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Abstract 
This paper intends to study the characteristics of VBR MPEG sources and performs 
models for their traffic behaviour. Our analysis focuses on long-time MPEG video 
films, approximately 27 min. Known probability density functions (pdf) are presented 
which fit well with real the pdf of I, P, B and Group of pictures (GOP) frames. In order 
to approximate the traffic behaviour, we study the autocovariance fuctions of the 
previous frames and we propose two different models so as to achieve the necessary 
fit. The first model is based on GOP frame layer which is able to approximate the cell 
probability loss at utilisation about 0.7-0.85 but it slightly overestimates the frame loss 
probability. The other model correlates the error of I, P and B AR models without 
spoiling the i.i.d. (independent identical distributed) property. Our results show that the 
latter model approximates well the cell as well as the frame loss probabilities. 

INTRODUCTION 

Digital video, such as video telephone, video teleconference and switched TV as well 
as the forthcoming Video on Demand, is expected to become a major traffic 
component on integrated services digital networks. Since all the above applications 
impose very large bandwidth requirements, several coding algorithms have been 
proposed in order to perform efficient and effective video compression without losing 
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the quality. Thus the required bandwidth to transmit coded digital video is reduced. 
One of the fore~ost coding techniques is MPEG-1 (Moving Picture Expert Group I) 
which has been standardised in 1992 and now appeares in real applications. It was 
developed basically for storage of compressed video, but because of its flexibility it 
can be used for many other applications, varying from multimedia workstations to high 
definition television (HDTV). 
Two main different modes are used for encoding any video source, namely Constant 
Bit Rate (CBR) and Variable Bit Rate (VBR). In a CBR scheme the video quality 
cannot be maintained constant for all scenes, since a resolution-reduction mechanism 
during high video activity is activated to achieve the required constant bit rate. 
However the users of video applications desire invariable quality regardless the 
complexity of scenes. Therefore they prefer a VBR scheme, which maintains video 
quality almost constant (varying the output bit rate), to a CBR one. Since in this 
scheme the output bit rate changes from extremely low values up to peak values, which 
can be many times greater than the average, it is very wasteful to choose the allocated 
bandwidth of the network equal to peak bit rate. To avoid the waste, we are compelled 
to place a buffer between the video source and the network to convert the variable bit 
rate to an almost constant one (mainly to smooth out peaks). 
Statistical analysis and performance models of different kinds of video traffic are 
essential for proper network design. These models can be used to estimate the network 
resources i.e. buffer at a determined cell loss probability or bandwidth allocation. Since 
a significant fraction of video traffic is anticipated to be generated by MPEG sources, it 
is quite important to propose models that approach its statistical characteristics and 
describe the behaviour of buffer size in network multiplexing points. 
Several VBR video models have been reported in bibliography. Two markovian 
chains, one in discrete time and one in continuous were studied in (Maglaris, 1988) for 
sources without sudden rate jumps due to error recovery procedure (scenes change and 
camera zooming). In (Sen, 1989) it is suggested a multilayer markovian chain to 
approximate the variations within a single scene more precisely than the previous 
model. A gamma distribution is considered accurate for a VBR teleconference video 
sequence (three people talking with no scenes changes and cuts) and a multirate 
markovian chain is reported in (Heyman, 1992). A new model which is called scenic is 
performed by Frater and Arnold in (Frater, 1994). An autoregressive moving average 
(ARMA) was proposed to characterise the VBR-coded data with more general scene 
content and correlation structure (Grunenfelder, 1991). However it seems that an 
autoregressh:e model is more convenient than an ARMA one. Three different methods 
such as the stationary interval (SI), asymptotic (ASM) and hybrid queuing network 
analysis were used to approximate the average queue size of VBR sources (Nasser, 
1994). 
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Although many statistical models have been performed for VBR video traffic 
(Maglaris, 1988, Nasser, 1994), very little work has been done to characterise MPEG-1 
video sources. As we describe below (section The MPEG encoder), any MPEG 
sequence consists of a set of three types of frames I (Intraframe), P (Predictive), B 
(Interpolative) which have different statistical properties. Since the MPEG encoder 
repeats these frames periodically, it follows that traditional stochastic models cannot 
identify the data of these sources. Another difficult problem is the fact that there is 
relation among the I, P, B frames due to the algorithm of MPEG encoder. This 
dependence means that a high size of one of these frames is usually followed by high 
sizes of the other two. 
In this paper we survey the statistical properties of some long MPEG coding sequence 
(40 000 frames or about 27 min film). We use these characteristics to find models 
which describes accurately the MPEG sources and predicts the cell loss probability 
under certain buffer utilisation. Our sequences have been recorded using video films 
and consequently high video activity, scenes changes and camera zooming have been 
encountered. In the next section a description of MPEG algorithm and some statistical 
properties are presented. Then, we study the histograms of I, B, P and GOP (Group Of 
Picture) frames and their autocovariance functions respectively as well as the total 
sequence (IPB). Finally, we propose two models for approximating the probabilities 
loss. One at GOP layer and another at frame layer. Finally the last section concludes 
this paper. 

