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Abstract 
This paper describes a research project on specification and implementation of a fast, reliable 
and context sensitive transfer system. The design considers the behavior of various connection 
oriented networks and the requirements of request/response based communication schemes. 
First we describe the current situation. This is based on recent measurements and experiences 
with remote procedure call (RPC) over ATM and GSM networks. The major basis is the RPC 
of the OSF Distributed Computing Environment. Furthermore, we discuss different 
approaches and existing solutions including VMTP, HOP, RMI, 1Pv6 and XTP. 
We then present a protocol architecture as an alternative new integrated and enhanced 
approach. This includes the support of QoS and the integration of the major communication 
layers in order to enable tuning and optimization. A discussion of the integration of 
multimedia communication into the system follows. This is based on experiments with video 
transmission over DCE pipe mechanisms. We outline the major mechanisms and algorithms. 
An important design goal is to consider the impact of the implementation and of the real 
world environment onto the protocol specification. Based on investigations of different 
network layers we describe some of the possible and planned performance parameters of our 
system. We finish with a discussion of the planned integration of our protocol suite with 
various existing distributed platforms. This will be possible without major changes in the 
systems and without any changes at the application level. 
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1 INTRODUCTION 

Today's networks have a great diversity of characteristics. On one hand, ,traditional" shared 
media, like Ethernet, can be found in most environments, while on the other hand, line based 
media are becoming increasingly important due to their high bandwidth and their ability to use 
a connection exclusively with a reserved or fixed bandwidth. 

High bandwidth becomes more and more important for applications dealing with 
multimedia transfer, database access and supercomputing. The exclusive use of the connection 
also implies low latency when no shared medium is involved. This is also necessary for 
efficient distributed computing like distributed file and database services, CSCW applications, 
workflow management, etc. But high bandwidth and fast transfer of data are not the only keys 
to better communication performance at the application level. 

To be more precise, the way data is processed between the media and the application level 
is the most important factor for achieving better results at the application level. Existing 
protocols like TCPIIP were designed for networks, which are characterized by a shared 
medium, low bandwidth and high error rates. Many features of these protocols tum out to be 
redundant due to features provided by the lower-level network interface. ATM, for example, 
provides specific support for connection management, flow control, congestion avoidance, 
and segmentation, reassembling and routing making similar TCPIIP functionality redundant. 

The work we describe in this paper focuses on designing a new protocol stack for evolving 
technologies, considering the provided features of line based media like A TM, ISDN and 
GSM. The design goals are to improve the communication behavior for RPC, and to increase 
the efficiency and performance of the data transfer. 

For that reason we do not consider OSI layering for our approach. The work we present 
refers to a distinct architecture and considers network crossing or shared media not yet. 

2 FOUNDATIONS 

2.1 Distributed platforms and new network technologies 

Major distributed platforms are OSF DCE [OSF94] and OMG CORBA [OMG95]. These 
platforms enable and facilitate the deployment of distributed applications and of additional 
middleware such as transaction monitors. Typical services offered are remote client/server 
communication, directory services, security services, and distributed file services. 
Communication in DCE is based on the RPC paradigm while CORBA uses remote object 
invocations. Although these two solutions are rather different from their functionality point of 
view (for example, dynamic invocation interface and interface inheritance are only used in 
CORBA), they are similar concerning their basic communication paradigm, i.e. a request­
response protocol between a client and a server. For our performance investigations, we focus 
on DCE RPC in this paper while the general findings will also be applicable to other 
environments such as CORBA, Sun ONC+, ANSA ware, etc. With the rapid growth of the 
Internet, the idea of distributing applications and data across a world wide network became 
much more relevant. JAVA [KRAM96] should be the basic technology for that. The 
Hypertext Transport Protocol (HTTP) will be used for distributing application partitions 
written in JAVA. In addition also a distributed object model was introduced. For 
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communication between JAVA applets (objects) across platforms Remote Method Invocation 
(RMI) was developed [RM196]. However, HTTP and RMI are also based on a request­
response communication paradigm and are executed over traditional protocol stacks. We 
investigated also the behavior of these technologies regarding the network related 
performance questions. So we can say that the mechanisms of our protocol architecture are 
applicable to HTTP and RMI, too. 

