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Abstract 
Every mechanical part is fabricated with variations in its size and shape, and the allowable range of the 
variation is specified by the tolerance in the design stage. Geometric tolerances specify the size of each 
shape entity itself or its relative position and orientation with respect to datums while considering their 
order of precedence. It would be desirable if the assemblability of parts could be verified in the computer 
when the tolerances on the parts are stored together with the geometric model of the parts of an assembly 
and their assembled state. Therefore, a new method is proposed to represent geometric tolerances and 
to determine the assemblability. This method determines the assemblability by subdividing the range of 
relative motion between parts until there exists the subdivided region that does not cause the interference. 
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1 INTRODUCTION 

In most engineering designs, the final goal is a composition of parts, formed into an assembly. The simplest 
method to represent the assembly is to specify relative position such as the location and orientation of each 
component together with its nominal shape. The relative position can be represented by homogeneous 
transformation matrix of the coordinate frame attached to each part. In real practice, however, the shape 
error always accompanies each part because of the inaccuracies of the manufacturing processes and the 
range of the permissible variation from the nominal geometry is specified by the tolerances. Thus it 
is necessary to store the tolerances as well to represent a part and an assembly of parts. Therefore, a 
mathematical representation of the tolerances and a method to add this information to the nominal 
B-Rep is proposed in this paper. 

Geometric tolerances constrain the size of each shape entity itself or its relative position and orientation 
with respect to other shape entities, called datums. Since the range of shape variation can be represented 
by the variation of the coordinate system attached to the shape, the transformation matrix of the co­
ordinate system would mathematically express the range of shape variation if the interval numbers are 
inserted for the elements of the transformation matrix. For the shape entity specified by the geometric 
tolerance with reference to datums, its range of variation can be also derived by concatenating the trans­
formation matrices composed of interval numbers. The components of the transformation matrices in the 
concatenation depend upon the order of precedence of datums. Thus storing the tolerance information 
would be equivalent to storing the transformation matrix for the associated shape entities. 

Once the tolerance information is provided with an assembly model, the assemblability of the parts 
in the assembly can be verified. In fact, it would be desirable if the assemblability of parts could be 
verified in the computer when the geometric tolerances on the parts are stored together with the nominal 
geometric model of the parts and their assembled state. If so, tolerances can be assigned systematically 
in the design stage while considering the assemblability in advance. This would enable the design for 
assembly by allowing assemblability verification between toleranced parts in the design stage. This would 
be one example of the concurrent engineering activities. 

To realize the concepts described above, we propose a new method to determine the assemblability 
when the tolerance information and the nominal geometric model of the components of an assembly are 
given. This method determines the assemblability by subdividing the ranges of relative position between 
parts until there exists the subdivided regions which do not cause interference. The continuity of the 
assembling path and assemblability can be inferred by analyzing these regions. These regions enclose the 
trajectory followed by the part during assembly. Thus separate regions imply the discontinuous trajectory 
and thus impossible assembling trajectory. The allowable range of relative motion is derived by assuming 
that the nominal parts are in an assembled state and the tolerance are small enough compared to the size 
of the parts. This method can be applied to simultaneous assemblability checking among several parts, 
which may be the toleranced parts, the actual part with shape error caused by manufacturing process, 
or the nominal parts. 

2 RELATED WORK 

Requicha [Req83] introduced a new theory for geometric tolerances based on offsetting the boundary of a 
nominal solid model. Such offsets are termed tolerance zones, and they are used to constrain the allowable 
variations in size, form, orientation and position. 
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In vectorial tolerancing [Wir91], deviations between the nominal part and the actual part are repre­
sented by using vectors characterizing their relative orientation and location. 

Etesami [Ete88] modeled the tolerance using a very similar approach to that of Requicha and he called 
his offset feature the boundary solid. 

Turner[Tur93] developed a mathematical theory of tol,rances in which tolerance specifications are inter­
preted as constraints that define a feasible region of model variations in a Cartesian space. Since the model 
variations may be caused by applying variations to the boundary of the part, the location, orientation 
and form of the boundary represents the model variations and they are constrained by tolerances. 

