable or non-negotiable,
additional fields, e.g., the measure unit, and values to be negotiated, e.g., requested value with possible
relaxations, or performance value with additional constraints.

We claim that it is not sufficient to only know the value space and the measure unit for a service
parameter to automatically monitor the QoS in trading-based multimedia systems. In the sequel, we
present a parameter model which can be used to develop server applications which automatically adapt
QoS according to user needs.

3 MATCHING QoS PARAMETERS

This section presents an informal and formal model for service parameters and a formal definition of
the matching function in the context of QoS. In our approach, customer-provider cooperations are
driven by three functions. The trading function, called R function, identifies a possible provider for a
well-requested multimedia service by a customer needing precise QoS. The translation function,
called T function, signifies agreements between correspondent names of non-identical parameters or
name of non-identical services, whereas the matching function, called M function, refers to agree­
ments between values of identical or similar parameters.

3.1 Component model

Negotiation and re-negotiation of customer-provider agreements lead establish cooperations or to
changes original contractual agreements. This implicitly signifies variations of QoS which represent a
violation of contractual QoS, that is, either a degradation, or an enhancement. We assume that a sys­
tem component could always be represented by its embedded features (ef), its exported features (ex)
consisting of offered services possibly with some constraints belonging to them according to its own
performance, and imported features (in) depending on the performance of the possible provider, that
is C = <in, ef, ex>. We are concerned with in and ex features. Usually in and ex features are services
(s) described by performance parameters (p). For example, the service set offered by a component C
can be specified as exc = <s1, s2, .. sm>, where each service has a parameter set si = <Pi!• Pi2•··Pik>.
Usually, for a media provider component, m=l, and k is finite. For example, parameter set of an audio
media-type provider is defined by the following basic tuple <audio-quality, delay, cost>, whereas the
user, viewed as a media customer, could be described by a single in service called request, whose
parameters are <media-type, textjormat, audio-quality, color, size, frame-rate, delay, cost>.

Each in or ex parameter has a value space which must be guaranteed (or updated) by the provider
part, and considered by the customer part. For example, the audio-quality could be within the space
{phone, cd, tape, radio}, the cost could be within [a$, b$], and the delay could vary into [a sec, b sec].
Also, the media-type could have the following value space {text, image, audio, video, audio&video,
composed&types}. Embedded features efrefer to service availability, component reliability, and the

170 Part Four QoS and Performance

internal behavior of a component.

3.2 Precise definition of a service parameter

The matching function assumes that there is no conflict (due to the translation function) between ser­
vice names. We have distinguished three classes of fields used to match customer-performer parame­
ters for a well-known service namely, parameter identification fields (parameter name, value space,
measure unit, parameter type), matching condition fields (variation index, necessity index), and effec­
tive matching fields (value type, parameter value, possible variations). Consequently, in our matching
model, the service parameter is a 9-tuple p = <n, t, v, vt, cs, u, pv, vi, nx>, where

n parameter name; u measure unit;
t parameter type; pv possible variations;
v
vt

parameter value;
value type;

cs current value space;

vi
nx

variation index;
necessity index, and

as summarized in the following. A complete description and examples are given in Dini, Hafid and
Bochmann (1995).

• parameter name (n) : The parameter name identifies a service parameter. A video offers
a single service called video service which is characterized by the parameter set {color. frame-rate,
size, delay, cost}. Since each media equipment has a finite set of services, one can easily define the
value space of the parameter name. The matching function assumes that the parameter names at the
customer and provider are identical. If two parameters have the same semantics or are equivalent
(consequently, they could be matched) but they have distinct names, the translation function ensures
this information to the matching function. The parameter name is of type STRING.

