
33

A Ruler-and-Compass Geometric
Constraint Solver

R. Joan-Arinyo, A. Soto
Universitat Politecnica de Catalunya
Departament de Llenguatges i Sistemes Informatics
Av. Diagonal 647, Sa, E-08028 Barcelona
email: [robert, toni] @lsi. upc. es

Abstract
This work reports on the implementation of a two-dimensional, variational geometric
constraint solver based on a constructive approach. The solver computes a solution in two
phases. First, using rewrite rules, the solver builds a sequence of construction steps. Then
the construction steps are carried out to generate an instance of the geometric object for
the current dimension values. We discuss some issues concerning the data representation
and the rules used. Then a simple example illustrates how the solver works. Finally we
give a correctness proof of the solver.

Keywords
Computer aided design, geometric constraint solving, rewrite systems

1 INTRODUCTION

Constraints are an important enabling technology for interactive graphics applications.
One of such applications where the use of constraints is growing more rapidly is in geo­
metric modelling. The goal is to develop sketching systems based on geometric constraint
solvers in which the user defines a rough sketch, annotated with dimensions and con­
straints, and the system builds an instance that satisfies all constraints.

Several approaches to the geometric constraint solving problem have been reported
in the literature. Among them, the constructive technique is one of the most promising
approaches. In this class of constraint solvers the constraints are satisfied constructively,
by placing geometric elements in some order. They are based on the fact that most
configurations in an engineering drawing are solvable by using a rather small set of tools
like ruler, compass and protractor.

A geometric constraint problem is well-constrained or consistently defined if it has a
finite number of solutions. If the problem has an infinite number of solutions then it is
underconstrained. Finally a problem is overconstrained if after deleting one constraint the
problem still has a finite number of solutions. In general, overconstrained problems have

M. J. Pratt et al. (eds.), Product Modeling for Computer Integrated Design and Manufacture
© IFIP International Federation for Information Processing 1997

A ruler-and-compass geometric constraint solver 385

no solution, but a given overconstrained problem may have a solution if the additional
constraints are consistens with previous constraints.

This paper reports on the work developed while building a prototype of a Geometric
Constraint Solving System (GCSS). We consider only well-constrained, two-dimensional
sketches formed from points, lines, circles and arcs of circle.

The GCSS has two major components, the analyzer and the constructor. The analyzer
deals with the problem of determining symbolically whether or not a geometric sketch is
solvable. It is based on a constructive approach which exhibits properties of both rule­
and graph-constructive approaches. The analyzer is fed with a dimensioning scheme; i.e.,
a topologically correct sketch properly annotated with a set of constraints. Then, if the
set of constraints consistently defines the object, the analyzer generates a sequence of
constructive steps that determine each geometric element such that the constraints are
satisfied. The constructor responds to the problem of building an instance of the geomet­
ric object. The instantiation is carried out by applying the sequence of construction steps
generated by the analyzer to the actual parameter values. Whenever no numerical incom­
patibilities arise in the computation, an instance of the geometric object is generated.
By clearly separating in this way the symbolic computation from numerical computation,
we can use tools specifically tailored for each commitment. As a result, the interactive
performance of the whole GCSS is improved.

Given a dimensioning scheme which consistently defines a geometric object, the ana­
lyzer, considered as a rewrite system, is canonical; i.e., the system has a unique normal
form that is obtained by finitely many reduction steps.

2 A FORMALIZATION OF THE 2D PROBLEM

It is well known that the relative position of n given points {p1 ,p2 , ... ,pn} in the bidi­
mensional Euclidian space, are determined by 2n - 3 independent relationships defined
between the points. In what follows we will use the words relation and constraint indistin­
guishably. We shall refer to a given set of points and a set of constraints defined between
them as a dimensioning scheme.