MPEG ALGORITHM AND CHARACTERISTICS. 

The MPEG encoder 

Since an uncompressed digital video stream needs hundreds of Mbits/sec to be 
transmitted, video compression has been studied a lot and several coding algorithms 
have been proposed to reduce the required bandwidth. For instance, ITU adopted 
H.261 (Liou, 1991) for video telephone and video teleconference. Another attempt 
resulted in standardisation of MPEG-I algorithm for storage of moving pictures. 
However, due to the flexibility of its algorithm, it can be used for various applications 
such as in multimedia workstations, video communication and so on. 
The MPEG coding algorithm uses three different types of frames; Intraframe (I), 
Predictive (P) and Interpolative (B) frames. Initially, an I frame contains a two­
dimensional 8x8 discrete cosine transform (DCT) of the original image. Secondly the 
coefficients of DCT are fed to a quantizer and a 8x8 matrix obtains the quantization 
step size for of each DCT coefficient. Some psycho physics experiments have defined 
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the values of this matrix. (ISOIIEC, 1994) Low frequency DCT coefficients are 
quantized with more accuracy (small step size) than the high frequency ones. As a 
result a significant number of quantized coefficients will have zero value. Then the 
algorithm codes this block (8x8) of coefficients using run length and modified 
Huffman coding. The MPEG standard has defined the most frequent combinations of 
zero run lengths that follow a non-zero coefficient value. If a specific combination 
does not exist in the MPEG standard the coding uses a fixed word following by the 
length of zero and the non-zero value of DCT coefficient (ISOIIEC, 1994 ). 
In P frames, macroblocks are coded with or without motion estimation. The algorithm 
searches a square area around each macroblock of the previous I or P frame in order to 
find a motion vector that minimises the absolute difference between the current 
macroblock and the chosen one in the previous frame. If the absolute difference is less 
than a threshold, the motion vector is coded and transmitted. Then a DCT transform is 
applied to the prediction error of each macroblock. The coefficients of transformation 
are quantizied with constant step size instead of intraframe coding. The quantizied 
coefficients are coded as in intraframe mode. If the absolute difference is greater than 
the above threshold, the motion estimation cannot be used and the coding of the 
current macroblock is the same as the intraframe. B frames coding is similar to the 
procedure that have been previously described for (Pones). The only difference is that 
the motion vector can be estimated with respect to the previous I, P frames, or the 
following I, P frames or an interpolation between them. 
Since the MPEG coding algorithm has a fixed quantizer matrix for each mode (1, P, B), 
it can scale the quantization level using a parameter q. When MPEG video tries to 
maintain the output rate constant (CBR mode), it is necessary to vary the q parameter 
dynamically, therefore the quality of coded moving pictures. If q remains constant, the 
quality does not change but the output rate becomes to depend on the video activity 
(Pancha, 1994 ). 

Number ofFnmcs 

Figure 1 : Frame and GOP size of an MPEG video sequence. 
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In a MPEG coding there is a constant number N of frames where I, P and B are 
repeated periodically. The most typical cyclic frame pattern is: 

IBBPBBPBBPBBI 
The pattern period consists of 1 I, 3 P and 8 B frames. We call the mean value of this 
cyclic frame pattern Group of Picture (GOP) in the rest of this paper. That means that 
the GOP value represents the average size of I, P and B frames within one pattern. 
Figure 1 illustrates the first 500 frames' size of an MPEG video sequence where N=12. 
The solid line presents the GOP size. It is evident that the GOP size follows the video 
activity, meaning that in case of a lot of motion within a scene the GOP size is high 
and vice versa. 