• parameter type (t) : The parameter type defines if the parameter value may be or not
negotiable. If a screen-type parameter of the device-service offered by an operating system (see
Appendix) has the value of 8-bit-gray, there is no possibility to relax it because a device has a well and
unique technology, while if the supportedjormat parameter has the current value, let's say ascii, a
negotiation may be possible, e.g., postscript. If a service evolves, the parameter type changes. For
example, an old device-service can offer the color= {black&whitej, thus, the color parameter is not
negotiable at the level of service. New devices may have color= {black& white, color. super-color/
and consequently, the parameter color is negotiable. Other parameters are negotiable by their nature,
e.g., cost, delay. Obviously, a non-negotiable parameter does not support re-negotiations. In the case
of contractual failures because of a non-negotiable parameter, the function R must be activated at the
management level (for trading other components with appropriate requested parameters). The param­
eter type of provider services are more relevant with respect to the contract agreement at the negotia­
tion level. At the management level, this feature is relevant for the customer across the trading
function R. In our model, t e {negotiable, non-negotiable}.

• parameter value (v) : The parameter value specifies the current requested value of the
parameter. A requested value could be either a single value, an interval, or a set. A precise value could
be cost= {8}[$}, an well defined interval, e.g. the throughput parameter of software services is within
[a., ~1/frames/sec}, or a finite set, e.g. the parameter calledfonnat at the multimedia customer inter­
face could be within {ascii, postscript, gif, JPEG, MPEG, DV/j. This value may be negotiated andre­
negotiated. For a customer, this value represents the requested (desired) value, whereas for a provider
this parameter has no significance. The parameter value of a customer must fit on the current-space
value of the provider equivalent parameter.

• value type (vt) : Value type represents the basic type of a value among the following
types: INTEGER, REAL, STRING, INTERVAL, SET. SET could contain either, INTEGER, REAL,
or STRING values. The throughput or size parameters of the storage-service at a database-interface

Towards automatic trading of QoS parameters 171

must be INTEGER [bytes/sec] or INTEGER [bytes] respectively, the jitter and delay are REAL [sec],
whereas the guarantee-class is STRING. This is an important additional information that allows to
detect any non-matching. The reason is that when a negotiation is performed on parameters having
different types, either a fault has occurred somewhere, or the customer does not know exactly the pro­
vider services (trading errors). The information is used at the management level by the R function. If a
relation of type conformance is defined by a subtyping hierarchy between value types, theM function
must use this relation instead of the identity of value types. If a customer presents vt = {0}, any pro­
vider's type is accepted. Contrary, if the provider specifies vt ={0} the customer can request a value
of any type. In our model, vt e {INTEGER, REAL, STRING, INTERVAL, SET}.

• current value space (cs) : The current value space represents the space where the
parameter value can vary, that is, a unique value, a set, or an interval. The value space established by
the specification of a system is called basic-space. However, the performance of a component is rarely
as prescribed by the specification. Consequently, each media device updates (current-space) the value
space of each of service parameters, following its current performance. The matching is performed on
this current space. For example, the screen parameter's value space is {1-bit, 8-bit,-gray, 8-bit-color,
24-bit-color}. For the reason of quality, a customer can investigate and select the best provider, let us
say, screen= {24-bit-color}. But, if the potential output device list is reduced to {1-bit, 8-bit-color},
the negotiation and contractual agreements are based on this current-space. The current-space is
important in large distributed systems, where the degradation and enhancement of the current-space
frequently occur. This space is currently updated according to the enhancement of provider services.
The current-space is relevant for the provider part, since rarely current-space= basic-space (com­
monly, current-space is included in basic-space). The customer must accommodate his/her requests to
the current-space constraints of the provider. This feature is relevant at the negotiation and manage­
ment level. At the negotiation level, it defines the boundary of the negotiation, whereas at the manage­
ment level it allows to select between similar providers offering a larger current value space.
Generally, current values spaces~ basic-space. Parameters may have precise values, e.g. the delay
parameter at the server-interface, or internal values, e.g. the cost at the transport service interface. In
this case, we consider that the current value space is of the form [min, max] of type INTERVAL. If the
current value space is not continuous, the SET type may be considered.