Regarding the assemblabilty verification, the following publications can be found. First, data struc­
ture to represent an assembly was proposed [LG85]. This data structure assumes two mating conditions 
between parts; against condition between two nominal planar features and fits condition between two 
nominal cylindrical features. The positioning problem of nominal parts assembled with these mating con­
ditions has been also studied [LA85]. This work has been extended to other mating conditions between 
features other than planar and cylindrical faces [RL87JIKL89]. 

Based on the theory of geometric tolerance proposed by Requicha [Req83], Fleming proposed the 
framework to represent the relative position of parts in an assembly by a network of tolerance zones and 
datums for the analysis of toleranced parts and their assemblies [Fle87]. 

Srinivasan and Jayaraman derived the algebraic conditions about several assembly problems based 
on VBR( virtual boundary requirement ) [SJ89] [JS89]. They have been able to show that functional 
requirements in mechanical design can be stated in terms of VBR. 

Turner treated a positioning problem of assembled parts as a constrained optimization problem [Tur90]. 
Noninterference constraints are initially generated based on vertex-face contacts. Inui and Kimura solved 
the positioning problem of non nominal parts in an assembly using simultaneous positioning [IK91]. 

3 TOLERANCE REPRESENTATION 

3.1 Interval Arithmetic 

Interval arithmetic is a relatively new branch of applied mathematics. A general treatment of the interval 
arithmetic can be found[Moo66] [Moo79]. The theory on interval numbers is introduced because the math­
ematical representation of the tolerance in this work is based on the transformation matrix composed of 
interval numbers. 

An interval is a set of real numbers defined as 

[a, b] = {xI a<::: x <::: b} 

The numbers a and b are called the bounds of the interval; a is called the lower bound and b is called the 
upper bound. Of course, a should be smaller than or equal to b. The real number c is considered to be 
an interval c = [c, c]. 

The interval arithmetic operators are defined as 

[a, b] o [c, d] = {x o y I x E [a, b] andy E [c, d]} 
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where o represents addition, subtraction, multiplication or division such as o E { +, -, x, /}. Using the 
end points of the two intervals, the equation above can be rewritten as follows 

[a,b] + [c,d] =[a+ c,b+ d] 
[a,b]- [c,d] =[a- d,b- c] 
[a,b] x [c,d] = [min(ac,ad,bc,bd),max(ac,ad,bc,bd)] 
[a, b] /[c, d] = [min(afc, a/d, b/c, b/d), max(a/c, afd, b/c, b/d)] 

where 0 ¢c [c, d] is required in the division relation. 

3.2 Differential Matrix 

An homogeneous transformation matrix is used to represent the spatial relationships between geometric 
elements, nominal or toleranced. Its column vectors represent the axis directions of a coordinate frame 
transformed from the reference coordinate frame and the transformed location of the frame origin. Any co­
ordinate frame is free to move kinematically with degrees of freedom and can be positioned or constrained 
exactly relative to another frame by a transformation matrix. 

If a new transformation matrix (I+ .:l) is applied on a coordinate frame defined by the transformation 
matrix (T), then the new transformed coordinate frame would be represented by T(I + .:l) = T + T.:l 
[Pau81]. Here, the new transformation matrix gives the small variation to a shape element specified by 
applying translation and rotation in a very small amount, respectively. Therefore, a two dimensional 
differential matrix ( .:l) can be defined as 

Ll(dx,dy,6) = Q(dx,dy)R(6)- I 

where I is identity transformation matrix, Q is a translation matrix, R is a rotation matrix, dx, dy are 
components to constrain the degree of freedom for X, Y translation respectively and 6 is for rotation. On 
the assumption that a variation is small enough, the trigonometric functions can be linearized as follows 

limsin6 = 6, limcos6 = 1 
J~o o~o 

Substituting these relations into the equation above, the differential matrix ( .:l) can be derived as 