Terminator Jurassic Park Asterix 

Max/Min ( 1- P- B) 4.8-61.4-162.4 6.8-61.2-78.9 9.4-82.6-288.8 

Max/min (GOP) 16.4 12.6 34.9 

Mean(I)/Mean(Total) 3.4 4.2 3.1 

Table 1 : Some characteristics of MPEG video data 

MPEG Characteristics 

In Intraframe mode, the size of I frames, has greater value than the size of of P and B 
frames due to the lack of motion estimation. However, the volume of P and in 
particular of B frames is not always very small. As we have stated above, it is possible 
for the coding of P and B frames not to use the motion compensation for all 
macroblocks. This occurs when the prediction error is greater than a defined threshold. 
Therefore it is anticipated that a high activity causes great sizes of P and B frames. 
Table 1 shows some characteristics of MPEG video sequences using PAL system (25 
frames per second). The table gives these characteristic for these movies (Terminator, 
Jurassic Park, Asterix), that will be used as throughout this work. We survey 40 000 
frames (approximately 27 min) to achieve accurate statistical characteristics. 
We observe that the fluctuation of B and P frames is much greater than the of I B 
frames have the highest ratio of maximum to minimum frame size. Another important 
characteristic is the ratio Mean(I)/Mean(total) because it affects the aggregate traffic 
behaviour. Since I frames have a mean value three or four times greater than the 
average total frames' size (including I, P, B) it is very difficult to achieve, without 
multiplexing gain, low loss probabilities with small buffer size and for utilisation close 
to 0.75 or above. Although the small size of P and B frames, it seems that they play a 
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major role to loss probabilities due to their large fluctuation (see section Traffic 
bahaviour). Therefore it is not correct to ignore them so as to study the traffic 
characteristics of MPEG video. 
Moreover, due to the motion estimation there is a significant correlation between the I, 
P and B frames (Heyman, 1994). Let B, (i=1 to 8) and P, (i=1 to 3) be the i'h B and P 
frame respectively in a cyclic frame pattern. According to the MPEG algorithm, B1 and 
B2 can have very different values only if a video scene change occurs between them. In 
additional, P1 is related to I frame and P2 to P1 and so on. The same relation has been 
noticed among B1 and P1• B2 and P1 or B1, B2 and I frames. These relations are 
consequence of the motion compensation that the MPEG algorithm 

Bl B2 Bl PI Bll P2PJ Pll 

Correlation Coefficient 0.83 0.71 0.25 0.61 0.28 

Termin11tnr 
Correlation Coefficient 0.93 0.83 0.32 0.78 0.34 

Jura.c;sic Park 
Correlation Coefficient 0.86 0.82 0.59 0.78 0.59 

Asterix 

Table 2: The correlation coefficients of some B,, P, I frames 

performs. In particular it is observed that the strongest dependence is between B frames 
while the most weak between P, I and B, I ones. It is therefore difficult to find 
appropriate models that can fit accurately with a real video MPEG source. Table 2 
shows the correlation coefficients of the previous films. 

THE DISTRIBUTION OF AN MPEG SOURCE. 

Modelling of an MPEG sequence is a very useful work for designing a 
telecommunication network especially due to the great evolution of multimedia 
services along with the advances in VLSI technology that made possible the realisation 
of real time MPEG systems. It can be used to determine the loss probabilities or the 
required network resources (bandwidth, buffers) without having to witness the real 
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video data. We examine statistical models which characterise the properties of an 
MPEG video. Our analysis is based on a long real video sequence (approximately 27 
min) with scene changes and camera zooming that are considered as the most difficult 
sequences for the MPEG to handle. 
As we mentioned above, any MPEG video sequence consists of three types of frames; 
lntraframe ( I }, Predictive ( P ) and Interpolative ( B ). The size histograms of these 
frames are shown in Figure 2 (a)-(e) respectively as well as the size of GOP. Since 
these histograms and in particular the ones of P and B frames have a long right tail, it 
seems that the lognormal and the gamma distributions fit well with the experimental 
data. 
Gamma distribution 
The probability density function for gamma distribution is given by 

p 
f (x) = _a __ x(p-l)e-x. 

g r(p) 