• measure unit (u) : Matching parameter values requires identical measure units. Conse­
quently, the matching function must convert measure units. The measure unit defines the quantifica­
tion of the parameter value. This quantification could be either a standardized unit (second, $), a non­
standard-quantitative unit (frame/sec, bytes/sec), or a linguistic unit (acceptable, good). There are
parameters which commonly have the unique unit at any interface, e.g. delay (sec) or cost ($),
whereas others do not, e.g., the throughput parameter is measured in frames/sec at the operating sys­
tem interface, in bytes/sec at the server interface, and in TSDU/sec at the transport-service-interface.
Other parameters have not a unit of measure, e.g. the audio-quality has its value space {phone, cd,
tape, radio}. Linguistic units, such as acceptable, good, well, and best could be a subjective measure
only at the level of human customer. Finally, some parameters have a value space, but they have not
an measure unit, e.g., a database interface offers the services find-records having the guarantee class =
{guaranteed}. The measure unit is important for both customer and provider parts. There is no value
space for this feature. However, if the measure unit is standardized, the customer and provider must
use appropriate divisions or multiples of it (e.g., sec, ms, Mbytes, Kbytes, Mbit), or composed stan­
dardized units (e.g., frames/sec, Mbytes/sec). For the linguistic units, the value space must not only
have the same semantics, but also be identical.

• possible variations (pv) : The possible variations represent values which can
modify the parameter value of a customer, or the current value space of a provider. They determine a
stronger or looser negotiation with respect to the value matching. A customer may accept exactly a
cost of ~ $ prescribed in its parameter value field of the cost parameter. The cost could be [0 $, ~ + ~ 1
$] or [0$, ~ · ~2 $],i.e. the customer accepts a possible variation of [0 $, ~ 1 $], or [-~2 $, 0 $], or it

172 Part Four QoS and Performance

requires a super-co/or value for the color parameter, but it could accept normal-co/or. If a provider
has an instable performance, it could specify the current-value-space for a parameter by highlighting
observable or non-observable variations. For example, if the frame-rate at the user interface has the
value frame-rate = {TV-rate = 25 images/sec}. a possible non-observable variation is frame-rate =
{TV-rate}, but with the possible variation field pv = <1, 1>. That is, the negotiated frame-rate could
be frame-rate= {24, 26] images/sec (one says pv- =1, pv+=l). As the parameter value could vary by
increasing or decreasing its v with the possible variations, the syntax of these modifications are <pv+,
pv-> with the following semantics. For the customer part, <pv+, pv-> represents a possible variation
of requirements, as presented by the parameter value. For the provider part, <pv+, pv-> defines cur­
rent-space values which can be offered. If the requirements become permanent, the current value
space is appropriately updated, and the field of possible variations becomes <0, 0 >.

At the customer side, pv+ represents a relaxation for the negotiation, while pv- defines supplemen­
tary constraints which must be first considered by the management system, at the level of customer
parameter value. If the management system does nor find a provider offering v composed with pv-,
then it searches for a provider offering v, if not, v composed with pv+. At the provider side, pv+ repre­
sents a possible enhancement of the provider performance, while pv- represents a possible degrada­
tion of its performance at the level of current-value-space. Contractual agreements negotiated across
these fields may success or not. Thus, the management system must imperatively monitor these coop­
erations. If a provider improves its performance, its current-value-space is updated, while pv becomes
<0,0>.

The following relations are considered: (i) for the providers, possible variations (provider) ~
basic-value-space (provider), and (ii) for the customers, possible variations (customer) !;;;;; current­
value-space (provider). In the case of providers, these possible variations are initially specified. In the
case of customers, these variations depend on initiator constraints, that is, if one accepts or not some
variations, and on the current-value-space of the invoked provider. Because of the previous inclu­
sions, pv+ and pv- could have the type INTEGER, REAL, SET, or INTERVAL.

