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Abstract 
This work reports on the implementation of a two-dimensional, variational geometric 
constraint solver based on a constructive approach. The solver computes a solution in two 
phases. First, using rewrite rules, the solver builds a sequence of construction steps. Then 
the construction steps are carried out to generate an instance of the geometric object for 
the current dimension values. We discuss some issues concerning the data representation 
and the rules used. Then a simple example illustrates how the solver works. Finally we 
give a correctness proof of the solver. 
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1 INTRODUCTION 

Constraints are an important enabling technology for interactive graphics applications. 
One of such applications where the use of constraints is growing more rapidly is in geo­
metric modelling. The goal is to develop sketching systems based on geometric constraint 
solvers in which the user defines a rough sketch, annotated with dimensions and con­
straints, and the system builds an instance that satisfies all constraints. 

Several approaches to the geometric constraint solving problem have been reported 
in the literature. Among them, the constructive technique is one of the most promising 
approaches. In this class of constraint solvers the constraints are satisfied constructively, 
by placing geometric elements in some order. They are based on the fact that most 
configurations in an engineering drawing are solvable by using a rather small set of tools 
like ruler, compass and protractor. 

A geometric constraint problem is well-constrained or consistently defined if it has a 
finite number of solutions. If the problem has an infinite number of solutions then it is 
underconstrained. Finally a problem is overconstrained if after deleting one constraint the 
problem still has a finite number of solutions. In general, overconstrained problems have 
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no solution, but a given overconstrained problem may have a solution if the additional 
constraints are consistens with previous constraints. 

This paper reports on the work developed while building a prototype of a Geometric 
Constraint Solving System (GCSS). We consider only well-constrained, two-dimensional 
sketches formed from points, lines, circles and arcs of circle. 

The GCSS has two major components, the analyzer and the constructor. The analyzer 
deals with the problem of determining symbolically whether or not a geometric sketch is 
solvable. It is based on a constructive approach which exhibits properties of both rule­
and graph-constructive approaches. The analyzer is fed with a dimensioning scheme; i.e., 
a topologically correct sketch properly annotated with a set of constraints. Then, if the 
set of constraints consistently defines the object, the analyzer generates a sequence of 
constructive steps that determine each geometric element such that the constraints are 
satisfied. The constructor responds to the problem of building an instance of the geomet­
ric object. The instantiation is carried out by applying the sequence of construction steps 
generated by the analyzer to the actual parameter values. Whenever no numerical incom­
patibilities arise in the computation, an instance of the geometric object is generated. 
By clearly separating in this way the symbolic computation from numerical computation, 
we can use tools specifically tailored for each commitment. As a result, the interactive 
performance of the whole GCSS is improved. 

Given a dimensioning scheme which consistently defines a geometric object, the ana­
lyzer, considered as a rewrite system, is canonical; i.e., the system has a unique normal 
form that is obtained by finitely many reduction steps. 

2 A FORMALIZATION OF THE 2D PROBLEM 

It is well known that the relative position of n given points {p1 ,p2 , ... ,pn} in the bidi­
mensional Euclidian space, are determined by 2n - 3 independent relationships defined 
between the points. In what follows we will use the words relation and constraint indistin­
guishably. We shall refer to a given set of points and a set of constraints defined between 
them as a dimensioning scheme. 

We assume that a given set of n points on which a dimensionin_e; scheme has been 
defined, can be split into two nonempty disjoint subsets. One subset, p' = {p~, p~, . .. , PU, 
contains all those given points with fixed position. The other subset, p = {p1, P2, . .. , pt}, 
contains all those points with unknown position. Note that this decomposition is always 
possible because 2n - 3 independent relationships between n given points define a rigid 
body with three remaining degrees of freedom, two of them corresponding to a translation 
and the third one corresponding to a rotation. Hence, the absolute position for at least 
one given point should be specified. 