[ 
0 -6 dx ] 

Ll(dx,dy,6) = 6 0 dy 
0 0 0 

Figure 1 shows the relation of differential matrices between coordinate frames. In Figure 1 (a), A and 
B frames are located at the ends of a concave polygon respectively. When A frame is moving with a 
differential matrix (.:lA), B frame is also moving because A and B frames are attached on the same part. 
The new transformation matrix of frame B becomes TB + T8 A.:l8 and A,:lB is the matrix propagated to 
frame B by LlA applied to frame A. This relation can be rewritten by tracing the lower path in the graph 
of Figure 1 (b) as below 
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Since TB = TAATB, the relation TBAflB 

matrix AflB can be derived as 
TAflAATB is derived. From this equation, the differential 

AflB 'fiJ1TAflAATB 
8 TAflAATB 

••• 

·o··· -l . . .,, 
••• 

Figure 1 Propagation of a differential ma­
trix : (a) shows the propagation of the effect of 
a differential matrix and (b) shows the graph 
interrelating the transformation matrices and 
the differential matrices shown in (a). 

3.3 Tolerance Propagation 

L!,__ SIC<IflltUf Dllillm 

Tolerl..,ci Zone 

Figure 2 Construction of a datum reference 
frame : This figure shows fitting the datum 
reference frame in 2 dimension according to 
their order of precedence. 

The relationship of the measuring planes to the datum planes is illustrated in Figure 2. Figure 2 shows 
how to fit datum reference frame for a 2 dimensional example. In thls case, the primary datum is fitted 
to the actual feature, then the secondary datum is fitted next according to the order of precedence of 
datums. This means that the primary datum constrains degrees of freedom, translation along Y direction 
and rotation, and the secondary datum does the remainder of degrees of freedom, translation along X 
direction. If the secondary datum was fitted earlier than the primary datum, then the secondary datum 
would constrain translation along X axis and rotation, and the primary datum would do only translation 
along Y axis. This contradicts the order of precedence. Therefore, in case that the primary datum and 
the secondary datum can constrain the same degree of freedom, the primary datum should constrain this 
degree of freedom. 

These influences can be explained by the propagation of differential matrices to specify the degrees of 
freedom of the datums as follows 
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where t. is differential matrix, subscript R indicates datum reference frame and superscript A, B indicate 
primary, secondary datum planes respectively according to the order of precedence. 

The rule of the previous illustration can be explained as follows 

In the case that two or more datums can control the same degree of freedom, this degree is 
constrained by the datum which have the highest order of precedence among them. 

4 ASSEMBLABILITY 

Figure 3 Example of assembly : This figure 
shows an assembly container with the mating 
conditions, against for planes and fits for cylin­
ders. 

Figure 4 Assemblability checking : When 
the parts of an assembly have variations, 
assemblability is classified into three cases: 
(a) assemblable, (b) discontinuous assembling 
path, and (c) no final assembling position. 

Let us see Figures 3 and 4 to explain how the assemblability is verified in this work. Figure 3 shows 
an assembly of nominal parts, container composed of lid, cup and bolt. Figure 4 shows the assembly of 
variational parts which have some variations due to shape errors or tolerances. Our assemblability analysis 
starts from the initial region shown in the left-hand side of Figure 4. The origin of the coordinate frame 
attached to the bolt is expected to move within this region. Since this initial region is arbitrary provided 
by the user, it includes the portions causing collision of the bolt with other parts in the assembly. If 
these portions causing the collision are removed somehow and the resulting region is obtained in a form 
of 'T' as in Figure 4 (a), the state can be said to be assemblable. If the resulting region is separated as 
in Figure 4(b), it implies that the assembly path of the bolt is not continuous and the bolt cannot be 
proceeded to its final assembled state. In Figure 4 (c), the resulting region does not include the origin of 
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the coordinate frame of the bolt at its final assembled state and it can be concluded that the bolt collides 
with other parts at the assembled state. Therefore, the assemblability can be verified by analyzing these 
regions derived from the initial region by eliminating regions causing interference. 