• variation index (vi) : The variation index is a BOOLEAN parameter feature which
validates or invalidates the use in the negotiation mechanisms of the values contained in the feature
possible variations. We revisit one of the previous example. If the frame-rate at the user interface has
the value frame-rate= {25 images/sec}, a possible non-observable variation is frame-rate= {TV­
rate}, but with the possible variation field r = <1, 1>. That is, the negotiatedframe-rate is frame-rate
= {24, 26/ images/sec. However, if the image is used by a device whose sensitivity exceeds that of a
human, non-periodical images (sometimes cloudy) are captured. Consequently, a customer needs
sometimes temporary to invalidate the pv field. Even further, the management system must evaluate
the QoS at different interfaces. Since it is possible that the use of the pv field damages other coopera­
tions, this vi could be driven also by special management monitors. false/true decision is primarily
customer or provider dependent. It could be also monitored by a special guard. For example, a cus­
tomer could accept an over cost during the work-week on some services, but not in the week-end,
while for some providers the situation may be the opposite. In our model, ni E {true,falsej. true indi­
cates that the customer/provider can use the value recorded in its possible variation field.

• necessity index (nx) : The necessity index is of BOOLEAN type which describes
whether the parameter is absolutely requested or not. It refers rather to the necessity of this parameter
as a field of a requested service. For example, if a customer prescribes a delay and a cost with nx =
{false/, the managers will perform the connection even they have not find an appropriate provider
(offering the cost={/). The customer has no idea of the delay to prescribe a possible variation, but the
managers could keep this information in order to eventually find an appropriate provider in the future.
After a number of cooperation tentatives, the customer can evaluate an approximative parameter
value, and it could change the necessity index or update the possible variations. For such a negotia­
tion, a contractual agreement is first rapidly achieved, then, the negotiation managers evaluate the
possibility of the enhancement for this achieved QoS. Parameters which are not satisfied in the nego­
tiation, but have nx =false are not considered in the evaluation of the QoS. This feature is considered

Towards automatic trading of QoS parameters 173

only for the customer side. Usually, this item refers to non-functional or not absolutely requested

parameters. In opposition with the possible variation field, their refusal does not affect the QoS of the

customer-provider cooperation. In our model, nx E {true, false}. False indicates that the customer can
ignore this parameter.

3.3 Formal definition of the matching function

We say that two components a and b offer services each other if there are relations R, T, and M such

as PikMPjl• siTsj, and aRb imply that 3s; E exa and 3si e inb such that, fori and j, and for Vk and VI,

the relations R, T, and M hold. We present in Figure 1 the matching aspects related to our parameter

model into a customer-provider relation. We have indicated the matching fields and the fields which

are arguments of theM, T, and R previously introduced (the nx field could eventually be used by the T

and R). We construct now the matching function considering the definitions of parameter fields. The

relation between pv and vi fields is highlighted because of their closed relation. They could be consid­
ered by the R function in order to select the best potential providers.

cu~lOmed n Cf 0 u I pv+, pv-1 vi nx

• t t I ~M RTM

I ' I
provider I 0 I vt cs u I pv+, pv-1 vi 0

Figure 1 Correspondence of parameter model fields in a customer-provider relation

Let us suppose that each service parameter is described by the previous fields, and there are R and

T such that aRb and siTsi. Let us take the appropriate parameters called Pik and Pjl and analyze their

matching within our model. Without the loss of generality we consider that i and j refer respectively to
the customer, and provider. The following matching rules must govern the matching in our model.

Rulel: If siTsj and PikMPjl• then s;.P;k·n =T=> Sj·Pjl·n
This proposition assumes that the names of two parameters are the same or similar. This informa­

tion is transmitted to the M function by the T function.

Rule2. If s;·Pik·u * Sj.Pji·u, then either 3ul such as s;·Pik·ul = Sj.Pjl·u, or 3u2 such as s;·Pik·u =

sj·Pjl·u2, or 3ul and 3u2 such as s;·Pik·ul = sj·Pjl·u2.

In the case when the two parameters have not the same measure unit, this proposition assumes that

the T function provides equivalent measure units. Since the possible name similarity takes place at the
T level, this operation can not be performed at the M level. In the case of name identity, the M func­

tion can perform the equivalence of measure units. TheM function keeps the transformation tables for

different measure units.
Rule3: If a subtyping hierarchy is not defined, theM must verify whether s;·Pik·vt = Sj.Pji·vt.