As we shall see in Section 4, our approach to geometric constraint solving is such that 
given the set of points {p1 , p2 , ••. , Pn} and a dimensioning scheme <p(i}, p1 , ••. , pi) defined 
on them, we search a sequence of construction steps such that if the constraints define the 
geometric object in space consistently they will be able to figure out the relative position 
of each point. 
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3 APPROACHES TO GEOMETRIC CONSTRAINT SOLVING 

In general Numerical Constraint Solvers, the constraints are translated into a system of 
algebraic equations and are solved using an iterative method like the Newton-Raphson 
method. Constructive Constraints Solvers are based on the fact that most configurations in 
an engineering drawing are solvable by using a rather small set of tools like ruler, compass 
and protractor. The constraints are satisfied constructively by placing geometric elements 
in some order. Rule-constructive and graph-constructive solvers are two different versions 
of the constructive approach. In Propagation Methods the constraints are first translated 
into a system of equations involving variables and constants. Then an undirected graph is 
created whose nodes are the equations, variables and constants, and whose edges represent 
the occurrence of a variable or a constant in an equation. The method then attempts to 
direct the graph edges so that every equation can be solved in turn, initially only from the 
constants. Symbolic Constraint Solvers transform the constraints into a system of algebraic 
equations; the system is solved with symbolic algebraic methods such as Grebner bases. 
For a thorough review of approaches to geometric constraint solving see Bouma et al. 
(1993) and Fudos (1995). 

4 THE SOLVER 

The solver handles bidimensional geometric configurations composed from points, seg­
ments, arcs and circles. The constraints that can be defined on those objects include 
distance between two points, perpendicular distance between a point and a segment, 
angle between two segments, incidence, perpendicularity, parallelism, tangency and con­
centricity. 

The solver is variational, i.e., the solver processes the constraints without the need of 
arranging them in a predefined ordering sequence. Furthermore, the solver can deal with 
dimensioning schemes with circular constraints. 

Our basic method for solving geometric constraints is a constructive approach and 
exhibits properties of both rule- and graph-constructive approaches, Bouma et al. (1993). 
In a first phase, our solver uses rewrite rules to build a sequence of construction steps 
which are able to figure out the relative position of each point. In a second phase, the 
construction steps are carried out to generate an instance of the geometric object for the 
current dimension values. Let us see now how the data is represented and which rules are 
available. 

4.1 Data Representation 

All the constraints above mentioned can be represented by means of distance between two 
points, distance between a point and a straight segment and angle between two straigth 
segments. We use a notation derived from that reported by Verroust (1992). The distance 
between points constraint is represented by means of a CD set, the point-segment distance 
constraint is represented by a CH set, and the angle between two segments is represented 
by a CA set. We define these sets as follows. 

A CD set is a set of points with mutually constrained distances. A frame of reference 
is attached to each CD set to which the points in the set are refered to. When a CD 



y 

Pl 
--------+-----~-x 

A ruler-and-compass geometric constraint solver 

y 

--------~--~~-x 
(p4,P!) 

p 
; 

I 
I 
I 
I 

387 

h 

* ·--------~-------. 

P1 P2 

Figure 1 From left to right: Creation of elementary CD, CA and CH sets. 

set contains just two points, we will refer to it as an elementary CD set. It is worth to 
note that a sketch is solved when all the points in the sketch belong to the same CD set. 
This CD can be seen conceptually as the result of applying the constructive formula in 
Section 2 to the initial set of constraints. 

A CH set is a point and a segment constrained by the perpendicular distance from the 
point to the segment. 

A CA set is a pair of oriented segments which are mutually constrained in angle. 
In what follows, we will refer generically to the CD, CA and CH sets as constraint 

sets. 

4.2 Rules 

Depending on the functionality of the rules, we classify them as belonging to one of the 
following types: creation rules, merging rules or construction rules. 

