
55 
Delegation Agents: Design and 
Implementation 

Motohiro SUZUKI, Yoshiaki KIRIHA, and Shoichiro NAKAI 

C&C Research Labs., NEG Corp. 

1-1 Miyazaki 4-Chome, Miyamae-ku, Kawasaki, Kanagawa, 216, 

Japan. Tel: +81-44-856-2314. Fax: +81-44-856-2229. 
E-mail: motohiro@nwk. cl. nee. co.jp, kiriha@nwk. cl. nee. co.jp, 
nakai@nwk.cl. nee. co.jp. 

Abstract 
We have developed a management agent that adapts the delegation concept to 
achieve efficient distributed network management. In conventional delegation, a 
network management operator details management operations in an operation­
script that describes management operation flow and provides such network man­
agement functions as event management and path tracing, in the form of function 
objects. The operator sends this script to agents to execute. In our approach, the 
operator sends only a script skeleton describing management operation flow alone; 
function objects are built into the agents themselves. This helps keep manage­
ment traffic low. Each function object contains three operational objects: enhanced, 
primitive, and communication. Each enhanced operational object (EOO) provides 
a script skeleton with a network management function. A primitive operational 
object (POO) provides an EOO with managed object (MO) access functions. A 
communication operational object (COO) provides an EOO with a mechanism for 
accessing the functions of other remote EOOs. This design increases the efficiency 
of the delegation approach as applied to network management systems. We have 
tested our design by applying it to path tracing and found that it works well enough 
to suggest the feasibility of applying it to such other distributed network manage­
ment functions as connection establishment and release, fault isolation, and service 
provisioning. 

Keywords 
distributed network management, delegation agent, scripting language 

1 INTRODUCTION 

With the explosive growth in the size of networks linking small and high-performance 
computers, it has become increasingly difficult for a single centralized manager to 

A. A. Lazar et al. (eds.), Integrated Network Management V
© Springer Science+Business Media Dordrecht 1997



Delegation agents: design and implementation 743 

manage entire networks. In current standardized management protocols, such as 
the common management information protocol (CMIP) and the simple network 
management protocol (SNMP), an operator must manage huge quantities of infor­
mation and must control network elements (NEs) with such primitive functions as 
get, set, create, delete, and action. This results in an excessive processing load and 
extremely high manager-agent communication overheads. This weakness is partic­
ularly pronounced in the execution of network management functions that require 
distributed processing spread over several agents, e.g. the path tracing function pro­
posed by the Network Management Forum (NMF) (NMF, Forum014). The function 
of this path tracing is to search for the termination point managed object (MO) 
instances which make up a specified network connection, and this search will be 
spread over several agents. Consequently, tracing a virtual path (VP) in an ATM 
network, which requires the large frequency of accessing MOs in the individual 
agents, causes very high manager-agent communication overheads. 

manager man agar agant 

operation "a" raqueat 

operation "a" rasponaa ···-·-·-·-·-
operation "b" raquaat acrl {a, b, c) 

operation "b" rasponaa :-;·-·-·-·-·- and raault of script 

operation "c" raqueat 

operation "c" rasponaa ··-·-·-·-·-
I micro-management ualng CMIP I I management by dalaglltlon I 

Figure 1 Micro-management and management by delegation. 

To cope with this problem, one recently reported concept of distributed man­
agement, "management by delegation" (Yechiam, 1991), appears to be especially 
promising. In this concept, functions delegated to agents are specified in an operation­
script that describes a management operation scenario in a system or scripting 
language. As Figure 1 illustrates, this drastically reduces the need for communica­
tion between manager and agent. Additionally, much of the information processing 
traditionally performed by the manager can now be handled by the agent. 

In the global analysis of the concept reported in (Maria-Athina, 1996), delegation 
is categorized into two types: "static" and "dynamic." In static delegation, agent 
functions are predefined and cannot be changed or added to during its running 
time. In DEAL (Simon, 1996), for example, agents simply have the function of 
translating structured query language (SQL) operations into such SNMP operations 



744 Part Six Intelligent Agents 

as get, set and get-next. While static delegation may be suitable for this type of 
task, there are other types for which it is not. In monitoring remote networks, such 
as RMON Mill (RFC1271, 1991), for example, each time a new MO definition 
is added to the environment, the operator must re-program and re-compile the 
application to deal with the new MO definition. That is, since static delegation 
agents cannot dynamically extend their functions, they are unable to cope with 
the new requirements or unexpected situations that may arise during their running 
time. 