Contrary, the M function must apply the type conformance to validate the request. Declarations of

type vt ={0} on the customer or provider side allow to ignore type conformance or type identity con­

straints.
Rule4: The negotiated value requested as a quality (Q) by a customer is either v, or v composed

with pv, according to vi, let's say vneg·

The composition follows normal rules of the "n", "\", and "v" operations defined on sets and inter­

vals (a unique value is considered as a set of one element). The last operation corresponds to pv+,
whereas the remainder to pv-.

RuleS: The value-space offered by a provider as its performance (P) is either cs, orcs composed

with pv, according to vi, let's say csneg·
The composition follows the "n", "\",and "v" operations defined on sets and intervals (a unique

value is considered as a set of one element). The last operation corresponds to pv+, whereas the

174 Part Four QoS and Performance

remainder to pv-.
Rule6: The final matching is obtained if Pik·Vneg ~ Pjl·csneg·

The combinations shown in Figure 2 are possible, i.e. the requested quality Q and the offered per­
formance P could have a unique value, be a set, or be an interval.

requested Q

offered P

I I

Figure 2 Matching possibilities

In the first case, to get a parameter matching, either the requested value is identical with the offered
value, e.g. critical multimedia cooperation, or the requested value belongs to the value interval or
value set performance. Otherwise, the parameters do not match.

In the second case, we have a matching if, either the offered value is within the requested interval,
or the intersection of requested interval with offered interval or offered set is not empty.

Finally, if the offered value is within the requested set, or the intersection of requested set with
offered interval or set is not empty, the matching is achieved.

Rule?: If the n.x ={false} the result of the matching could be ignored, but the result must be com­
municated to the requester and the QoS managers.

As a result, the requester may adapt his/her requested Q, while the managers may optimize the
trading function R by recording the best performers.

RuleB: If the parameter type verifies t = {non-negotiable} for either the customer or provider
part, the manager must be informed in order to improve the R function.

3.4 General algorithm for matching QoS parameters

A general algorithm corresponding to the specific parameter fields and considering the previous rules
is presented in Figure 3. The algorithm assumes that the name constraint of Rule! holds. The neces­
sity index n.x is tested and the matching is going on. If the n.x = {false} the manager is informed,
according to Rule7. The first step of verifications concerns the parameter type t, as prescribed by
RuleS. Further, the unit transformations are performed and the type conformance or type identity, if
there is no subtyping hierarchy, is validated. Let us suppose that the problem of unit transformations is
performed according to Rule2. If the typing conformance is a success (Y), the algorithm continues;
otherwise, the manager receives aN information and the algorithm is stopped. However, both the cus­
tomer and provider may inhibit the type conformance block, as presented by Rule3.

According to Rule4, the subsequent action computes the largest negotiable requested value, and
further, the current-value-space is updated as prescribed by RuleS. The operator notation • holds for
the composition between current value v and possible variation pv, and respectively between current­
space cs and its possible variations pv. The last operation is to verify the inclusion of requested values
versus offered current-value-space, as presented in Rule6. Different combinations are presented to the
manager, in order to evaluate the QoS established. In the next section we present a proposal for the
quantification of the QoS based on this algorithm.

4 EVALUATING CONTRACTUAL QoS

As a response to a customer service request, the invoked provider may satisfy the request constraints,
or not. In the last case, the customer is acknowledged, whereas the trader selects across the R function
another potential provider. Otherwise, a contractual achieved QoS is performed, that is, the constraints

Towards automatic trading of QoS parameters 175

of all requested service parameters are satisfied. We evaluate the degree of this satisfaction, first, for a
parameter, and then, for the service.

4.1 Contractual QoS at the parameter level

Each customer invocation of a provider's service implies the use of the matching function for every
service parameter specified by a customer. For the moment, we focus only on the parameter. The
value requested as a quality (Q) by a customer is compared to the current-value-space offered by a
provider as its performance (P). We note with p+, p-, Q+, Q-, Q-1+, and p-I+ the cases where the match­
ing has been achieved by composing offered current-value-space or requested value with their possi­
ble variations.

