
29

Representation, Boundary
Computation and Fast Display of
CSG Models with NURBS
Primitives

Shankar Krishnan, Subodh Kumar and Dinesh M anocha
Department of Computer Science
Univers·ity of North Carol·ina
Chapel Hill NC 27599
{ krishnas,kumar, manocha} @cs. unc. edu
http://www. cs. unc. edu/-geom/ geom. html

Abstract
We present efficient and accurate algorithms for Boolean combinations of solids composed
of sculptured models. The boundary of each solid is represented as a collection of trimmed
spline surfaces and a connectivity graph. Based on algorithms for trapezoidation of poly­
gons, partitioning of polygons using polygonal chains, surface intersection of high degree
spline surfaces and ray-shooting, the boundaries of the resulting solids and its connectivity
graph after the Boolean operation are computed. We also present accurate representations
of the intersection curves and boundary of the resulting solids. The resulting boundaries
are used for interactive display and walkthrough applications. The system has been used
to convert parts of a submarine storage and handling system model represented as more
than 2, 000 CSG trees. The B-rep consists of more than 30, 000 trimmed spline surfaces
and is displayed at interactive rates on the Pixel-Planes 5 graphics system.

Keywords
surface intersection, NURBS, boundary representation, robustness, trimming curves, solid
modeling

M. J. Pratt et al. (eds.), Product Modeling for Computer Integrated Design and Manufacture
© IFIP International Federation for Information Processing 1997

348 Part Seven Modeling Techniques and Algorithms

1 INTRODUCTION

Rational spline surfaces are routinely used to represent solids in engineering design. In
addition, solid models composed of polyhedra, spheres, cones, tori, prisms, solids of rev­
olution etc. are widely used in CAD /CAM, virtual reality, engineering simulation and
animation [Hof89]. All these solids can also be easily represented in terms of rational
spline surfaces. These solids and their Boolean combinations, i.e. union, intersection and
difference, are used to generate large-scale models like those of airplanes, ships, automo­
biles, submarines etc. These models are typically represented as thousands of CSG trees
with up to a hundred Boolean operations on primitives corresponding to surfaces of high
parametric degree. Many of the current solid modelers do not compute analytic and accu­
rate B-rep for these models and represent them as millions of polygons. Current graphics
systems are not able to render such complex polygonal models at interactive frame rates.
Thus there is a wide body of application that benefits from accurate CSG display based
on a spline visualizer.

Main Contribution: We present algorithms and systems to display CSG and spline
models at interactive frame rates. The main components of the system are:

e Boundary Computation: Computation of accurate B-reps from the CSG models and
their representation in terms of trimmed spline models.

• Trimming Curves Representation: An accurate and efficient representation of the high
degree trimming curves.

e Display System: Fast and accurate rendering of models composed of trimmed spline
surfaces. Immersive design and design validation are the target applications of our
system.

1.1 Prior Work

There is a great deal of work in the modeling and rendering literature related to model
conversion, displaying large data sets and multiresolution modeling. We categorize it into:
CSG to B-rep Conversion: There is considerable literature on computing B-reps from
CSG solids defined using polyhedral primitives, as surveyed in [Hof89, RR92]. A number of
techniques to improve the robustness of such systems have been proposed as well [Seg90].
However, no such robust algorithms and systems are known for solid models composed of
curved or spline primitives [Hof89, RR92]. The main problem lies in accurate, robust and
efficient computation of the intersection of spline surfaces. Surface intersection is an ac­
tive area of research and some of the recent papers have proposed algorithms to compute
all components and piecewise linear or spline approximations to the intersection curves
based on tracing methods [SN91, Hoh91, Hof89, KM94]. However, these representations
are either inaccurate or inconsistent for Boolean operations on complex models. There­
fore, some of the current solid modelers use polyhedral approximations of these primitives
and compute the B-reps of the resulting solids in terms of polygons. This method can
potentially lead to data proliferation and inaccurate representations.