In addition to other conceptual and performance-oriented studies of DCE such as 
[RASC93], we especially consider the effects of different network technologies. In particular, 
high performance networks are emerging with the rapidly proceeding standardization of A TM 
by the ATM Forum and the ITU-T [1.211]. Currently, ATM UNI 4.0 (User-Network­
Interface), PNNI Phase 1 (Private Network Network Interface) and LANE 2.0 (LAN 
Emulation) is available. Based on ATM, a physical peer-to-peer throughput of 155 Mbit/s and 
more is possible. Even with transport-level protocols such as TCPIIP with recent IPng (next 
generation) extensions [BRMA95], about 130 Mbit/s can still be reached using optimal 
protocol parameters. In addition, the resource reservation protocol RSVP [ZDES93] enables 
guaranteed resource availability in order to guarantee a maximum throughput and a minimum 
delay. However, traditional client/server applications can hardly exploit these new 
performance opportunities if they are based on conventional RPC protocols (see also 3.1). In 
the following section we describe briefly the basics of the considered network technologies 
and the underlying network protocols used by typical request-response protocols. 

2.2 Networking Background 

The Asynchronous Transfer Mode (ATM) is a method of the international standard of 
Broadband ISDN (BISDN). An ATM network consists of a star like topology. Each computer 
is connected via a direct link to a switch. A connection must be established between any pair 
of hosts before they can communicate. Therefore, A TM provides a connection oriented 
service and the end system uses the physical link to the switch exclusively. The resulting delay 
consists of the signal speed in the medium, processing time in the switches and any potential 
blocking. Also the network adapters and the given infrastructure introduce delay. 

ATM cells have a fixed length of 53 bytes. Five bytes of these are the ATM header, which 
is used for path description and connection identification. Also so called ATM Adaption 
Layers (AALs) for more application specific data flows are defined. The AALS will be used 
for data transmission applications. This AAL provides the transfer of up to 65.535 bytes of 
user data. The data is protected by a CRC checksum. No retransmission mechanism is 
defined. In many implementations (network interface cards) the handling of AALS will be 
performed by the hardware itself. Important characteristics of ATM with AALS in this context 
are (1) the packets are never out of order, (2) a checksum generation and check will be 
performed by the underlying network layers, (3) the connection is exclusive for one pair of 
hosts, ( 4) the transmission error rate is really low and (5) all problems of routing, especially 
QoS based routing, will be solved by the ATM network (see [ATM96a], [ATM96b]). 

The second medium that has similar characteristics is ISDN (Integrated Services Digital 
Network). This is a standard for telecommunication, especially for the subscriber loop, based 
on digital transmission over traditional 2-line telephone connections. The transmission will be 
realized as a bit stream between sender and receiver. The European standard ISDN connection 
has two 64 kbit channels and 1 channel (16 kbit) for signaling. ISDN provides an unsecured 
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connection and has no error handling mechanisms. On top of ISDN different protocols for 
secure data transmission can be used. We assume the use of the Point-to-Point Protocol (PPP) 
in our supported environments. This protocol additionally realizes the structuring of the bit 
stream into data blocks and the calculation of checksums. The useful characteristics of ISDN 
using PPP for us are similar to the points (1), (2), (3) and (4) of ATM. 

A third standard we refer to is GSM [RAHN93]. It is used for wireless wide area networks 
and is designed for telephone connections by using digital data transmission. GSM based 
telephone systems are widely used in Europe and Asia. Based on the digital wireless links the 
transmission of data to mobile computers is also possible. Because GSM is based on a 'not 
fully secured' transmission procedure for error correction, the Radio Link Protocol (RLP) 
procedure is needed. It is optimized for GSM and provides a way to enable reliable 
connections. RLP ensures that there are really fewer errors when the data leaves the mobile 
switch: The reached data rate is 9600 bit/s which is really small for distributed applications. 
Furthermore, the delay of the transmission between two stations connected via GSM is 
relative high (more than 500 ms in one direction). Disconnection can also occur in such an 
environment. As with ISDN, we assume the use of the PPP protocol on top of RLP. That's 
why, except these problems, the important characteristics are similar to ISDN and GSM 
discussed above. 