Proposition 1: p+, p-, and p+/- correspond to performance enhancements, whereas Q-, Q+,
and Q-l+ represent possible relaxations of the requested value, that is, Q constraints are less strong.

si·Pix·n =T=> sj·Pj!·n

' nx -- false -----------,

t~
Px·t v Pt·t --false~

,.;, .J~ -j.l..-."7i:';"7";.;T",.---.
' MANAGER

u:

vt: typing c~:ormance --r•re 1
t true - Pk· v1 -- tlse

Vncg = V • Pk·PV

t r true -- Pt·Vi -- false---------...J

t
csoeg = cs • PJ.pv

I ~=cs

' Pik·v!:: Pjt·CS
Pix· v !:: Pjt·CSneg

Pik·Vneg!:::: Pjt·CS
Pik·Vneg!:::: Pjt·CSneg

Figure 3 General matching algorithm

Proposition 2: If the requested quality Q is achieved across the performance P, we say that
P satisfies Q, and plot this relation as P ~ Q. Consequently, the relation ~ is defined on the Cartesian
product A= {P, P+, p-, p+l-) X {Q, Q+, Q-, Q+l-).

Proposition 3 :The QoS is reversely proportional with the number of possible relaxations via
pv fields, that is, the partners' qualitative efforts are proportional with the number of +1- signs
involved in the~ relation. Considering the relaxation costs equal for customer and provider, and inde­
pendent for pv+ or pv- variations, we identify five classes of initial contractual QoS, as presented in
Figure 4. The class number 5 is the best. The class 5 defines a rightMatching type of matching,

176 Part Four QoS and Performance

whereas the class 1 defines a minusMatching.
Proposition 4: We introduce the function E: (~) --> { 1, 2, 3, 4, 5}, defined in Figure 4, as the

evaluation of the satisfaction relation ~. Consequently, the QoS at the parameter level has the value

~ p

Q 015

Q+tQ- l/4

Q+l- 2/3

QoSparameter = E(~) (I)

p+tp- p+l-

1/4 2/3

2/3 3/2

312 4/1

LEGEND:

alb: a= number of relaxations within the
~relation;

b = the evaluation of the achieved con­
tractual QoS within the range 1 +5.

Figure 4 A possible evaluation of achieved contractual QoS

Consequently, in our model, each requested service parameter of a customer-provider cooperation

contract has a first evaluation of its achieved QoS. This allows us to globally evaluate the contract at

the service level, and second, to measure the QoS degradation, or QoS enhancement.

4.2 Contractual QoS at the service level

Our model for the evaluation of contractual achieved QoS for a given service is strictly based on the

number of service parameters involved in the matching function having the necessity index nx =

{true}. Let us suppose now that we have a services; with k parameters respecting the previous condi­

tion.
Propositi on5 : If a service has m; parameters with QoSparameter= i, we define the evaluation of

the achieved contractual QoS at the service level as
QoS=(Lm;xi)/k,wherek=Lm; (II)

The range ofQoS defined by this formula is [1, 5]. The maximum value is obtained when all param­

eters have the QoS class of 5, whereas the minimum when all parameters have the class 1.
Proposi tion6: Composing the formulae I and II we can get the weight w of one parameter Pik

on the QoS of the service s i to which it belongs to.
w (P;J/s;) = QoSparameter I QoS (III)

This weight is significant for the QoS managers in order to especially monitor and survey those

parameters which can dramatically affect the QoS, i.e. their weight is predominant.