Rendering Spline Surfaces: Many algorithms are known in the literature for tessellat­
ing spline surfaces and rendering the resulting polygons [AES91, RHD89, LC93, KML95,
BR94]. In particular, Rockwood et. a!. [RHD89] presented the first real time algorithm

Representation of CSG models with NURBS primitives 349

for rendering trimmed surfaces. Given a NURBS model, Rockwood et. a!. decompose it
into a series of trimmed Bezier surfaces, split the trimmed surfaces into patches bounded
by monotonic curve segments and triangulate the resulting patches. However, it is not
fast enough for complex models and its implementation as part of SGI's GL library can
render surfaces composed of at most a few hundred trimmed Bezier surfaces at interactive
rates on an SGI Onyx [KML95].

1.2 Overview

Given a CSG model, our solid modeler represents each primitive as a collection of Bezier
surfaces, performs accurate Boolean operations and represents the B-rep as a collection of
trimmed Bezier surfaces. It represents the trimming curves as piecewise algebraic space
curves along with bounding volumes. It makes use of algorithms for surface intersection,
polygon triangulation, domain partitioning and ray-shooting to compute the B-reps. Given
a collection of trimmed Bezier surfaces, our display system tessellates them into triangles
and renders them on the graphics pipeline.

The ability to compute varying resolutions of the B-reps and accurate representations
in terms of trimmed curves a.nd surfaces is fundamental to the performance of the overall
system. As compared to earlier systems for rendering such models, it has the following
advantages:

e Accuracy: A high degree of accuracy of the curves is essential for accurate boundary
computation as well as meaningful visualization and design validation. Our B-reps
for CSG models are more accurate than those generated by modelers using polygonal
representation for the curved primitives and the final solids. Besides rendering, it is
also useful for other applications like collision detection.

• Rendering: Our algorithms based on visibility culling and dynamic tessellation gen­
erate fewer polygons for the spline models. Furthermore, we can easily generate on-line
any level-of-detail with correct topology using incremental computations. This is in
contrast with the difficulty of computing multiresolution models for large polygonal
datasets of arbitrary topology with visible artifacts introduced due to few and discrete
levels of detail. Our method results in better images and faster display.

The rest of the paper is organized in the following manner. Section 2 presents the
notation used in the rest of the paper and the multiresolution representation for the trim­
ming curves. Section 3 desnibes tnodel generation, representation and the underlying
algorithms. We present the display system in Section 4 and discuss the overall implemen­
tation and performance on parts of the submarine storage and handling system model in
Section 5.

350 Part Seven Modeling Techniques and Algorithms

2 MODEL REPRESENTATION

We use bold face letters to represent vector quantities and surfaces. Lower case letters
art' used for representing points and curves in a plane and upper case letters for points,
curves and surfaces in R 3 . A tensor product Bezier surface F(s, i) is represented as:

m n

F(s, l) = L 'L:V;1 B?'(s)Bj'(t)
i::::::O j=:=O

where V;,; = (w;1 ~·;1 , w;.iYin Wij:;;,;, W;j) are the control points of the patch in homogeneous

coordinates and Bin(s) = (7) si(l- s)m-i is the Bernstein polynomial [Far93]. The

domain of the surface is defined on the unit square 0 S:: s, t S:: 1 in the (s, t) plane. Trimmed
surfaces are defined on a subset of [s, t] E [0, 1] x [0, 1] domain using trimming curves,
t 1 , 12 , ... , ip· The trimming curves are represented as piecewise linear curves, Bezier curves
or piecewise algebraic space curves. Each trimming curve trims out the part of the surface
that lies on its right .. It does not allow self intersecting trimming curves. The region of
the surface that is not trimmed out is also referred to as the trimmed region.