We assume that a given set of n points on which a dimensionin_e; scheme has been
defined, can be split into two nonempty disjoint subsets. One subset, p' = {p~, p~, . .. , PU,
contains all those given points with fixed position. The other subset, p = {p1, P2, . .. , pt},
contains all those points with unknown position. Note that this decomposition is always
possible because 2n - 3 independent relationships between n given points define a rigid
body with three remaining degrees of freedom, two of them corresponding to a translation
and the third one corresponding to a rotation. Hence, the absolute position for at least
one given point should be specified.

As we shall see in Section 4, our approach to geometric constraint solving is such that
given the set of points {p1 , p2 , ••. , Pn} and a dimensioning scheme <p(i}, p1 , ••. , pi) defined
on them, we search a sequence of construction steps such that if the constraints define the
geometric object in space consistently they will be able to figure out the relative position
of each point.

386 Part Seven Modeling Techniques and Algorithms

3 APPROACHES TO GEOMETRIC CONSTRAINT SOLVING

In general Numerical Constraint Solvers, the constraints are translated into a system of
algebraic equations and are solved using an iterative method like the Newton-Raphson
method. Constructive Constraints Solvers are based on the fact that most configurations in
an engineering drawing are solvable by using a rather small set of tools like ruler, compass
and protractor. The constraints are satisfied constructively by placing geometric elements
in some order. Rule-constructive and graph-constructive solvers are two different versions
of the constructive approach. In Propagation Methods the constraints are first translated
into a system of equations involving variables and constants. Then an undirected graph is
created whose nodes are the equations, variables and constants, and whose edges represent
the occurrence of a variable or a constant in an equation. The method then attempts to
direct the graph edges so that every equation can be solved in turn, initially only from the
constants. Symbolic Constraint Solvers transform the constraints into a system of algebraic
equations; the system is solved with symbolic algebraic methods such as Grebner bases.
For a thorough review of approaches to geometric constraint solving see Bouma et al.
(1993) and Fudos (1995).

4 THE SOLVER

The solver handles bidimensional geometric configurations composed from points, seg­
ments, arcs and circles. The constraints that can be defined on those objects include
distance between two points, perpendicular distance between a point and a segment,
angle between two segments, incidence, perpendicularity, parallelism, tangency and con­
centricity.

The solver is variational, i.e., the solver processes the constraints without the need of
arranging them in a predefined ordering sequence. Furthermore, the solver can deal with
dimensioning schemes with circular constraints.

Our basic method for solving geometric constraints is a constructive approach and
exhibits properties of both rule- and graph-constructive approaches, Bouma et al. (1993).
In a first phase, our solver uses rewrite rules to build a sequence of construction steps
which are able to figure out the relative position of each point. In a second phase, the
construction steps are carried out to generate an instance of the geometric object for the
current dimension values. Let us see now how the data is represented and which rules are
available.

4.1 Data Representation

All the constraints above mentioned can be represented by means of distance between two
points, distance between a point and a straight segment and angle between two straigth
segments. We use a notation derived from that reported by Verroust (1992). The distance
between points constraint is represented by means of a CD set, the point-segment distance
constraint is represented by a CH set, and the angle between two segments is represented
by a CA set. We define these sets as follows.

A CD set is a set of points with mutually constrained distances. A frame of reference
is attached to each CD set to which the points in the set are refered to. When a CD

y

Pl
--------+-----~-x

A ruler-and-compass geometric constraint solver

y

--------~--~~-x
(p4,P!)

p
;

I
I
I
I

387

h

* ·--------~-------.

P1 P2

Figure 1 From left to right: Creation of elementary CD, CA and CH sets.

set contains just two points, we will refer to it as an elementary CD set. It is worth to
note that a sketch is solved when all the points in the sketch belong to the same CD set.
This CD can be seen conceptually as the result of applying the constructive formula in
Section 2 to the initial set of constraints.

A CH set is a point and a segment constrained by the perpendicular distance from the
point to the segment.

A CA set is a pair of oriented segments which are mutually constrained in angle.
In what follows, we will refer generically to the CD, CA and CH sets as constraint

sets.