~ 

where r(p) is the known gamma function defined as r(p) = J x<P-ne-xdx. 
() 

(1) 

It can be easily proved (Papoulis, 1984) that the mean and the variance of gamma 
distribution are related to the parameters a, p as following 

p p 
Eg(x)=- and V&(x)=-2 • (2) 

a a 

In order to estimate the unknown parameters of gamma pdf which fit well with the 
real data we use the method of moments. If MEAN and V AR are the mean and the 
variance of an MPEG video sequence then the estimated parameters are calculated as 

A MEAN A MEAN 2 

a= and p = (3) 
VAR VAR 

Lognormal distribution 
The pdf function of log normal distribution is 

I _ I 
fL(x)= ~x 1exp{--2 (ln(x)-,u)2 }. 

21ro· 2 2a 

where its mean and variance are given 
2 2 

V LN (x) = e211+a (ea -1) .The estimated parameters which 

method of moments are given by the following formulas 

(4) 

a2 
Jl+-

byELN(x)=e 2 and 

are calculated by the 
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<1 2 =In{ VAR +I} and P, = ln(MEAN)- C12
2 

• (5) 
exp(21n(MEAN)) 

Based on the equations (3) and (5) we can find the appropriate estimated parameters of 
gamma and lognormal pdfs which fit well with the real video data. Table 3 presents the 
estimated parameters for the three different films we use. 

Terminator Jurassic Park Asterix 

Lognormal pdf 

I Frame P-=4.56 <1 2 =0.048 p =4.95 D-2 =0.043 P-=5.19 <1 2 =0.070 
PFrame p = 3.51 D-2 =0.23 p =3.46 D-2 =0.36 P,=4.11 D-2 =0.304 
B Frame P=2.7o <12 =0.29 p =2.82 D-2 =0.31 p = 3.46 D- 2 =0.37 

Gamma pdf 

I frame a=0.21 p=20.30 a=0.16 p=22.54 a =0.074 /J =13.82 

Pframe a=0.11 /J=3.94 a=o.o6 p=2.30 a=0.04 p=2.82 

B Frame a=O.t7 /J=2.97 a=O.t45 p=2.83 a=0.06 p=2.25 

Table 3 : The estimated parameters of gamma and lognormal pdf 

Fractile diagram ( Q-Q plot). 
An alternative way for illustrating the fit of a histogram with the previous pdfs is the 

fractile diagrams method. This method plots the quantiles of the data versus the 
quantiles of the fitted known distributions (Quantile-Quantile plot). We describe 
briefly the method but more details can be found in (Kobayashi, 1981). Let f(x) be a 
known distribution function. Then it can be easily be found (i.e. using an arithmetic 
method) the quantile x0 which corresponds to a specific probability density J:1 = f (x0 ) 

that is x0 = /-1(x0 ) • This quantile is illustrated versus the quantile y0 of the real data 

with the same probability P.1 • Thus the absolute fit is on a line with 450 slope. The 

advantage of this method is that it shows all the differences with the same accuracy 
regardless of the value of probability density. For instance it is quite .difficult for 
someone to determine the accuracy of the fit at very large frame size due to the small 
value of the probability density. Nevertheless, when using Q-Q plots we are able to 
comprehend the behaviour of fit of any known distribution with our experimental data. 
As a result we can easily find the most appropriate pdf. 
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Figure 2 (t)-(j) show the fractile diagram (Q-Q plot) for I, P, B, GOP as well as the 
total video data for a long MPEG sequence (Terminator film). Similar results have 
been found for other long MPEG sequences. It seems that the aggregate sequence 
follows neither gamma nor lognormal distribution function. This occurs because it 
merges I, P, and B frames which characterise by different statistical properties each. As 
a consequence, the pdf declines very slowly at large frame size because of I frames 
which usually consist of a large number of cells and increases rapidly at small frame 
due to the large number of P and B frames. 
Both of lognormal and gamma distributions fit well with I frames but we can conclude 
that gamma is slightly better than lognormal at large frames. P frames seem to follow 
gamma pdf but lognormal is also quiet good (see Figure 2(a), 2(g)). However 
lognormal distribution gives a better approximation to B and GOP frames than gamma 
does without excluding the latter of course. In conclusion, lognormal and gamma pdfs 
fit well with the separated I, P, B and GOP frames but P follows better gamma pdf, B 
and GOP lognormal one and I frames both of them with gamma slightly better. If a 
model (e.g. DAR (Jacobs, 1983)) needs a discrete time probability density function it 
can be used the negative bipolar instead of gamma. 
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Figure 2: Histograms and Q-Q plots diagrams for Terminator sequence. (a)-( e) 