2.1 Representation of Solids

Each solidS compsists of planar faces and trimmed Bezier surfaces. The data structure for
the solid includes the number of surfaces, representation of each surface and an adjacency
graph f(S) representing the connectivity between all the surfaces (Fig. 2). Each planar
face is defined as an anti-clockwise ordering of the vertices and for each Bezier surface
F(s, t), the cross-product Fs x F 1 points to the outer normal. As a result, we can perform
local in/out tests at any point on the boundary of the solid.

Each vertex v; in the adjacency graph corresponds to a surface F; of the solid. Two
vertices Vj and vk are connected by an edge, iff the two surfaces Fj and Fk share a common
boundary. The common boundary may be along the edges of a planar face or a boundary
curve or trimming curve for a Bezier surface.

2.2 Representation of Trimming Curves

The intersection curves of two surfaces correspond to the vector equation F(s, t)
G(u, v). This results in the following three scalar equations:

FJ(s, t, u, v) = X(s, t)W(u, v)- X(u, v)W(s, t) 0

F2 (s, t, u, v) = Y(s, t)W(u, v)- Y(u, v)W(s, t)

F3 (s, t, u, v) = Z(s, t)W(u, v)- Z(u, v)W(s, t)
0

0,

(1)

where the domain of the variables is restricted to 0 S:: s, t, u, v :::; l. We use a recently de­
veloped algorithm for computing the intersection of rational pa.rametric surfaces [KM94J.
In this algorithm, we maintain an accurate analytic representation of the intersection
curve in the domain of the two surfaces. This can be used to obtain accurate trimming
curves during the CSG operation. The algorithm computes a start point on each com­
ponent of the intersection curve (including loops) and decomposes the domain such that

Representation of CSG models with NURBS primitives 351

t ,

Patch 1 F(s,t)

\ - s
Patch 1

v,

~
_ u

Patch 2

Figure 1 Intersection of two surfaces

each resulting region contains at most one component of the intersection curve. Along
with the analytic representation, the algorithm also computes a series of points on each
component. In order to guarantee a. fairly close approximation to the actual intersection
curve, a densely tessellated piecewise linear curve needs to be generated using a small step­
size. However, the problems of generating such densely tessellated curves for the purposes
of rendering are twofold. Firstly, the number of triangles generated for a trimmed patch
by our rendering algorithm is bounded below by the number of points on the trimmed
curve. A densely tessellated trimmed curve produces an over-tessellated patch. Secondly,
it causes data proliferation, which limits the size of the models that can be handled by
the modeling and rendering system.

Replacing the piecewise linear trimmed curves by parametric curves is an obvious so­
lution. It is a well known that the intersection curve between two rational paramet­
ric surfaces generally cannot have a.n exact representation in rational parametric form.
Therefore, we can only hope to approximate the intersection curve within a tolerance
value. The intersection algorithm generates points in the domain of the two surfaces (as
a (u,v,s,t) tuple such that F(s,t) = G(u,v)). Given this set of points, let the para­
metric approximation to the intersection curve be denoted by (u(a), v(a) , s(a) , t(a)).
However, the mapping functions that take the respective curves from domain to R 3 are
different, and hence these curves might not match well in 3-spa.ce. This shows up as
cracks during the visualization process, and is an undesirable artifact. This problem can
be prevented as follows. Instead of parameterizing just the (u, v, s, t) tuple, we generate
a 7-tuple (u,v,s , t ,:t,y,z) by mapping one pair of domain values to R 3 using the appro­
priate patch functions. The parameterization of these points in R 7 results in functions
(u(a),v(a),s(a) , t(a),x(a) , y(a),z(a)). During the display process, the new functions
are used to map points from domain to R3 thereby resulting in a consistent boundary
between adjacent trimmed patches in the model.

Parameterization of the curve: Given a piecewise linear curve in R 7 , our task is to
fit a curve of degree n (n is chosen depending on the number of points on the curve and
the degree of the two patches intersecting) which lies within a tolerance {to the piecewise
linear curve. The main requirements of the curve fitting algorithm are to preserve the
topology and not proliferate the number of piecewise curve segments.