4.1 Contact State 

As explained earlier, the assemblability verification in this work resort to the identification of the position 
of parts causing interference. Thus we need to determine whether a part at a given position interferes 
other parts or not. We call this the contact state of the part. 

Figure 5 The definition of contact states : where Free denotes no contact point, Unknoum denotes a 
contact within the allowable ranges of variations, Interference denotes a interference between the minimum 
regions of mate features. 

To define contact states, two dimensional variational polygons are illustrated in Figure 5. The gray 
region is the allowable range of variation within which the boundary of a polygon can move. The circle 
at the upper left corner can move freely without causing interference with the concave polygon and 
thus this state is defined as Free. However, the rectangle has an interference with the concave polygon 
even when it has the minimum boundary. Therefore, this state is defined as Interference. On the other 
hand, the triangle has no interference region with the concave polygon at its minimum boundary but has 
interference at its maximum boundary. If these polygons move within the given variations, the contact 
state can be either Free or Interference. Let us define this as Unknoum. 

4.2 Minimum Distance 

A variational component may contact with the mating part in an assembly. A contact state, where and 
how many contacts happen, can be decided by the minimum distance between the two variational parts. 
The distance is defined as positive when its direction is in the outer normal of parts . Since each variational 
part has the maximum and the minimum boundary, the distance between the parts has the minimum and 
the maximum, and can be represented by an interval number, i.e. [dista; , distb;]. The minimum distance 
between the parts is also derived to be an interval number as below. 

[mindista, mindistb] = [min(dista;), min(distb;)J, i = 1, 2, ... n 
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where [dista;, distb;] is i-th interval of distance of interest, n is the number of the critical distances between 
two parts, mindista is lower bound of minimum distance and mindistb is upper bound. 

If the minimum distance is positive, i.e. its lower bound is also positive, the two parts have no interfer­
ence region (it means Free state) and the parts are as far apart as this minimum distance at least. If the 
minimum distance is negative, i.e. its upper bound is also negative, the component have some interference 
regions (it means Interference state). If the range of the minimum distance includes the zero, the contacts 
state is Unknown. 

4.3 Interval Analysis 

An interval analysis gets the solutions by subdividing intervals through the following three steps. These 
steps are explained with a two dimensional example in which the assemblability of a peg and a hole is 
verified based on the contact state. As shown in Figure 6, the goal of the interval analysis is to get the 
circular allowable region in which the peg can move without interfering the hole. 

Figure 6 An example for interval analysis : 
This figure shows the process to find the region 
resulting in no interference between the peg 
and the hole. The bottom figure is the detailed 
picture of the center position of the peg. 

~rtt 

Figure 7 The subdivision process of interval 
analysis : The position of a peg is subdivided 
as quad trees as shown in Figure 6 because the 
initial region has two variables along X and Y 
axis. 

First Step. Initialize The initial region decides the limit region within which the solutions exist 
because the final solutions will be the subset of this initial region. Thus the initial regions should be set 
such that it includes the critical positions of the part of interest. The critical positions are typically the 
part's initial position and the final assembled position. 

The largest rectangular region denoted by a in Figure 6 is an initial region specified by the designer. 
Region a can b e represented by a transformation matrix having two variables (dx = [- 2, 2], dy = [- 2, 2]) 
which represent the t ranslations along X and Y axis. Region a is subdivided into four regions such as b, c, 
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d and e by subdividing each of the two variables into two respectively. Region d is again subdivided into 
J, g, hand i, and regions c and e are also subdivided into four respectively. It means that initial region 
with two variables is subdivided into quadtree, three variables into octree, m variables into 2m tree and 
so on. 

Second Step. Subdivide Recursively Figure 8 shows the recursive algorithm to explain the interval 
analysis and Figure 7 shows how the boundary of the peg varies for each subdivided region for the example 
in Figure 6. 

analysis(region) 
1: if( Free ) add region to solution 
2: else if( Interference ) discard region 
3: else if( Small ) add region to 

intermediate solution 
4: else if( Unknown ) { 
5: subdivide region into subregion_i 
6: analysis( subregion_i ), i:1,2 ... n 
7: } 

Figure 8 The recursive algorithm of interval analysis for assemblability checking. 