All presented media types provide a line based, connection oriented service for 
communication. They use their own mechanisms for error-detection /-handling and provide, 
because of the line based character of the network, an in-order delivery of the packets. These 
mechanisms can be used to design a light weight protocol stack without introducing too much 
overhead. 

On top of these transmission techniques network protocols are needed to allow the 
exchange of data in computer networks. In today's systems this is a layered stack. Related to a 
distributed system this means a request-response protocol layered over a transport protocol. 
The most common protocol stack in the Internet world is TCP!IP. In the following section we 
briefly describe the behavior of the DCE RPC in such an environment. An extended version 
of this study could be found in [KUES96]. 

3 BEHAVIOR OF A CURRENT REQUEST/RESPONSE PROTOCOL 

3.1 Performance Results 

We investigated RPC in broadband networks using our local ATM environment. Within our 
experiments, we first evaluated the performance of TCP!IP over ATM between two DEC 
Alpha 3000 AXP 700. Both the message sizes transferred via TCPIIP and the buffer sizes at 
the receiver's side were varied; initial experiments have already shown a strong influence of 
both parameters. The maximum achieved throughput was 16,875 KByte/s (135 Mbit/s) with 
optimal parameter values and stream-based(!) transmission. So the experiment has shown 
that the bandwidth of A TM can really be exploited based on adequate protocol parameter 
settings and sufficient CPU capacity. With a buffer size of less than 64 Kbytes, however, 
performance dropped significantly, for example down to values between 7,500 kByte/s and 

' Error rate with RLP is lower than I 0_. vs. I o·' without. 
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11,250 kByte/s(60 and 90 Mbit/s) for buffers of 32 Kbytes. Of course, very small messages 
also resulted in very poor performance. 

Based on these initial experiments, we compared the performance of RPC over ATM 
versus Ethernet. The RPC protocol implementation itself was not modified; that is, the 
original buffer and message size settings were not adapted. The results are summarized in 
figure 1 [KUES96]. 

The maximum throughput, even for large parameters, was 4,875 kByte/s (39 Mbit/s as 
opposed to about 8 Mbit/s over Ethernet). With a special mass data transfer mechanism of 
DCE RPC (so-called RPC pipes), a slightly better result of 5,625 kByte/s (45 Mbit/s) was 
achieved. Nevertheless, the results were much worse than with pure, stream-based TCP/lP 
over ATM where 16,875 kByte/s were reached. The comparison of the roundtrip time of small 
calls established the following; the time needed for a call without parameters was nearly 
the same for Ethernet and ATM (900 to 1000 J.lS)! 

Two reasons are responsible for these rather unsatisfactory results. First, the client is 
delayed until explicit acknowledgments are received. Even for large parameters, the time to 
transfer the acknowledgments and to schedule the client process upon receipt is comparably 
large. Secondly, the RPC protocol does not fully exploit the MTU (maximum transfer unit) 
size of TCP/lP due to its internal implementation. Moreover, when a multiple of the MTU 
size is reached by the parameter size, a performance decrease is observed due to partially 
filled MTUs. As shown in figure 1, data is blocked to form MTUs of 4096 bytes, although 
higher MTU sizes would basically be possible as discussed above. Finally, experiments with 
local RPC communication based on a loopback mechanism are shown in the diagram. They 
illustrate that even in the local case (i.e. without ATM communication), performance is not 
significantly better. This also confirms that protocol processing, RPC acknowledgments and 
process scheduling cause a major impact (rather than the actual network transfer via ATM). 
Changes in RPC protocols and extended mechanisms in the protocol engines are required for 
a better and optimized usage of the low delay and high throughput characteristics of the 
underlying physical network. 
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Figure 1: RPC over A TM and Ethernet: Comparison 