5 CONCLUSION

In this paper we have presented an approach to model service parameters in order to facilitate the

matching between requested constraints of a customer and the performance offered by a provider. We

have highlighted several QoS aspects particularly significant for the multimedia applications and pro­

posed a formal and informal definition of parameter fields. For each field, we have argued by multi­

media examples the field utility, its particularities with respect to the negotiation protocols, its distinct

meaning for customer and provider, and its value space. Based on this parameter description we have

build a set of rules for the matching function, supposing that the translation function has furnished a

prior analysis. We have presented an algorithm implementing the matching function conforming to

our model. Further, based on our parameter model, we have evaluated the contractual QoS at the

parameter and service levels. The evaluation criteria are related to possible variations of the requested

quality or offered performance, according to specific parameters fields which validate or invalidate

these extensions. Five QoS classes at the parameter level have been identified, with the hypothesis

that relaxation costs are equal for both customer and provider, and independent of the sense of varia­

tions. Finally, considering only non-optional parameters, we have proposed a QoS evaluation at the

Towards automatic trading of QoS parameters 177

service level.
The matching model is going to be melt into a QoS degradation model of news-on-demand services

in multimedia applications (Project CITR) (Hafid and Dini 1995), and applied to evaluate the quality
of the automatic (re)configuration in management policies across distributed systems (Project
IGLOO) (Dini and Bochmann 1995). The experimental platform in the CITR project focuses on mul­
timedia aspects and consists of a network employing point-to-point links coupled to a high speed
ATM switch to form an ATM LAN and two power PCs lliM RS/6000 running AIX that support com­
patible ATM host interfaces (Bochmann, Kerherve, Hafid, Dini and Pons 1996). The implementation
is performed in C++. The experimental platform of the IGLOO project refers to the automatic recon­
figuration across distributed systems. The structure of the platform is: (I) three interconnected LANs
using DEC 3000/4000 stations, (2) the OSIMIS version 1.0 which uses ISODE to operate an upper
management stack, and (3) an object-oriented management database build following our architecture.

Current extensions refer to QoS classes based on distinct costs at the provider or customer side
(Dini, Hafid and Bochmann 1996), and also on different weights of the new offered current-value­
space or requested quality evolution. The matching function and its implementing algorithm will be
equally adapted.

6 REFERENCES

Bochmann, v.G., Hafid, A. (1997) Some Principles for Quality of Service Management, Accepted for
publication in Distributed System Engineering Journal, 1997

Bochmann, v. G., Kerherve, B., Hafid, A., Dini, P., Pons, A. (1996) Architectural Design of Adaptive
Multimedia Systems, IEEE Workshop on Multimedia Software Development, Berlin, Germany,
March 25-26 1996.

Clarck, D., Shenker, S., Zhang, I. (1992) Supporting Real-Time Applications in an Integrated Ser­
vices Packet Network: Architecture and Mechanism, Proceedings of ACM S/GCOMM'92, Balti­
more, Maryland, August 1992.

Dini, P., Bochmann, v. G., (1994) Multi-level QoS negotiation in Multimedia Distributed Systems,
IGLOO Technical Report, CRIM, Montreal, 1994.

Dini, P., Bochmann, v. G. (1995) Design of a Configuration Management Subsystem based on OSU

ODP Approaches, Incorporating Self-Control Mechanisms to Guarantee the Survivability of the
Networks, IGLOO Technical Report, CRIM, Montreal, 1995.

Dini, P. Hafid, A., Bochmann, v. G. (1995) Matching QoS Parameters in Multimedia Applications,
Technical Report CITRI University of Montreal, Montreal, 1995.

Dini P., Hafid, A., Bochmann, v. G. (1996) Modeling QoS Multimedia Costs in Distributed Systems,
The 1996 Pacific Workshop on Distributed Multimedia Systems, Hong Kong University of Science
and Technology (HKUST), Hong Kong, June 25-28, 1996, pp. 238-245.

Ferrari, D., Verma, D. (1990) A Scheme for Real-Time Channel Establishment in Wide-Area Net­
works,/£££ Journal on Selected Areas in Communications, 8(3), pp.368-379, April1990

Hafid, A., Dini, P. (1995) QoS Degradation Model, CITR Technical Report, University of Montreal,
Montreal, Canada.