Histograms ofl, P, B, GOP and IPB (Total) sequence respectively (f)-(j) Q-Q plots for 
I, P, B, GOP, IPB Frames. 
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AR MODELLING OF MPEG 

The models that we have described in the previous section cannot approximate the 
traffic behaviour of a VBR MPEG video source. This occurs because each sample that 
is generated according to the probability density functions is independent on the others 
therefore no correlation among them exists. However, they are used for some other 
models (see DAR models (Jacobs, 1983)) which require to know the pdf of the source. 
In this section we describe linear models based on the correlation function (or 
autocovariance) of an MPEG sequence. 
Analysis. 
Let x(n) be a stochastic process, with n=O,l, ... ,N. A k-order autoregressive model for 
x(n) is defined as 

K 

x(n) =-I,a,x(n- i)+b·e(n). (6) 
r=l 

where e(n) is an Independent and Identically Distributed (i.i.d.) variable with mean 
m,, variance 1, and a,, b constants. In order to minimise the square value of error, 

that is the min{E(e(n) 2 )} we conclude to the Yale -Walker equations (Papoulis, 1984) 

R ·a= -rk. (7) 

where R is a toeplitz matrix with elements the autocovariance values of x(n) which is 
denoted as r(j) = E{ (x(n)- m,)(x(n- j)- mx)} where a the vector of the unknown 

parameters a, and rk =[r(l),r(2), ... ,r(k)]T. 

The mean value of error me and the unknown parameter b are given by 
k 

mx+ I,aimx 
m. = _ ___.,~-I.___ 

b 
b2 = r(o)+a ·rk. 

and 

The autocovariance function of an AR model for l>k is 
r(l) =-I,a,r(i). 

In case of k=1 it can be shown that (Papoulis, 1984) 

(8) 

(9) 

r(n) = b 2 a~ meaning that autocovariance function has exponential behaviour. If 
(1- a1 ) 

k> 1 we can find that the autocovariance consists of the sum of exponential functions. 
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Let H(z) be the transfer function of an AR model. Then in order to generate the error 
e(n) from x(n) we have to pass x(n) from a system with transfer function 1/H(Z). The 
histogram of this error indicates its probability density function. 
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Figure 3: Autocovariance of IPB (total) MPEG sequence (Terminator). 
Results 
Figure 3 shows the autocovariance function of the Terminator film MPEG-1 sequence. 

The large positive peaks stem from the I frames, the negative ones form the B frames 
and the others from P. Since the MPEG algorithm repeats the cyclic pattern frame 
periodically, there is no linear model, e.g. AR, which can fit to the autocovariance 
function of any MPEG video sequence. Another significant result is that the pattern 
between two peaks are repeated with very slow decaying amplitude. 
On the contrary, it seems that the autocovariance function of I, P, B and GOP frames 
follows an exponential behaviour with a long-range dependence. This means that they 
can be characterised by an AR model but its order should be high. As we can notice 
from Figures (4,5) the autocovariance function of I and GOP frames have a similar 
behaviour. B and P frames appear to have longer-range dependence than I and GOP 
frames (Figures 4,5). This is logical since in the typical pattern frame 
(IBBPBBPBBPBB) there are eight B and only three and one P and I frames 
respectively. Therefore it is expected the order of B-frame AR model to be eight times 
higher than the order of I frame model and P-frame AR model three times greater. 
However it seems that the orders of P and B frames are smaller than the expected ones. 
In next Figures the autocovariance functions of I, P, B and GOP frames with AR 
models are illustrated. The error e(n) of the equation 3 is calculated as follows. Firstly 
we find the error e(n) by using the filter 1/H(Z) and estimate its histogram. Then we 
generate a random white noise which has the particular pdf based on a method which 
is describe in (Kobayashi, 1981). We can notice that high order AR models are 
required to fit well the real autocovariance function. Models of low order do not decay 
very slowly, thus cannot approximate the long rage dependence. 
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Figure 4: Autocovariance function of (a) I and (b) P frames (Term. Seq.). 