The RPC can also be used in Mobile Environments. We were mainly interested in the RPC 
throughput, and also in the effects of using asynchronous calls based on threads. For our 
experiments we used e-plus in Germany, an DCS-1800 GSM based system. 
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However, it became obvious that the number of calls per second and therefore the total 
throughput can drastically be improved with parallel threads. For example, with 3 threads, we 
reached a mean throughput of about 700 byte/s unlike less than 350 byte/s with only one 
thread. The main explanation for these results is that the delay times while waiting for 
responses can be used by the client for issuing other calls. Like in conventional wide area 
networks, several parallel calls are required in order to really exploit the actual system 
capacity. 

The mobile computing. experiments have shown that RPC communication suffers from 
long delays, low throughput and potential disconnection in such environments. Threads are 
important as a basis for asynchronous RPCs in order to exploit phases of long delay in a 
productive way. We used this for instance in [KSSZ96]. 

3.2 Some problems with the current Transport Protocols 

The implementations of current transport protocols lead to performance limitations 
[PORT91]. Most implementations are tied heavily into host operating systems. The heavy 
usage of timers, interrupts, and memory read/writes tax the main CPU and degrades the 
performance of the protocol. Functions such as buffer management, bus transfer time, and bus 
contention alone cause several processing overhead for current protocol implementations. 
Some of these problems may be solved with better implementations of existing protocols. 
However, because of the design of current protocols there are some limitations to the 
implementation improvements. One key design goal is to separate the protocol processing 
from the operating system as much as possible. 

Current transport protocols (e.g., TCP orOSI TP4) were designed with different restraints 
and requirements compared to future high-speed networks. Older protocols were designed to 
minimize the number of bits transmitted to reduce insertion time. This led to packet formats 
with bit-packed architectures, requiring extensive decoding. Another problem with these 
protocols is packet field limitations. For example, the number of bits provided for window 
mechanisms must be increased to supply window sizes large enough to be effective at high­
data rates. 

The control algorithms supplied by current transport protocols will be strained by high­
speed networks. For example, current protocols like TCP and ISO TP4 effectively use Go­
back-N windowing schemes for error recovery. This type of algorithm will severely degrade 
throughput and add unnecessary network congestion. Finally, existing protocols may not be 
flexible enough for high-speed applications and networks. 

In the late eighties, a lot of effort was applied to the development of new protocols for 
faster transmission of data. Also the consideration of different services and Quality of Service 
(QoS) parameters have played an important role. At this time different transport protocol 
approaches like VMTP[CHER88], XTP [XTP95] and so on were designed to overcome the 
lack of functionality in existing protocol stacks like TCPIIP [DOER90]. They took the 
evolving technologies into consideration and were adapted to special fields of communication 
behavior such as bulk data transfer or the support of short transaction messages. Also TCPIIP 
was improved over the years to adapt it to the changing demands of networking. So the 
window size was increased to 64 k and further adaptations were introduced to become more 
efficient [JABB92]. 
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In spite of the new features and improvements, it must be stated that the protocols are not 
really suited for communication over line based media. The discussed protocols offer better 
performance due to their improvements, but they don't consider the type of media below. So 
several tasks are executed more than once, although the underlying medium provides this 
service. 

There are also other projects and research groups related to efficient data transmission. For 
instance [CLAT90] and [EWLB94]. Also the improvement of the behavior of distributed 
systems is in the scope of some investigation [LIHD95], [THEK93]. These works also prefer 
an integrated layer approach and implement applications directly on top of AALS. The 
connection-less protocol engine of the DCE-RPC was also improved with the introduction of 
private client sockets, multi-buffer fragments and sending message vectors, but further 
optimizations have not been planned up to now. Another way of improving DCE performance 
could be found in [GKLM93]. The researchers of Cray used reduction of data copies and 
MTU discovery to achieve a better performance of the original DCE kernel RPC 
implementation. However, the overall system performance could not reach the theoretical 
limit. 