Creation rules 
Creation rules create elementary CD sets, CA sets and CH sets as an interpretation of 
the dimensioning scheme defined by the user. The sign of the distances and angles are 
defined based on what the user has sketched. The following is illustrated in Figure 1. 
When an angle constraint between two directed segments is placed, a CA set is created. 
When a distance constraint between two points is given, a CD set is created. The position 
of the points in the associated frame of reference are (0, 0) and ( d, 0). Whenever a point, 
a segment and the perpendicular distance from the point to the segment are given, a CH 
set is created. 

Merging rules 
Only one rule belongs to this type and it is illustrated in Figure 2. The rule allows to 
compute the transitive closure of the angle constraint set. When a segment belongs to 
two different CA sets, ca1 and ca2, a new CA set, ca3, is created which constrains in 
angle two segments, one from ca1 and one from ca2, both segments being different from 
the segment shared by ca1 and ca2. 
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Figure 2 Merging two CA sets. 

Construction rules 
Construction rules merge CD sets, CH sets, and CA sets into larger CD sets. Merging is 
performed by building triangles and a few quadrilaterals. A complete description of each 
rule can be found in Juan-Arinyo et al. (1995). 

4.3 Implementation 

Figure 3 shows the architecture of our Geometric Constraint Solving System (GCSS). The 
geometric constraint solving problem is split into two main components: the analyzer and 
the constructor. The analyzer determines whether the dimensioning scheme is or is not 
symbolically solvable. If it is solvable, the analyzer generates a sequence of construction 
steps equivalent to the constructive formula we were looking for in Section 2. Then, the 
constructor instantiates the geometric object by applying the sequence of construction 
steps generated by the solver to the actual parameter values. 

There are several reasons that lead us to this architecture. First, the nature of the 
computations in each step are quite different. The analyzer requires symbolic computa­
tion while the constructor only performs numerical computations. Second, determining 
whether the problem can be symbolically solved or not is performed in the analysis step 
and it does not depend either on the actual parameter values nor on the geometric com­
putations. Next, with the proposed decoupling, when computing instances for different 
parameter values, only the second step needs to be carried out. This allows to skip the 
analysis step which is computationally the most expensive. Finally, given a symbolically 
solvable dimensioning scheme and a set of actual values for the parameters, the object 
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Figure 3 Solver Architecture. 

can be instantiated if there are not numerical impossibilities. These impossibilities are 
detected while carrying out the geometric computations. 

The analyzer is an expert system programmed in Prolog; Bratko (1990), Cosmadopoulos 
(1992). We have chosen this programming language because of the symbolic computation 
needed and because it is a rapid prototyping language. 

The constructor is a virtual machine that executes the sequence of construction steps 
generated by the analyzer. In general, the position of the geometric elements can be 
expressed as non linear algebraic equations with the constraints as parameters in the 
equations. This means that a consistently defined geometric object may have an expo­
nencial number of distinct solutions, dependent on the number of geometric elements. 
For exemple, Figures 4b and 4c show two possible solutions for the object in Figura 4a. 
The constructor provides a tool that allows the user to navigate interactively through the 
space of solutions. 

5 CASE STUDY 

In order to illustrate how the system works, let us present here a case study. Assume that 
the user has sketched and annotated a pentagon as shown in Figure 4a. The initial set of 
constraints derived from the dimensioning scheme defined by the user is 

distance(pt, P2) = d1 
distance(p2,P3) = d2 

distance(p3, P4) = d3 
angle((p3,p4), (p3,p2)) = a1 

distance(p4, Ps) = d4 
distance(ps, Pl) = ds 

angle((Pt,P2), (pt,Ps)) = a2 

(1) 
(2) 

(3) 
(4) 
(5) 
( 6) 
(7) 
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a b c 

Figure 4 Case Study. a) Sketch and dimensionig scheme. b) and c) Instances generated 
with d1 = d2 = d3 = d4 = ds = 100 and a1 = a2 = 120°. 