352 Part Seven Modeling Techniques and Algorithms

The first step in the algorithm is to subdivide the curve into monotonic (in all dimen­
sions) non-intersecting segments. This provides a strategy to preserve the topology of the
curve. Further, using monotonic segments to do curve fitting usually gives much better
results in terms of deviation from the original curve. The basic idea of fitting a curve of
degree n is to choose (n + 1) equally spaced points from the given sequence and interpo­
late the curve through them. The surface intersection algorithm generates roughly equally
spaced points on the intersection curve. Therefore, we are justified in assigning equally
spaced parameter values (steps of~) to the chosen points. We use the Bezier-Bernstein ba­
sis for our parametric curve. We shall describe the method for one of the dimensions (say

(n) . . u). Let the curve be: u(a) = I:i~o i Ui(1- a)n-'a'. (n + 1) equations are obtained

by substituting appropriate parameter values at each of the chosen points. This results
in a linear system with (n + 1) unknowns Ui 's (i = 0, 1, ... , n). Solving the linear system
gives the control points for the parametric curve. The functions for the other variables
are obtained similarly. The maximum distance between any point on the piecewise linear
curve and the parametric curve is determined by solving a system of non-linear equations
using a reduction to the eigenvalue problem [Man93]. This estimates the error between
the two curves. If the error is not within the tolerance limit t, the original piecewise linear
curve is divided into two halves and the whole process is repeated again.

3 MODEL GENERATION

In this section, we describe the solid modeling system used for computing B-reps from CSG
trees. Free-form surfaces have been used previously in modeling systems. The primitives
may correspond to polyhedra or solids whose boundaries can be represented in terms of
rational spline surfaces.

Our algorithms and systems for boundary evaluation make the following set of assump­
tions:

e All primitives are regulm·ized solids [Hof89] and all Boolean operations result in regu­
larized solids. That is, the closure of the interior of the solid corresponds to the original
model.

• The intersection between all pairs of overlapping surfaces is well-conditioned and there
are no degeneracies.

The system does not explicitly check whether these assumptions are satisfied. In some
cases, it can detect these cases while running the algorithm.

The algorithm for B-rep computation performs a depth first traversal of the CSG tree
and computes the B-rep of solids at each intermediate node of the tree. The algorithm
for Boolean operation between a pair of solids involves trimmed surface intersection, ray­
shooting, adjacency graph computation and surface normal orientation of the resulting
solid. In this section we give a brief overview of the algorithm.

Representation of CSG models with NURBS primitives 353

1b 1a hole·

4&-

•• Solid A intersection curves Solid B

(a) I (b)

y
(c)

I
(d)

I
Blue edge

(e) (f) (g)

Figure 2 Adjacency Graph Computation for a Difference Operation

3.1 Surface Intersection

A basic operation in the computation of B-reps from a CSG model is the intersection of
two surfaces. Given two Bezier surfaces, F(s, t) = (X(s, t), Y(s, t), Z(s, t), W(s, t)) and
G(u,v) = (X(u,v),Y(u,v),Z(u,v),W(tt,v)), represented in homogeneous coordinates,
the intersection curve is defined as the set of common points in R 3 . However, the degree
of the intersection curve can be as high as 4m2n 2 for two m x n tensor-product surfaces
and the curve cannot be exactly represented as a Bezier curve (for most cases) [Hof89J.
Typical values of m and n are two or three and can be as high as ten or fifteen in practice.
In addition, the intersection curve may consist of multiple components, closed loops,
singularities etc., which add to its geometric complexity. A number of algorithms based
on subdivision, lattice evaluation and marching [SN91, Hoh91, Hof89, KM94] are known.
These algorithms compute piecewise linear or spline approximations of the intersection
curve. However, when it comes to computing the B-reps of CSG models defined using a
series of Boolean operations, these representations may not guarantee robustness, accuracy
or consistent representation.