The widespread use of mobile computers has made the use of distributed systems in such 
an environment interesting. Such approaches and arising problems are described in [IMBA94] 
and [SCHK95]. Also the improvement of the transmission performance in wireless networks 
is presented in [BAAK95]. 

Most of the above mentioned approaches provide only solutions on specific parts of the 
communication behavior and were not introduced into a larger distributed environment. We 
have considered the above mentioned approaches and combine these in our approach, as 
described below. 

4 ADVANCED PROTOCOL SUPPORT 

4.1 Basic Concepts 

Based on our investigations and on the analysis of existing approaches and protocols we 
started a development project for a new optimized request-response protocol. Beside the 
investigation of new mechanisms we also focus on the reuse of a lot of existing concepts from 
different fields (see above) with a special interest in the request-response paradigm. 
Furthermore we consider the impact of the implementation and of the real world environment 
onto the protocol specification. The major goal is to provide advanced efficient protocol 
support for optimized distributed systems. 

The main component of our design is an advanced RPC protocol engine (see fig. 2). It is 
based on the following key ideas: (1) As opposed to TCPIIP and similar protocols, it has 
knowledge about the request-response behavior of the higher-level interactions and can use 
that for optimization. (2) Moreover, it also has knowledge of the specific underlying network, 
i.e. there are specific instances of the protocol engine for pure AIM, ISDN and GSM point to 
point connections. That means, additional protocol mechanisms such as packet reordering, 
routing or flow control can be omitted if already supported by the underlying network (as it is 
the case with AIM, for example). 
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The protocol engine can optionally make use of a traffic shaping component, for example 
for handling different priorities of traffic streams. Access from the RPC runtime system to the 
new components is provided via a direct programming interface or - alternatively - via 
WinSocket 2.0. Compatibility with existing RPC protocols is guaranteed -by the direct 
connector component, a very simple additional RPC protocol engine. As another optimization, 
we include a direct memory mapping of marshalled RPC parameter data if supported by the 
underlying hardware and operating system (for example, under Windows NT). This is 
implemented by the advanced memory manager and the RPC kernel memory management. 

Finally, existing protocol stacks (for example, RPC via TCPIIP) can coexist with this new 
solution to simplify smooth migration of existing applications. It is also possible to integrate 
emerging reservation protocols such as RSVP in order to guarantee resource availability. This 
way, resources (buffers and processing capacity) can be reserved within the RPC protocol 
engine during connection setup or binding. 

AppUc:ation Code 

Nttwork Oevic:c Orint 

(c:.a. NDIS 4 or u ATM subsys.e:m) 

Figure 2: Architecture of new communication support platform 

The main points of optimization are: 

• With respect to real existing operating systems we favor a kernel based implementation. 
Interactions with the user space application must be minimized as far as possible. 

• Copy processes are a potential bottleneck and must be minimized. In this context also other 
data touching processes are important. The impact of CPU bus, cache memory, memory 
subsystem and used peripheral bus systems must be considered. 

• Interactions over the network between the communication partners must be minimized by 
using the characteristics of the underlying network. 

• The amount of data to be transferred should be reduced as far as possible (header 
compression). 

Furthermore we plan to support the observation of QoS parameters and the transfer of 
multimedia and mass data. In the following section we describe some of our extensions in 
more detail. 
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4.2 Memory management 

One example of a performance bottleneck is the large amount of copy operations required. 
There are different extensions for existing implementations like in [DRUP93] ,[JABB92], 
[EWLB94]. Another interesting approach is Integrated Layer Processing (ILP) [CLAT90]. 
The main benefit of ILP is minimizing memory access. This will be achieved by processing 
different data manipulations, like marshalling, encryption and checksum calculation in one 
loop. Because all these operations will be processed over small chunks, the data could be held 
in CPU registers or cache memory. Our approach is similar to ILP and ALF (Application 
Layer Framing) ideas, but in our project we focus on the optimization below the marshalling 
level. We also prefer a kernel based implementation to achieve maximum possible throughput 
and to save CPU time for the application processing itself. In the following section we 
describe how our design minimizes copy operations. 