Starting with this set of constraints the analyzer writes it until either all the points belong 
to the same CD set or no rule applies. The data representation evolves as follows. 

1. The CD set creation rule is applied to constraints 1, 2, 3, 5, and 6 giving the CD 
constraint sets cd1 = {p1,p2},cd2 = {p2,p3},cd3 = {p3,p4},cd4 = {p4,Ps} and cds = 
{ps,Pd 

2. The CA set creation rule is applied to constraints 4 and 7 giving the constraint sets 
ca1 = {(p3,P4), (p3,p2), ad and ca2 = {(pl,P2): (pl,Ps), a2}. Note that, in this case, the 
set of angle constraints and its transitive closure coincide. 

3. Let us denote by DDA1 the constructive rule that builds a triangle given by the lengths 
of two sides and the angle between them. Rule DDA1 merges two CD sets by building 
a triangle on cd1, cd2 and ca1. Then constraint sets cd1, cd2 and ca1 are replaced with 
the CD set cd6 = {p2,p3,p4}. 

4. Now rule DDA1 can be triggered on cd1, cd5 and ca2 • These constraint sets are replaced 
with the CD set cd7 = {pl,P2 1Ps}. 

5. Finally, if DDD is a constructive rule which builds a triangle given three CD sets with 
three pairwise common points, it can be triggered with the constraint sets cd4, cd6 and 
cd7. These CD sets arc replaced with cds = {p1,p2,P3,P4,Ps}. 

The last step yields a CD set to which all the points in the original sketch belong to. This 
fact tells the analyzer that the solving process is over. 

The constructor now asks for actual values for the parameters and generates object 
instances by calling procedures in the underlaying geometric engine according to the 
construction steps. 

6 SOLVER CORRECTNESS 

After Briiderlin (1988) and Dershowitz (1990), the idea behind solvers based on geometric 
rewrite rules is to replace some facts in the database by simpler ones. In our solver, 
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initially, the CD and CH constraint sets, represent the sets of point-point and point­
segment distance constraints derived from the dimensioning scheme while the CA sets 
are the transitive closure of the angle constraints defined by the user. The solver starts 
by applying the rules to these initial sets. Then the rules are repeatedly applied to the 
resulting constraint sets until either there is only one CD set which contains all the points 
in the sketch or no rule applies. In the first case the resulting CD set is a solution whereas 
in the second case the dimensioning scheme either does not define the geometric object 
consistently or is not solvable with the available set of rules. Every time a rule is triggered 
we will say that a reduction step has been performed. 

Assuming that the dimensioning scheme does define the geometric object consistently, 
two things should be proved in order to prove the solver correctness: 1) The algorithm 
applying the rules stops in any case, and 2) The sequence in which the rules are applied 
does not matter for the result. In next section we recall the general form of the rules 
available in our solver as rewrite rules. Then we shall state the solver correctness. 

6.1 Rewriting Rules 

In rewriting theory, a rule over a set of terms Tis an ordered pair < l, r > of terms, which 
are usually written as l -+ r. It is said that l rewrites or reduces to r; Bachmair (1991 ), 
Dershowitz (1990), Rosen (1973). When no rule applies to a term it is said that the term 
is irreducible. 

In our system, all the construction rules can be expressed as rewrite rules where the 
terms on the left are constraint sets and the term on the right is always a CD set. The 
whole set of rewrite rules in our system can be found in Juan-Arinyo et al. (1995) and 
will be denoted by -+ R· In particular, all the construction rules CR1 -+ CR., are such 
that CR1 = {CX1 , CX2 , CX3 } and CRr is a CD set. 

6.2 Termination Properties 

Let us define a term as a set whose members are constraint sets. Let C 0 be the initial 
term with 

C 0 = U;CD; Uj CHj Uk CAk 

CD; and CHj are, respectively, the sets of point-point and point-segment distance con­
straints derived from the dimensioning scheme defined by the user. UkCAk is the transitive 
closure of the angle constraint sets defined by the user. 