3.2 Intersection between Trimmed Surfaces

Given two solids, S1 and S2 , with m and n surfaces, respectively, the algorithm for Boolean
operations initially computes the intersection curve between their boundaries. This in­
cludes computation of intersection between all possible overlapping surfaces. In the worst
case, all the mn pairs can intersect, but that is uncommon. To speed up the computation,
the algorithm first checks bounding volumes and convex hulls for intersection. It encloses
each surface by an axis-aligned bounding box, projects the bounding box along the X, Y
and Z axes, sorts the resulting intervals and computes the overlapping bounding boxes.

354 Part Seven

c · 1

t .

Modeling Techniques and Algorithms

. s
Figure 3 Partitioning the domain based on intersection

Each Bezier surface is contained in the convex hull of its control points [Far93]. For each
pair of overlapping bounding boxes , the algorithm checks whether the convex hulls of
their control points intersect. This is reduced to a linear programming problem in three
dimensions and solved using Seidel's incremental linear time algorithm [Sei90] .

Let F(s, t) be a trimmed surface and its trimmed subset in the domain 0 :S s, t :S 1
be bounded by curve segments t1, t2, . . . , lk . To compute its intersection with another
trimmed or non-trimmed surface G(u, v), it initially treats each parameterization as a non­
trimmed surface and computes all the components of the intersection curves in the domain
0 :S s , t , u , v :S 1 [KM94] . Let these components be denoted by c1 , c2 , . .. , Cp, as shown in
Fig. 3. Let the corresponding components in the domain of G(u, v) be c 1 , c 2 , ••• , c P. Given
these components, it computes a partition of the domain of F(8, t) using the following
algorithm:

1. Compute a dense linear approximation for each algebraic space curve and a polygonal
approximation (P) of the domain of F(s, t). Let Q be the corresponding polygonal
approximation of the domain of G(u,v). Compute a triangulation of the domain (we
use Seidel's triangulation algorithm [Sei91]).

2. Using a. dense linear approximation of c; and c;, compute their maximal subsets that
lie within P and Q. Approximations to the intersection points (with either P or Q) are
computed between the resulting line segments. Fig. 3 shows this process on the domain
of F(s, t) .

3. Each point of intersection is used as a starting guess for the accurate intersection
between the algebraic representation of the trimming curves. The actual intersection
is represented as a solution of six algebraic equations in six unknowns and computed
using Newton's method . The accurate solution is used to split the intersection curve
and the trimming curves.

The new trimming curves arising from intersection with various surfaces are merged to­
gether and eventually the domain of intersecting surfaces is partitioned into two or more
regions. The boundaries of each component are composed of portions of I; 's and c; 's.

Representation of CSG models with NURBS primitives 355

3.3 Computation of the New Solid

The location of a point with respect to a solid (in/out) is a fundamental operation in
the computation of the new solid. Given a point P, we shoot a ray from the point in
any direction and compute all its intersections with the boundaries of the solid. If the
number of intersections is odd, the point is inside the solid, otherwise it is outside. The
intersection of rays with trimmed Bezier surfaces is computed using eigenvalue methods
[KM94]. Checking whether the resulting point lies inside the trimmed domain is based on
planar triangulation [Sei91].