In a DCE stub the marshalling procedure calls a memory allocation function to get a buffer 
for the marshalling result data. This buffer will be allocated in the user space memory in the 
traditional implementation. Then the marshalling routine puts the call parameters into this 
buffer (1. copy operation). After this, the send procedure is called and the data is fit into 
protocol dependent TSDUs (2. copy operation). The TSDUs are handed over to the kernel part 
of the protocol implementation, for instance to UDP by using a socket interface. In most 
implementations, a copy of data between user and kernel space is needed (3. copy). Now UDP 
performs a checksum calculation ( 4. not a copy but touching all data) and hands over the data 
to IP. Due to the mbufs no copy operations are needed here. The fifth copy operation is 
performed by moving the buffer from IP to the network card through the device driver. 

Network Card Memory 

Figure 3: 2-copy memory handling scheme 

Send Request 
IOCTL 

In our architecture we use the schema shown in fig. 3. The kernel based protocol engine 
(KBPE) provides a pool of send buffers. If a marshalling procedure needs a buffer the 
advanced stub memory manager sends an l/0 control to the RPC Kernel memory management 
and a send buffer will be mapped into the user space (I). Now the call parameters are put into 
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this buffer (2). The start address for this will not be at the beginning of the buffer but rather at 
an offset for RPC header information. If the marshalling process is finished, the runtime must 
only call the KBPE via an IOCTL (3). No copy operation is needed. After preparing the RPC 
header information (4) the whole block will be moved to the network card. A Direct Memory 
Access mechanism will be used for that, in general (5). A checksum calculation is not 
applicable because the underlying network will perform that. In the case of ATM or lOOVG 
this will be performed in real-time by hardware on the adapter itself. ATM also allows the use 
of large TSDUs (up to 64 kByte). That's why one TSDU is enough for most kinds of requests. 
In the term of ALF the Application Data Unit (ADU) fits into the TSDU [CLAT90]. Further 
segmentation and reassembling isn't necessary. 

As we have shown, only two copy operations against five of the traditional version will be 
performed. There is also a solution for minimizing to only one operation. But this requires 
special hardware with large onboard data buffers. Unfortunately, the described mechanism is 
not meaningful without any critical points. If the request is really small, the overhead of the 
memory management IOCTL operations is too high. To protect the system against this new 
possible bottleneck we also use alternative communication mechanisms depending on the 
amount of data transferred. 

4.3 Minimizing of transmission interactions 

A further optimization is based on the reduction of interactions between the involved hosts. 
This is important for wireless communication lines. The delay for message delivery is really 
high in this case and every unnecessary interaction will drop the throughput dramatically. But 
also in high speed networks like A TM the reduction of interactions will increase the 
performance significantly. According to our measurements, a simple request/response at the 
kernel level needs approximately 200 JlS. This includes the simple transmission of one A TM 
cell from one node to another and back again without any changes. This time can only be 
reached on fast platforms! 

Fig. 4 shows the standard process of a non-idempotent DCE call [OSF93]. Non-idempotent 
means that a call should and must be executed only once. Therefore a server/client verification 
for each call is needed (conversation manager in fig. 4). Also the reception of the response by 
the client must be acknowledged. In the case of a slow call much more interactions will be 
performed. This is to verify that client and server are still alive and the server is working on 
the request. Because a data connection with a higher error rate could be used, it should be 
possible that much more interactions for realizing a reliable communication are required. 
Processing this scheme on our development machines required approximately 600 JlS over 
ATM, but only if the protocol engine is realized in the kernel. A user space implementation 
approach, like the UDP connectionless protocol engine of the DCE RPC, requires more than 
1000 JlS.t 

The reduction of these interactions is based on another view of the client/server 
relationship. The RPC itself is a kind of connection less communication. But one non­
idempotent call needs a connection oriented processing schema. That's why something like 
the conversation phase in fig. 4 is required. 