Kerherve, B., Vogel, A., Bochmann, v.G., Dssouli, R., Gecsei, J., Hafid, A. (1994) On Distributed
Multimedia Presentational Applications: Functional and Computational Architecture and QoS
negotiation, Proceedings of High Speed Networks Conference, Vancouver, Canada, 1994, pp. 1-

19
Montiel, J., Najm, E. (1994) A QoS Testing Methodology for Multimedia Services, Proceedings of

Workshop on Distributed Multimedia Applications and Quality of Service Verification, Montreal,
Canada, May-June 1994.

Sarikaya, B., Wiles, A. (1991) Standard Conformance Test Specification Language TTCN, Technical
Report, University of Montreal, 1991.

178 Part Four QoS and Performance

Zhang, H., Ferrari, D. (1994) Improving Utilization for Deterministic Service in Multimedia Commu­
nication, Proceedings of the International Conference on Multimedia Computing and Systems,
Boston, Massachusetts, May 1994.

Wang, S., Archer, N. P. (1994) Identifying Inheritance Structure in Object-Oriented Systems Analysis:
A Pattern Matching Approach, lOOP, May 1994.

Appendix

Partial representation in our model of the example on news-an-demand presented in Kerherve, B.,
Vogel, A., Bochmann, v. B., Dssouli, R., Gecsei, J., Hafid, A. (1994).

General architecture:

QoS-User-Interface
II

QoS-OperSystem·lnterface

~ ~13
software device
services services

QoS-DataBase
Interface

Four partners: U (user), OS (operating system), MS (media server) MMTS (multimedia transport
server

1. U (in, don't care, don't care)
in e {audio-request, video-request, image-request, text-request, combined-of-them}

with the services
audio-request= <audio-quality, delay, cost>;
video-request= <color, frame-rate, delay, cost>;
image-request= <size, color, delay, cost>;
text-request+ <text-format, delay, cost>,

where the parameters are
cost: [0, MAX] [$];
delay: [0, MAX] [second];
text-format: {ascii, postscript, frameMaker, .. , .. }[-];
color: { black&white, gray, color, super-color}[-];
size; {normal, 640xN, 480xN, MAX}[-];
frame-rate: {frozen-image, reduced-rate, TV-rate}[-];
audio-quality: { telephon, cd, radio, tape}[-]

2. OS (in, don't care, don't care)
in e {device-services, software-services, 14-services}

with the services
device-services = <class-guarantee, audio-device, disk-drive, supported-type>

where the parameters are
class-guarantee: {guaranteed, best -efort, predictive, reservation}[-];
audio-device: {telephone, cd, radio, cd, tape}[-];
disk-drive: {-}[bytes];
support -type: {text, image, audio, video, combinations} [-];

and
software-devices = <class-guarantee, supported-format, throughput, delay>

Towards automatic trading of QoS parameters

where the parameters are
class-guarantee: {guaranteed, best -effort}[-];
support-format: {ascii, postscript, gif, tiff, MPEG, DVI, .. }[-];
throughput: [0, MAX][frame/sec]
delay: [0, MAX] [second].

3. MS (don't care, don't care, ex)
ex e {audio-offer, video-offer, image-offer, text-offer, combined-of-them}

with the services
video-offer = <format, size, throughput, packet -size, jitter, delay, cost, guaranteed-class>

where the parameters are
format: {JPEG, MPEG, DVI}[-];
size: [0, MAX] [bytes];
throughput; [0, MAX][Mbit/sec];
packet-size: [0, MAX] [bytes];
jitter: [0, MAX][sec];
delay: [0, MAX][sec];
cost; [0, MAX][$];
guaranteed-class: {guaranteed, best -effort}[-]

4. MMTS (don't care, don't care, ex)
ex e {transport-multi-service}

with the services

179

transport-multi-service= <TSDUa-max-size, throughput, delay, jitter, cost, guarantee-class,
reliability>,

where the parameters are
TSDU-max-size: [0, MAX][byte];
throughput: [0, MAX][TSDU/sec];
reliability: {reliable, error-rate)[-];
guarantee-calss: {best -effort, guaranteed}[-];
jitter: [0, MAX][sec];
delay: [0, MAX][sec];
cost: [0, MAX][-].