The intersection curves between the boundaries of the two solids partition the surfaces
into multiple regions. These regions have the property that all points in their interior are
either inside or outside the other solid. Further, it is easy to show that two adjacent regions,
separated by the intersection curve, cannot both lie inside or outside. Depending on the
Boolean operation (union, intersection or difference), the regions composing the B-rep of
the solid are chosen. In practice, doing a. containment classification test (inside/outside
test) for each region of S1 and S2 is expensive. The number of surfaces and regions tends
to grow rapidly with each Boolean operation. To speed up the process we make use
of adjacency graphs of the two solids, f(St) and f(S 2). The partitioning of surfaces into
multiple regions induced by the intersection curves changes the structure of the adjacency
graphs. For example, in Fig. 2(e) the vertex 1 corresponding to a surface in solid S 1 is
split into regions corresponding to l a and lb. New adjacencies are introduced between
the vertices due to intersection curves. We refer to the new edges as red edges and the
original set of edges a.s blue edges. All the red edges in Fig. 2(e) and 2(f) are shown using
dashed lines. After computing the new vertices and edges, the algorithm computes all
connected components of the graph considering only the blue edges. For example, the
subgraph consisting of vertices 7a,8a, 9a, lOa, 11 represents one connected component in
Fig. 2(f). Each connected component of one solid lies completely inside or outside the other
solid. We perform ray shooting tests on one of these components. Based on the result,
we propagate it to the rest of the graph such that no two adjacent components have the
same result. The adjacency graph of the solid resulting from the difference operation is
shown in Fig. 2(g) . The new edges between these solids correspond to pairs of intersecting
surfaces between sl and s2 (e.g. lb and 7b) .

'"

Figure 4 Application of the Algorithm and System to Different Solids

356 Part Seven Modeling Techniques and Algorithms

4 DISPLAY SYSTEM

In this section, we briefly describe the display algorithm [KM95] used for trimmed Bezier
surfaces. This algorithm tessellates the surfaces into triangles and renders these triangles
using the standard graphics system. This algorithm relies on the dual trim curve rep­
resentation to avoid cracks in the image between adjacent surfaces along the common
boundaries and intersections curves. The system makes use of algorithms for back-patch
culling [KML95] (an extension of back-face culling for polygons to Bezier patches), bounds
for sampling the surface [KML9.5] and coherence between successive frames for Bezier sur­
faces.

In brief, the rendering algorithm for trimmed patches is as follows:

1. Create rectangular cells from the uniform tessellation of the surface based on TOL for
the surface, where TO L is the user specified tolerance in the screen space.

2. For each trimming curve:

(a) Compute the required tessellation for the space curve: n1(TOL).
(b) Tessellate the domain curve into n1(TOL) straight line segments.
(c) March along the piecewise linear curve segments marking all the domain cells it

crosses. Since the trimming curves are tessellated into piecewise linear segments,
there is no need to calculate the exact intersections of the high degree algebraic
curves with the cell boundaries. We only need to do the following:

1. Identify the cells whose bounding edges are intersected by the curve segments.
u. For each bounding edge of the rectangular cell, maintain the order in which the

segments cross that cell.
111. If the trimming curve is contained in a cell, it intersects no cell edges. Mark such

cells also.

3. Triangulate each unmarked cell that lies in the trimmed region of the surface by adding
a diagonal.

4. The marked cells form a staircase like polygonal chain*. the trimming curve forms
another polygonal chain offset from the staircase. Partition this region across cell edges.

5. What results is a set of planar straight line graphs (PSLGs). Triangulate each PSLG.
(We use Siedel's algorithm [Sei91].)
To prevent cracks in the display, no additional points on the curve are introduced in
the region partitioning step or the triangulation step.

6. Evaluate the uniformly sampled points on the surface. Evaluate the n1(TO L) uniformly
sampled points on the space curve. These are the vertices of the final triangles.

5 IMPLEMENTATION AND PERFORMANCE

The algorithms presented above have been implemented and applied to a number of solids
comprising the model of a submarine storage and handling system, made available to us by

*This chain can be degenerate, e.g. it is null if a trimming curve is contained in a cell.

Representation of CSG models with NURBS primitives 357

Number of Number of CSG Running Number of patches
Model primitives operations time(in min.) (in B-Rep)

Fig. 4(a) 2:3 20 2.6 1:37

Fig. 4(b) 6 5 0.8 89

Fig. 4(c) 6 5 0.7 116

Fig. 4(d) 28 27 3.4 169

Fig. 4(e) 11 10 1.1 69

Fig. 4(f) 22 21 :3.1 146

Table 1 Performance of the Solid Modeling System

Electric Boat, a division of General Dynamics. The model consists of about 2,000 solids.
Many of the primitives are composed of polyhedra and conicoids like spheres, cylinders.
Additional primitives include prisms and surfaces of revolution of degrees six and more.
A few of the primitives are composed of Bezier surfaces of degree as high as twelve. Most
of the CSG trees have heights ranging between six and twelve and some of them are as
high as 30. The B-reps of many of the solids consist of more than 40- 45 trimmed Bezier
surfaces and some of them have up to 148 surfaces.