1 All these measurements are performed on Digital DECStation 3000/700 connected via ATM !55 Mbit/s MMF. 
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In our approach, which is focused on connection oriented networks, we need to establish a 
virtual connection between the client and server (machine). lbis connection will be reused by 
different following calls. Furthermore, we assume that in most cases more than one call will 
be performed between client and server during its lifetime. We verify the personality of client 
end server implicitly in every call based on an ID. lbis ID will be negotiated during the 
connection establishing period. Based on this, two interactions per call could be saved; the 
whole conversation manager phase (see fig.4). 

Also the acknowledgment to the response message could be saved. lbis will be realized 
based on a machine to machine connection control mechanism. The description of the whole 
mechanism is beyond the scope of this paper. In brief, the protocol engine checks the 
connections between the computers if established. No additional transmission is required in 
general. The monitoring of the whole traffic of all client/server relations between the two 
engines will be enough. Only if there was no interaction for a long time a ping procedure will 
be started. However, we didn't monitor the separate client/server pair connection. To protect 
every single call context against the failure of client or server we check the existence of them 
by using local communication mechanisms. The detection of client or server shutdown 
produces a signal to the protocol engine of the another partner. This leads to cleaning up the 
connection context. Such a connection context is only an internal context of the protocol 
engine and it's not similar to the context handle ofDCE! 

~~.t.1 

Kt-0123 ....... , -Mt'nl'_bocltiiCKIIt!l --p(ypp,.lponl• 
Kt-0123 ....... , 
-0000 
..,.,.,.,.bOoe-0118 

Figure 4: A Non-Idempotent Call [OSF93] 

In most cases our system will reduce the interaction between client and server machine to only 
two messages exchanged via the network per non-idempotent RPC. By using an AIM 
network this leads also to only two AALS PDUs in general. 

4.4 Reduction of data amount 

The amount of transferred data has a significant influence on the performance of mobile 
distributed systems. Useless overhead is more disturbing here. Also an AIM based system is 
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sensitive to data overhead. Beside the problem of transmission, the problem of processing also 

must be considered. That means all information in a header must be touched, for instance. The 

size of the header of a DCE RPC is 80 bytes [OSF93]. Furthermore, 28 bytes for underlying 
IP and UDP header must be added. If the parameter size is relatively small, this leads to an 

overhead of 50 percent and more. We assume that there are more than one call per 

client/server pair during their lifetime. This allows us to reduce the RPC-header information 

to 24 (28) bytes beginning with the second call. Also the header of IP and UDP are not 

needed. So the header could shrink from 1 08 to 24 bytes. How does this reduction work? The 

original header does not include unnecessary information. But some of the information has a 

relatively static nature (relative in this context means static for the lifetime of a client/server 

pair), for instance, the interface and object UUIDs, boot time of the server, RPC version, etc. 

As described in section 4.3 we introduce a short negotiation phase if the connection 
between client and server will be established. In this phase all static parameters of such a 

logical connection (represented by a binding handle) will be introduced to both sides. The 

resulting identifier of this negotiation will be used by client and server to represent the 
original static data. 

The investigation of another, more complex mechanism with renegotiation phases is in 

progress now. With this algorithm a reduction of the header to 8 or 12 bytes is expected. This 

mechanism provides much more processing overhead and is only useful in small bandwidth 

environments. 

4.5 Support of QoS 

The handling of QoS parameters isn't supported by many distributed platforms. There are a lot 

of papers describing QoS problems. Most of them providing a solution for operating systems 

or network transport but only few consider the ,traditional" client-server computing. 
However, the guarantee of QoS is also needed in distributed systems. For instance the remote 
access to a real-time database requires an adequate remote procedure call. It's not enough to 
guarantee the execution time of the database query. Furthermore it must be possible to 
guarantee the delivery of the request and the response in a determined time. The guarantee of 
a minimum or constant throughput could also be required in file server applications. 