4.2 Rules

Depending on the functionality of the rules, we classify them as belonging to one of the
following types: creation rules, merging rules or construction rules.

Creation rules
Creation rules create elementary CD sets, CA sets and CH sets as an interpretation of
the dimensioning scheme defined by the user. The sign of the distances and angles are
defined based on what the user has sketched. The following is illustrated in Figure 1.
When an angle constraint between two directed segments is placed, a CA set is created.
When a distance constraint between two points is given, a CD set is created. The position
of the points in the associated frame of reference are (0, 0) and (d, 0). Whenever a point,
a segment and the perpendicular distance from the point to the segment are given, a CH
set is created.

Merging rules
Only one rule belongs to this type and it is illustrated in Figure 2. The rule allows to
compute the transitive closure of the angle constraint set. When a segment belongs to
two different CA sets, ca1 and ca2, a new CA set, ca3, is created which constrains in
angle two segments, one from ca1 and one from ca2, both segments being different from
the segment shared by ca1 and ca2.

388 Part Seven Modeling Techniques and Algorithms

a
X

ca3 y
a

c

...
a b

X

Figure 2 Merging two CA sets.

Construction rules
Construction rules merge CD sets, CH sets, and CA sets into larger CD sets. Merging is
performed by building triangles and a few quadrilaterals. A complete description of each
rule can be found in Juan-Arinyo et al. (1995).

4.3 Implementation

Figure 3 shows the architecture of our Geometric Constraint Solving System (GCSS). The
geometric constraint solving problem is split into two main components: the analyzer and
the constructor. The analyzer determines whether the dimensioning scheme is or is not
symbolically solvable. If it is solvable, the analyzer generates a sequence of construction
steps equivalent to the constructive formula we were looking for in Section 2. Then, the
constructor instantiates the geometric object by applying the sequence of construction
steps generated by the solver to the actual parameter values.

There are several reasons that lead us to this architecture. First, the nature of the
computations in each step are quite different. The analyzer requires symbolic computa­
tion while the constructor only performs numerical computations. Second, determining
whether the problem can be symbolically solved or not is performed in the analysis step
and it does not depend either on the actual parameter values nor on the geometric com­
putations. Next, with the proposed decoupling, when computing instances for different
parameter values, only the second step needs to be carried out. This allows to skip the
analysis step which is computationally the most expensive. Finally, given a symbolically
solvable dimensioning scheme and a set of actual values for the parameters, the object

A ruler-and-compass geometric constraint solver 389

Figure 3 Solver Architecture.

can be instantiated if there are not numerical impossibilities. These impossibilities are
detected while carrying out the geometric computations.

The analyzer is an expert system programmed in Prolog; Bratko (1990), Cosmadopoulos
(1992). We have chosen this programming language because of the symbolic computation
needed and because it is a rapid prototyping language.

The constructor is a virtual machine that executes the sequence of construction steps
generated by the analyzer. In general, the position of the geometric elements can be
expressed as non linear algebraic equations with the constraints as parameters in the
equations. This means that a consistently defined geometric object may have an expo­
nencial number of distinct solutions, dependent on the number of geometric elements.
For exemple, Figures 4b and 4c show two possible solutions for the object in Figura 4a.
The constructor provides a tool that allows the user to navigate interactively through the
space of solutions.

5 CASE STUDY

In order to illustrate how the system works, let us present here a case study. Assume that
the user has sketched and annotated a pentagon as shown in Figure 4a. The initial set of
constraints derived from the dimensioning scheme defined by the user is

distance(pt, P2) = d1
distance(p2,P3) = d2

distance(p3, P4) = d3
angle((p3,p4), (p3,p2)) = a1

distance(p4, Ps) = d4
distance(ps, Pl) = ds

angle((Pt,P2), (pt,Ps)) = a2

(1)
(2)

(3)
(4)
(5)
(6)
(7)

390 Part Seven Modeling Techniques and Algorithms

a b c

Figure 4 Case Study. a) Sketch and dimensionig scheme. b) and c) Instances generated
with d1 = d2 = d3 = d4 = ds = 100 and a1 = a2 = 120°.