5.1 Model Generation

The running time of the system varies on different solids. In particular, it depends
on the number of Boolean operations, number of intersecting pairs of surfaces and the
number of connected components generated. In most cases, it spends about half the time
in computing intersections between pairs of surfaces and the other half in ray-shooting
and computing the components of new solids. Its performance on a small subset of solids
from the model has been highlighted in Table 1. The solids are shown in Fig. 4.

A major problem in the application of our system to different models is numerical
accuracy of computations and its impact on the robustness of the entire system. The
problem of building robust solid modeling systems based on floating-point computation
is fairly open and no good solutions are known [Hof89]. In our case, the algorithm uses
t-tolerances at different parts of the overall algorithm. Depending on the values of the
tolerances, the robustness of the algorithm can vary considerably.

As an input, the user specifies a set of four tolerance values and they are used as part
of the surface intersection algorithm, for ray-shooting, merging intersection curves and
detecting planar overlaps. The surface intersection algorithm normalizes the input surface
parameterizations and ensures that the output of the intersection algorithm has certain
digits of accuracy. The intersection algorithm is based on iterative numerical algorithms
and we set the termination criterion accordingly. Similar criteria are used in computing
the intersection of trimming curves represented as piecewise algebraic curves. At the end
of every CSG operation, the system makes sure that the topology of the resulting solid is
consistent (i.e., the solid boundary partitions R 3 into two or more regions).

358 Part Seven Modeling Techniques and Algorithms

5.2 Display

The display system has been implemented on an SGI Onyx and Pixel-Planes 5 graphics
system. On Pixel-planes 5 it uses multiple graphics processors (GP's) for visibility com­
putations, evaluating Bezier functions and triangulating polygons. The trimmed Bezier
surfaces are evenly distributed over different GP's and the system associates each surface
with the parent solid for visibility computations. Each GP has about 2.5M egabytes of
memory for storing the surface representations and caching the triangle vertices and their
normals. The system uses a dynamic memory allocation scheme for caching triangles.

The rendering algorithm produces topologically correct triangulations. As we zoom
in or out on a model, it produces varying levels of detail incrementally and no visual
m·tifacts appear. The trimming algorithm also works for trimming curves represented as
piecewise linear or spline curves. Compared to Rockwood et al.'s algorithm [RHD89J, our
trimming algorithm is faster by a factor of seven or eight on models consisting of about
200 surfaces on an SGI Onyx. It also produces fewer triangles. We used SGI's GL library
implementation based on the [RHD89] algorithm for comparison.

We evaluated the performance of our system on parts of a submarine storage and
handling system. The model was designed using Catia CAD system. This version of Catia
does not support Boolean operations on curved geometries t and, therefore generates a
dense polygonal B-rep for each model. Pixel-Planes 5 graphics system can barely render
3-10 frames per second on the polygonal representation on a combination of these models
(389, 721 polygons). Furthermore, the image quality is poor when we zoom onto a part of a
model. On the other hand our display system can render the multiresolution representation
(20, 928 trimmed Bezier surfaces) at 12- 25 frames a second at good resolutions.