Delay guarantee for message delivery is possible with network techniques like ATM. We 
introduce an additional interface for describing and negotiating QoS parameters for a specific 

client-server binding in our architecture. Currently we plan to consider delay, throughput and 
jitter. In the current state of our system we can provide such ,soft" guarantees on the transport 
level. It is much more difficult to realize this for the whole call. There are lot of problems 

concerning the existing operating systems regarding scheduling, memory management, etc. 

Furthermore, we couldn't calculate the execution time of the marshalling procedures 

especially for the analysis of complex linked data structures. 
For distributed platforms we also need a guarantee for the server application execution 

time. But this could only be provided by real-time operating systems, real-time hardware 
(harddisk etc.!) and real-time application level systems like special database systems 

[GOPL96]. Not only the realization of QoS in such a whole system is difficult, but also the 

negotiation, meaning and transformation of parameters is not clear today. We plan to 
investigate the requirements of the mapping of user-QoS or application specific data onto 
abstract parameters of network, transport system, operating system and underlying 



Protocol support for request/response communication 149 

applications. This is also needed to decide which parameters are necessary. Also the value 
range and unit of such parameters for the network and RPC layer must be made clear. 

Furthermore, QoS support for multimedia transfer is also required if such a communication 
form will be supported. However, the question remains; Is the transfer of multimedia data 
possible with the mechanisms of an existing distributed platform like DCE? We think yes, but 
extensions are needed. 

The DCE RPC provides a mechanism for mass data transfer called pipes. Three kinds of 
pipes exist; in pipe, out pipe and in/out pipe. Data will be transferred as so called atoms. This 
is an application specific data unit, for instance the size of a file block. If the application starts 
using a pipe it must not know how much data will be transferred. Also not all data must exist 
in the main memory if the pipe transfer starts. This makes the pipes a candidate for 
multimedia transfers too. In experiments with a video conferencing tool we used DCE pipes 
for the transfer of video and audio information. No significant problems occurred by using an 
A TM network. If there are bandwidth limitations it doesn't work as well because pipes 
provide a reliable transmission only. 

However, the pipe mechanism must be extended. First, we plan to introduce a variable 
atom size depending on the size of an ADU, for instance a single compressed frame of a video 
stream. This makes it possible to handle the transmission in an application specific manner. 
Second, we need a mechanism for dropping atoms (frames) depending on the delays and 
regarding the requirement of continuous delivery to the receiver process (for instance display 
process). This will be allowed by using variable atoms. The transport system knows what the 
unit is that could be dropped. And third the mechanisms must be extended by specification of 
QoS parameters and control procedures to guarantee the negotiated QoS. 

5 OUTLOOK 

The operating systems we support are Windows NT and DEC UNIX. We plan to finish the 
determination of the exact behavior of the different communication levels, based on a simple 
request- response protocol. We placed the measurements directly on top of the device driver, 
kernel based IP and user space IP to determine the maximum accessible speed and the 
consumption of operating system methods, such as IO control. Furthermore, we plan to finish 
a first integration of our improvements into DCE-RPC mechanism in march 1997. 

Our first implementation is based on the free sources of the DCE-RPC. The main part of 
our protocol engine is not limited to DCE because our improvements are generic for request -
response communication schemes. An integration of this protocol into other systems will be 
possible. So an integration into ORBIX ofiONA is planned by exchange parts of the transport 
class. Furthermore, we look into an integration of our approach into JAVA RMI. Like in the 
DCE implementation no changes at the user interface are made and also the usage of old 
binaries could be possible. 

By using our protocol stack in an A TM environment, we expect a maximum time for one 
call ofless than 500 !lS. Further, the increasing of throughput up to 12 MByte/s is expected. 

At the end of 1997 we plan the full integration of QoS and multimedia support into our 
reference implementation. 
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