Let us denote by C; the term whose members are the constraint sets after having applied 
the i-th reduction step. Then, the analyzer can be represented by the pair (C;, -+R) which 
is a reduction system; Rosen (1973). The proofs of the following statements can be found 
in Juan-Arinyo et al. (1995). 

Theorem 1 If the set of constraints consistently defines the geometric object, the reduc­
tion system (C;,-+ R) has a uniform termination; that is, the analyzer stops after a finite 
number of reduction steps. 

Theorem 2 If the set of constraints consistently defines the geometric object, different 
reduction processes starting from the same dimensioning scheme always terminate at the 
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same irreducible term; that is, the sequence in which the rules are applied does not matter 
for the result. 

7 CONCLUSION AND FUTURE WORK 

We have presented the work developed while building a prototype of a variational ge­
ometric constraint solver based on the constructive approach which exhibits properties 
of both rule- and graph-constructive approaches. Given a wellconstrained dimensioning 
scheme, the solver, considered as a rewrite system, is canonical; i.e., the system has a 
unique normal form that is obtained by finitely many reduction steps. 

Currently, our group is working on a number of topics that are of capital importance in 
order to build useful Computer Aided Design systems based on geometric constraint solv­
ing. One issue concerns detecting dimensioning schemes which do not consistenly define 
a geometric object because the scheme is either underconstrained or overconstrained. In 
both cases the system should provide appropiate hints to help the user. The other concern 
refers to extend the logic capabilities of the solver following two concurrent directions: 
1) Given a subset of parameters with fixed values, figure out ranges of acceptable values 
for the remaining parameters, and 2) To extend the way of expressing constraints by 
including relations between variables. 

8 ACKNOWLEDGEMENTS 

This work has been supported in part by the CICYT grant TIC95-0630-C05-04. 

REFERENCES 

Bachmair, L. (1991) Proof methods for equational theories. Technical report, Department 
of Computer Science, SUNY at Stony Brook, Stony Brook, New York 11794. 

Bouma, W., Fudos, 1., Hoffmann, C., Cai, J. and Paige., R. (1995) A geometric constraint 
solver. Computer Aided Design 27(6):487-501, June. 

Bratko, I. (1990) PROLOG. Programming for Artificial Intelligence. Second Edition. 
Addison Wesley. 

Briiderlin, D.D. (1988) Rule-Based Geometric Modelling. PhD thesis, Institut fiir Infor­
matik der ETH Zurich. 

Cosmadopoulos, Y. and Chu, D. (1992) /C Prolog II. Deprt. of Computing, Imperial 
College, London, November. Version 0.94, for Sun Workstations. 

Dershowitz, N. and Jouannaud, J.-P. (1990) Handbook of Theoretical Computer Science, 
chapter Rewrite Systems, pages 244-320. Elsevier Science Publishers B.V. 

Fudos, I. and Hoffmann, C.M. (1993) Correctness proof of a geometric constraint solver. 
Technical Report CSD 93-076, Department of Computer Sciences, Purdue University, 
December. 

Fudos, I. (1995) Constraint Solving for Computer Aided Design. PhD thesis, Purdue 
University, Department of Computer Sciences. 



A ruler-and-compass geometric constraint solver 393 

Juan-Arinyo, R. and Soto, A. (1995) A set of rules for a constructive geometric constraint 
solver. Technical Report LSI-95-19-R, Department LiSI, Universitat Politecnica de 
Catalunya. 

Rosen, B.K. (1973) Tree-manipulating systems and Church-Rosser theorems. Journal of 
the ACM, 20(1):160~187, January. 

Verroust, A., Schonek, F. and Roller, D. (1992) Rule-oriented method for parameterized 
computer-aided design. Computer Aided Design, 24(10):531~540, October. 