Starting with this set of constraints the analyzer writes it until either all the points belong
to the same CD set or no rule applies. The data representation evolves as follows.

1. The CD set creation rule is applied to constraints 1, 2, 3, 5, and 6 giving the CD
constraint sets cd1 = {p1,p2},cd2 = {p2,p3},cd3 = {p3,p4},cd4 = {p4,Ps} and cds =
{ps,Pd

2. The CA set creation rule is applied to constraints 4 and 7 giving the constraint sets
ca1 = {(p3,P4), (p3,p2), ad and ca2 = {(pl,P2): (pl,Ps), a2}. Note that, in this case, the
set of angle constraints and its transitive closure coincide.

3. Let us denote by DDA1 the constructive rule that builds a triangle given by the lengths
of two sides and the angle between them. Rule DDA1 merges two CD sets by building
a triangle on cd1, cd2 and ca1. Then constraint sets cd1, cd2 and ca1 are replaced with
the CD set cd6 = {p2,p3,p4}.

4. Now rule DDA1 can be triggered on cd1, cd5 and ca2 • These constraint sets are replaced
with the CD set cd7 = {pl,P2 1Ps}.

5. Finally, if DDD is a constructive rule which builds a triangle given three CD sets with
three pairwise common points, it can be triggered with the constraint sets cd4, cd6 and
cd7. These CD sets arc replaced with cds = {p1,p2,P3,P4,Ps}.

The last step yields a CD set to which all the points in the original sketch belong to. This
fact tells the analyzer that the solving process is over.

The constructor now asks for actual values for the parameters and generates object
instances by calling procedures in the underlaying geometric engine according to the
construction steps.

6 SOLVER CORRECTNESS

After Briiderlin (1988) and Dershowitz (1990), the idea behind solvers based on geometric
rewrite rules is to replace some facts in the database by simpler ones. In our solver,

A ruler-and-compass geometric constraint solver 391

initially, the CD and CH constraint sets, represent the sets of point-point and point­
segment distance constraints derived from the dimensioning scheme while the CA sets
are the transitive closure of the angle constraints defined by the user. The solver starts
by applying the rules to these initial sets. Then the rules are repeatedly applied to the
resulting constraint sets until either there is only one CD set which contains all the points
in the sketch or no rule applies. In the first case the resulting CD set is a solution whereas
in the second case the dimensioning scheme either does not define the geometric object
consistently or is not solvable with the available set of rules. Every time a rule is triggered
we will say that a reduction step has been performed.

Assuming that the dimensioning scheme does define the geometric object consistently,
two things should be proved in order to prove the solver correctness: 1) The algorithm
applying the rules stops in any case, and 2) The sequence in which the rules are applied
does not matter for the result. In next section we recall the general form of the rules
available in our solver as rewrite rules. Then we shall state the solver correctness.

6.1 Rewriting Rules

In rewriting theory, a rule over a set of terms Tis an ordered pair < l, r > of terms, which
are usually written as l -+ r. It is said that l rewrites or reduces to r; Bachmair (1991),
Dershowitz (1990), Rosen (1973). When no rule applies to a term it is said that the term
is irreducible.

In our system, all the construction rules can be expressed as rewrite rules where the
terms on the left are constraint sets and the term on the right is always a CD set. The
whole set of rewrite rules in our system can be found in Juan-Arinyo et al. (1995) and
will be denoted by -+ R· In particular, all the construction rules CR1 -+ CR., are such
that CR1 = {CX1 , CX2 , CX3 } and CRr is a CD set.