6 ACKNOWLEDGEMENTS

We are grateful to Fred Brooks, Anselmo Lastra and members of UNC Walkthrough
group for productive discussions. The CSG model of the submarine storage and handling
system was provided to us by Greg Angelini, Jim Boudreaux and Ken Fast at Electric
Boat; thanks goes to them. This research is supported in part by Alfred P. Sloan Foun­
dation Fellowship, ARO Contract P-34982-MA, NSF Grant CCR-9319957, NSF Grant
CCR-9625217, ONR Contract N00014-94-1-0738, ARPA Contract DABT63-93-C-0048
and NSF/ ARPA Center for Computer Graphics and Scientific Visualization

REFERENCES

[AES91] S.S. Abi-Ezzi and L.A. Shirman. Tessellation of curved surfaces under highly
varying transformations. P1'0ceedings of Eu1'0graphics'91, pages 385-97, 1991.

[BR94J C.L. Bajaj and A. Royappa. Triangulation and display of rational parametric
surfaces. In Proceedings of Visualization'94, pages 69-76, IEEE Computer Society, Los
Alamitos, CA, 1994.

tThe latest version of Catia does support curved geometries.

Representation of CSG models with NURBS primitives 359

[Coh83] E. Cohen. Some mathematical tools for a modeler's workbench. IEEE Computer
Graphics and Applications, 3(7):63-66, 1983.

[Far93] G. Farin. Cu1·ves and S1t1jaces for Compute1· Aided Geomel7·ic Design: A Practical
Guide. Academic Press Inc., 1993.

[Hof89] C.M. Hoffmann. Geometric and Solid Modeling. Morgan Kaufmann, San Mateo,
California, 1989.

[Hoh91] M.E. Hohmeyer. A surface intersection algorithm based on loop detection. In­
ternational Joumal of Computational Geometry and Applications, 1(4):473-490, 1991.
Special issue on Solid Modeling.

[KM94] S. Krishnan and D. Manocha. An efficient surface intersection algorithm based
on the lower dimensional formulation. Technical Report TR94-062, Department of
Computer Science, University of North Carolina, 1994.

[KM95] S. Kumar and D. Manocha. Efficient rendering of trimmed NURBS surfaces.
Compute1·-Aided Design, pages 509-.521, 1995.

[KML95] S. Kumar, D. Manocha, and A. Lastra. Interactive display of large scale NURBS
models. In Proc. of ACM Intemctive 3D Graphics Conference, pages 51-58, 1995.

[KNM95] S. Krishnan, A. Narkhede, and D. Manocha. Boole: A system to compute boolean
combinations of sculptured solids. Technical Report TR95-008, Department of Com­
puter Science, University of North Carolina, 1995.

[LC93] W.L. Luken and Fuhua Cheng. Rendering trimmed NURB surfaces. Computer
science research report 18669(81711), IBM Research Division, 1993.

[Man93] D. Manocha. Solving polynomial systems for curve, surface and solid modeling.
In ACM/SIGGRAPH Symposium on Solid Modeling, pages 169-178, 1993.

[RHD89] A. Rockwood, I\. Heaton, and T. Davis. Real-time rendering of trimmed surfaces.
In Proceedings of ACM Siggmph, pages 107-17, 1989.

[RR92] A.A.G. Requicha and J.R. Rossignac. Solid modeling and beyond. IEEE Compute1·
Gmphics and Applications, pages 31-44, September 1992.

[Seg90] M. Segal. Using tolerances to guarantee valid polyhedra.! modeling results. In
P1·oceedings of ACM Siggraph, pages 105-114, 1990.

[Sei90] R. Seidel. Linear programming and convex hulls made easy. In Proc. 6th Ann.
ACM Conf. on Computational Geometry, pages 211-215, Berkeley, California, 1990.

[Sei91] R. Seidel. A simple and fast randomized algorithm for computing trapezoidal
decompositions and for triangulating polygons. Computational Geometry Theory €3
Applications, 1(1):51-64, 1991.

[SN91] T.W. Seclerberg and T. Nishita. Geometric hermite approximation of surface patch
intersection curves. Computer Aided Geometric Design, 8:97-114, 1991.

[Til83] W. Tiller. Rational B-splines for curve and surface representation. IEEE Computer
Gmphics and Applications, 3(6):61-69, 1983.