The first line of the algorithm in Figure 8 explains how to treat Free region. For example, regions g, h 
and i in Figure 6 belong to this category because the peg centered within these regions can move without 
interfering the hole boundary. Therefore, the set of these regions is the allowable range of peg locations 
and thus composes the solution we are looking for. 

The second line explains that Interference region is not subdivided any more because its subdivided 
regions will also belong to Interference category. As shown in Figure 7, region b is classified as Interference 
category. 

The third line describes a terminal condition of the algorithm. If the width of region is small enough, 
this region is not subdivided any more. Therefore, this region is classified as intermediate solution because 
its contact state is not classified as either Free or Interference. Actually, this means Unknown. In the ideal 
case of treating nominal parts only, the intermediate solutions will not exist if the subdivision process 
continues to infinitely small regions. However, with the variation such as tolerance zone, these Unknown 
regions will always exist. 

The fourth line classifies the region as Unknown if it is not classified as anyone of the above. Regions c, 
d, e and f of Figure 7 belong to this category. After subdividing Unknown region (the fifth line), repeat 
the processes explained above (the sixth line) until the terminal condition is satisfied. 

4.4 Assembly of Several Parts 

The relative position between two parts can be constrained by the region which have six variables corre­
sponding to six degrees of freedom. One region of six variables is subdivided into 26 regions through the 
subdivision process where the region of each variable is subdivided into two regions. 

The assembly of several parts can be represented by their relative positions with reference to one fixed 
part. For n parts, n- 1 relative positions should be specified and each relative position has six variables. 
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So, n -1 regions with 6 x (n -1) variables are subdivided into (26)n-l regions. It means that computation 
time to progress subdivision increases exponentially in proportion to the number of parts. It is hope that 
this problem will be solved as the performance of computer improves. 

5 CONCLUSIONS 

The proposed tolerancing method using the differential matrix, simply called differential tolemncing, is 
compatible with the current international standard. The effect caused by the variations of the datum 
can also be handled by summing the differential matrices while considering datum's order of precedence. 
Differential tolerancing can be applied to the problems such as three dimensional tolerance analysis by 
using the interval numbers for the elements of a differential matrix. It is also possible to do statistical 
tolerance analysis by introducing a statistical method to interval arithmetic. 

Using the mathematical representation of the tolerance, a method is presented for verifying the as­
semblability between toleranced parts by deriving the allowable ranges of relative motion. The allowable 
range of relative motion is derived by assuming that the nominal parts are in an assembled state and the 
tolerance are small enough compared to the size of the parts. The continuity of the assembling path and 
assemblability can be inferred by analyzing these ranges. This method can be applied to simultaneous 
assemblability checking among several parts, they may be the toleranced parts, the actual part with shape 
error caused by manufacturing process, or the nominal parts. If the assemblability of the parts can be 
verified in the design stage, the designer will be able to design the parts of an assembly considering their 
assemblability in advance. 

The following problems are left for further study. First, our method verifies the assemblability between 
two parts to be assembled by a 'clearance fit'. This implies that the parts are identified to be not 
assemblable even when they are originally designed to be assembled by a 'press fit'. This may be solved 
by allowing the negative minimum distance. Second, the computation time in this method increases 
exponentially as the number of parts and the maximum depth of subdivision increase. To overcome this 
problem, the current algorithm needs to be improved for efficiency. Finally, the equation to represent 
geometric tolerances was derived by linearizing the rotational terms assuming manufacturing variations 
of parts are small enough compared to the nominal geometry. For a big variation such as an infinite 
translation or a 360 degree rotation, the complete transformation matrix should be used instead of the 
differential matrix. To eliminate the assumption of a small variation, the equation should be derived in a 
more complex way and the algorithm may require more information. 
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