Dynamic delegation is much more flexible. With it, an operator can provide 
agents with an operation-script that describes the implementation of any new func­
tions to be added. In this way, the operator can respond to new requirements and 
resolve unexpected situations. In the application monitoring of remote networks 
described above, for example, an operator needs only to send to the agent a new 
operation-script that describes the new functions needed to deal with the new MO 
definition. 

While much discussion has been reported on the concept of applying dynamic 
delegation to network management, however, little actual design and implementa­
tion has been conducted, particularly in comparison to the great amount that has 
been conducted with respect to static delegation. In our study, we have devoted the 
bulk of our e:fforts to these two needed areas: actual design and implementation. 

In Section 2 of this paper, we describe the special requirements of "network 
management by delegation." In Section 3, we propose a new management agent 
architecture for satisfying these requirements. In Section 4, we describe the imple­
mentation of our design, and in Section 5, we summarize the study. 

2 DESIGN REQUIREMENTS 

In this section, we discuss the requirements for applying dynamic delegation to 
network management. 

Format independence: Operation-scripts in conventional delegation agents are 
written in a system language, such as C or C++, and must be at least partially 
written to suit the specific format in which each individual agent is implemented. 
Consequently, in order to use an operation-script that has been written for one 
format in a different format, a network management operator must appropriately 
modify the format-dependent part of it, i.e., that part which depends on the man­
agement application programming interface (API) implemented in the agent, such 
as OSIMIS (George, 1995) and XMP (X/Open). In order to avoid all the problems 
that this creates, operation-scripts should be format independent. 

Agent-agent communication: When a network management function requires 
distributed processing spread over several agents, these agents must be able to com­
municate with one another without adding significantly to the operator's processing 
load or to manager-agent communication overheads. 



Delegation agents: design and implementation 745 

Secure execution: When a single operation-script is sent to a number of dif­
ferent agents, it may happen that operations permissible for one agent are not 
permissible for another, and a control mechanism is needed to prevent agents from 
executing operations that are, for them, illegal. 

Common process sharing: When the same single process is described in a 
number of different operation-scripts that are to be executed simultaneously, a 
considerable amount of waste will be incurred. Furthermore, the operator will have 
had to write the processes in each of those individual scripts. Efficiency requires 
the elimination of this overlap. 

3 DELEGATION AGENT ARCHITECTURE 

In this section, we describe the agent architecture we have developed for use with 
dynamic delegation. In the architecture, we propose a new operation-script format 
and execution mechanism that helps satisfy the requirements described in Section 
2. 

3.1 The script skeleton and function objects 

h 
! 

the part scripting the flow fill, 
of network management 

script skeleton 

\ I 
subroutines or libraries 

toacceaseach 
real raaource 

. ...----,--1--~ 
·-·-t •••• ! 

I function obj~cta I ' . '-·-·-·-·-·---"' 
(a) Operation-script. (b) Script skeleton 

and function ob)acta. 

Figure 2 Operation-script, script skeleton, and function objects. 

We propose here a new operation-script format that is independent of individ­
ual agent implementation formats. The operation-script now sent to an agent con­
tains only a "script skeleton," which describes format-independent operational flow 
alone; function objects, which provide such network management functions as event 
management, path tracing, etc., are built into the agents themselves (Figure 2{b)). 
Additionally, to execute network management functions that require distributed 
processing efficiently, a function object has a mechanism for agent-agent commu-



746 Part Six Intelligent Agents 

nication. In the mechanism, to invoke functions provided by EOOs existing remote 
agents, a function object sends script skeletons to the agents. 

A network management operator needs only to write a single script skeleton to 
be sent to all agents, regardless of their individual implementation formats, which 
helps keep network traffic from the manager to the agents low. 