We have observed that error pdf is not gaussian but has a bell shape. This is not very 
significant for providing a good fit for the autocovariance function but plays a major 
role in the study of traffic behaviour as we present it in the next section. Therefore the 
choice of the appropriate error distribution appears to be important. 

TRAFFIC BEHAVIOUR 

In this section we study the traffic behaviour of MPEG video sources. Our attention 
concentrates on two different layers; GOP layer and frame layer. In GOP layer, we 
examine a high order AR model and we conclude that this model is able to 
approximate cell loss probability but gives an over estimate of frame loss probability. 
In frame layer, high order AR models of I, P, and B, lead to severe under estimates 
both of cell and frame loss since there is a significant cross-correlation among I, P and 
B frames (see section MEPG characteristics). To solve this problem we introduce a 
modulated AR model which correlates I, P and B frames and we find that this model is 
a very good approximate for of both cell and frame loss probabilities. 
To evaluate our models we fed a buffer with MPEG video data and simulated its traffic 
behaviour. Since we use PAL system the interframe period is 40ms (that is 25 frames 
per second). Each frame is converted into an equivalent integer number of A TM cells 
(each cell consists· of 48 bytes plus 5 bytes for the header) and the generated cells are 
transmitted instantaneously to the buffer. If the number of new cells plus the number of 
cells in the buffer are greater than the defined buffer size, the incoming cells will be 
lost. We also consider that a frame can enter the buffer only if all the cells of this frame 
can go into the buffer, otherwise all the cells of this frame will be rejected, thus 
preserving the buffer and the network from useless and corrupted traffic. The output 
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link of the buffer transmits the cells with constant bit rate (smoothing peaks) despite 
the variable input rate. 
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Figure 5: Autocovariance function of (a) Band (b) GOP frames (Term. Seq.). 
GOP layer 

100 

At GOP layer, our attempt is to find a good fit for cell as well as frame loss probability 
based on the behaviour of GOP. The number of cells in each GOP frame is computed 
using high order AR and pdf models and transmitted to the buffer. We additionally 
assume that in a cyclic frame pattern all frames have the same size which is equal to 
the GOP size. Figures 6, 7 show the MPEG stream cell and frame loss probability 
respectively at different utilisation for the Terminator film. In these Figures we have 
not illustrated the pdf models because they lead to extreme under estimates of the loss 
probabilities due to the independence of each generated GOP frame. Therefore the pdf 
models are not convenient to approach the traffic behaviour ofMPEG-1. 
Although we used 25th order AR models in Figures 4 and 5 it is possible to reduce this 
order without significant effect in the loss probabilities. However, if the order of AR is 
very low (for example 1 or 2), the model will not approximate the loss probabilities 
especially for the very low ones. The choice of 25th order is a consequence of the good 
fit of autocovariance function as we have stated in the previous section. In Figures 6, 7 
we also present the loss probabilities of the Real GOP (that is the GOP frames produced 
by the real video data) so as to show that a high order AR model of GOP can approach 
the RealGOP. 
We can conclude that an AR model for GOP frames is a convenient way to estimate 
the cell loss probability of an MPEG video data stream. However, ·this model 
overestimates the frame loss. This occurs because the GOP size has neither the large 
values of I frames nor the small values of P and B. Since it presents the same video 
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activity as the real sequence (Figure I). it can' approximate the cell loss probability but 
not the number of the lost frames. 
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Figure 6: Comparison of cell loss (a) and frame loss probability (b)- AR(I) and 
AR(25) of GOP (U=0.75) . 
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Figure 7 : Comparison of cell loss (a) and frame loss probability (b) - AR(I) and 
AR(25) of GOP (U=0.8). 