6.2 Termination Properties

Let us define a term as a set whose members are constraint sets. Let C 0 be the initial
term with

C 0 = U;CD; Uj CHj Uk CAk

CD; and CHj are, respectively, the sets of point-point and point-segment distance con­
straints derived from the dimensioning scheme defined by the user. UkCAk is the transitive
closure of the angle constraint sets defined by the user.

Let us denote by C; the term whose members are the constraint sets after having applied
the i-th reduction step. Then, the analyzer can be represented by the pair (C;, -+R) which
is a reduction system; Rosen (1973). The proofs of the following statements can be found
in Juan-Arinyo et al. (1995).

Theorem 1 If the set of constraints consistently defines the geometric object, the reduc­
tion system (C;,-+ R) has a uniform termination; that is, the analyzer stops after a finite
number of reduction steps.

Theorem 2 If the set of constraints consistently defines the geometric object, different
reduction processes starting from the same dimensioning scheme always terminate at the

392 Part Seven Modeling Techniques and Algorithms

same irreducible term; that is, the sequence in which the rules are applied does not matter
for the result.

7 CONCLUSION AND FUTURE WORK

We have presented the work developed while building a prototype of a variational ge­
ometric constraint solver based on the constructive approach which exhibits properties
of both rule- and graph-constructive approaches. Given a wellconstrained dimensioning
scheme, the solver, considered as a rewrite system, is canonical; i.e., the system has a
unique normal form that is obtained by finitely many reduction steps.

Currently, our group is working on a number of topics that are of capital importance in
order to build useful Computer Aided Design systems based on geometric constraint solv­
ing. One issue concerns detecting dimensioning schemes which do not consistenly define
a geometric object because the scheme is either underconstrained or overconstrained. In
both cases the system should provide appropiate hints to help the user. The other concern
refers to extend the logic capabilities of the solver following two concurrent directions:
1) Given a subset of parameters with fixed values, figure out ranges of acceptable values
for the remaining parameters, and 2) To extend the way of expressing constraints by
including relations between variables.

8 ACKNOWLEDGEMENTS

This work has been supported in part by the CICYT grant TIC95-0630-C05-04.

REFERENCES

Bachmair, L. (1991) Proof methods for equational theories. Technical report, Department
of Computer Science, SUNY at Stony Brook, Stony Brook, New York 11794.

Bouma, W., Fudos, 1., Hoffmann, C., Cai, J. and Paige., R. (1995) A geometric constraint
solver. Computer Aided Design 27(6):487-501, June.

Bratko, I. (1990) PROLOG. Programming for Artificial Intelligence. Second Edition.
Addison Wesley.

Briiderlin, D.D. (1988) Rule-Based Geometric Modelling. PhD thesis, Institut fiir Infor­
matik der ETH Zurich.

Cosmadopoulos, Y. and Chu, D. (1992) /C Prolog II. Deprt. of Computing, Imperial
College, London, November. Version 0.94, for Sun Workstations.

Dershowitz, N. and Jouannaud, J.-P. (1990) Handbook of Theoretical Computer Science,
chapter Rewrite Systems, pages 244-320. Elsevier Science Publishers B.V.

Fudos, I. and Hoffmann, C.M. (1993) Correctness proof of a geometric constraint solver.
Technical Report CSD 93-076, Department of Computer Sciences, Purdue University,
December.

Fudos, I. (1995) Constraint Solving for Computer Aided Design. PhD thesis, Purdue
University, Department of Computer Sciences.

A ruler-and-compass geometric constraint solver 393

Juan-Arinyo, R. and Soto, A. (1995) A set of rules for a constructive geometric constraint
solver. Technical Report LSI-95-19-R, Department LiSI, Universitat Politecnica de
Catalunya.

Rosen, B.K. (1973) Tree-manipulating systems and Church-Rosser theorems. Journal of
the ACM, 20(1):160~187, January.

Verroust, A., Schonek, F. and Roller, D. (1992) Rule-oriented method for parameterized
computer-aided design. Computer Aided Design, 24(10):531~540, October.