Frame layer 

In frame layer, AR and pdf models cannot give a good estimate of loss probabilities. 
As we have mentioned before there is a cross-correlation among I. P. and B frames 
due to the MPEG algorithm. This means that a scene change or a camera zooming 
causes large volumes for I. P ad B frames and overflows the buffer, since a large I 
frame is usually followed by large values of P and B frames. If we produce models for 
I. P. and B frames (i.e. AR) and then merge them together, it is difficult for the total 
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sequence to approach the traffic behaviour. Since AR can estimate well I, P and B 
separately we are compelled to find a mechanism to achieve the required cross­
correlation among I, P, and B frames. 
The MPEG video sequences which we examine presents instant peaks in the bit rate 
(scene changes or camera zooming). In MPEG each scene is expected to differ from 
the previous or the following in its properties. Although the parameters of AR model 
have been found by the whole sequence (of I, P or B respectively), this model can 
estimate the different characteristics of each scene because of the error e(n). When e(n) 
takes values around the average the scene does not change. Otherwise, when e(n) takes 
the remote values from the average, a scene change has been occurred. Since we have 
produced e(n) according to the real pdf and not based on Gauss distribution the 
probability of scene changes is almost identical to the real sequence. 

I frame 

e(n) «-~ARPI PF~e 
,t'/ 

Figure 8 : The block diagram of the modulated AR. 

To correlate I, P, and B frames together we propose a parallel mechanism of e(n) 
which is shown in Figure 8. This procedure simply correlates the error of I, P and B 
AR models without changing the parameters ai and b and without spoiling the i.i.d. 

characteristics of the e(n), therefore the properties of AR model. We· have only 
assumed that the distribution functions of I, P, and B frames are identical. The last 
condition appears to be very close to the real measurements experimental. 
In figure 8 we have correlated the I and P,, B2 and P,, B4 and P2, B6 and Pr This has 
relied on the operation of the MPEG algorithm. The input-output relation of a 
decimator is given by (more details can be found in (Vaidyanathan, 1990)). 
yd(n) = x(Mn), where M is a constant integer parameter. This equation states that the 

output at time n is equal to the input at time nM and as a result the size of Yd(n) isM 

times smaller than the input x(n). 
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Figure 9 : Comparison of cell loss and frame loss probability - Modulated AR - AR 
model (U=0.75). 
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Figure 10 : Comparison of cell loss and frame loss probability - Modulated AR - AR 
model (U=0.8). 

The error e(n) that triggers AR I is produced by the error of ARB after the latter is 
delayed and decimated so that I frames correlate to B2 ones. A switch is used to select 
the noise which triggers AR P. Therefore P1 is related to B2, P2 to B4 and finally P3 to 
B6. Since the pdfs of errors of separated frames (I, P, and B) are similar this procedure 
does not spoil the i.i.d. of the noise which is needed to produce the Yale-Walker 
(Papoulis, 1984) equations. We call this model modulated AR in the next and we see 
how it approximates the loss probabilities. 
Figures 9, 10 illustrate the simulation of the buffer results using the previous 
modulated AR model at two different utilisations. In these Figures we also indicate the 
non modulated AR. As it is expected the behaviour of frame and cell loss probabilities 
are similar. This is quiet logical because our model is founded on the frame layer. 
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CONCLUSION 

Development of models for MPEG sequences is an important task since these 
sequences will be an major component ovet B-ISDN. In this paper, we studied both the 
statistical characteristics and the traffic behaviour of VBR MPEG sources. 
Initially, we observed that although B and P frames have small average bit rate, they 
play a significant role to the traffic behaviour. We have also seen that there is a strong 
dependence on I, P and B frames within a cyclic pattern frame that affects the loss 
probabilities. The pdf of I, P, B and GOP seems to follow a Gamma distribution 
function (in discrete time negative bipolar) or a Lognormal one. However Lognormal 
approximates better B and GOP frames while Gamma I, P frames. The total sequence 
cannot be estimated accurately by a known distribution function since it is not fit well 
at the large values of frames. 
Moreover we observed that the autocovariance function of an MPEG video source 
presents periodical peaks with very slow decay. Only I, P, B, and GOP separately can 
be modelled based on linear systems such as AR. It seems that the autocovariance 
functions of all frames have a long range dependence therefore a high order AR is 
required to fit them well. Besides, the histogram of error e(n) is not a gaussian 
distribution and affects strongly the loss probabilities. 
At GOP layer a simple AR model of high order can approximate the cell loss 
probabilities but slightly overestimates the frame loss ones especially when high 
utilisation is used. An AR(l) underestimates the probabilities when buffer size is large 
(low loss probability). At frame layer a modulated AR model is proposed to achieve 
the cross-correlation among I, P and B frames and hence to approach the traffic 
behaviour. This model satisfies well both the cell and frame loss probabilities. 
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