3.2 Operation-script execution mechanism 

Figure 3 illustrates the operation-script execution mechanism. When the script 
processor receives a script skeleton from a manager, its execution control module 
checks whether all required function objects are allowed to bind with the script 
skeleton. This check is performed on the basis of an access control list contained 
in the delegation information repository (DIR). If all the objects are allowed to 
be bound to the skeleton, the script processor performs the binding, executes the 
skeleton, and sends execution results to the manager. Since the execution control 
mechanism checks the permissibility of any script skeleton, there is no worry of an 
agent's performing illegal operations. 

oparatloi'Hicrlpt 

• :!unction obJect I ~J:acript~Mon 
Figure 3 Operation-script execution mechanism. 

The use of function objects itself helps greatly in sharing common processes. 
That is, sharing function objects among script skeletons reduces a considerable 
amount of waste in executing the skeletons. Moreover, to improve the efficiency of 
the script skeleton execution, the same mechanism contained in function objects 
is shared among the objects. In a typical example of the sharing, function objects 
contain the same mechanism for agent-agent communication. 



Delegation agents: design and implementation 747 

4 IMPLEMENTATION 

In this section, we discuss how the manner in which function objects are imple­
mented helps to apply our architecture to dynamic delegation efficiently. Regarding 
the manner, to achieve concurrent MO access and provision of a simple and pow­
erful API, we employ the concept of component-ware, in which function objects 
consist of three types of operational objects: "enhanced," "primitive," and "com­
munication." 

4.1 Operational objects 

fUnction 

t.:::,~~~vel 

- --------·-~~ 

-··-··-··-
ayatom 

'-nauari•Yel 

{): onhonced operotlonol ob)lct {EOO) 

• : communication operollonol ob]lct {COO) 

acrfpt lwei 

fUnction obJect level 

ogont plolform lwei 

: prtmltlvo operotlonol objoct (POO) 

Figure 4 Function object design. 

Enhanced operational objects (EOOs) contain an API for interfacing with script 
skeletons. Primitive operational objects (POOs) access MOs for EOOs. Commu­
nication operational objects (COOs) provide EOOs with a mechanism to achieve 
agent-agent communication. Figure 4 illustrates the relationships among these ob­
jects. Each function object here is composed of an EOO, a POO, and a COO. The 
script skeleton specifies a function provided by the EOO, and the EOO orders its 
POO to access all relevant MOs. The POO does this and returns their attribute val­
ues to the EOO for processing. The EOO then returns the results of this processing 
to the skeleton. In the following, we discuss individual objects in more detail. 

Enhanced operational objects (EOOs): An EOO is capable of complex 
processing of MO attribute values, and it contains an API for interfacing with the 
script skeleton. To help locate MOs that have been specified in a script skeleton, 



748 Part Six Intelligent Agents 

EOOs contain a function for translating abstract names into the data to which 
they correspond, which ·is written in a scripting language that specifies data types 
(string, integer, etc.), as well as into attribute labels and the distinguished names 
(DNs) of MOs. Abstract names are simple and easily understood by an operator. An 
EOO communicates with EOOs existing in the remote agents to execute network 
management functions that require distributed processing. To communicate with 
remote EOOs, the EOO utilizes a mechanism provided by COOs. 

Primitive operational objects (POOs): POOs access one or more MOs ac­
cording to requirements of EOOs. To facilitate easy handling of MO attributes in 
an EOO, a POO translates a data written in a scripting language into the corre­
sponding data written in a system language, and vice versa. For example, a POO 
translates a character string that represents the DN of an MO instance into the 
ON-structure in C++. POOs utilize a thread mechanism to access multiple MOs 
concurrently in order to achieve real-time processing. 

Communication operational objects (COOs): COOs provide EOOs with a 
mechanism for agent-agent communication. This mechanism is particularly useful 
in implementing network management functions that require distributed processing 
at the agent level. The COO first locates a remote EOO providing a required 
function and then sends a script skeleton invoking the required function to the 
remote EOO for execution. 

"method and argumenta" 
"delegation agent2" 

I j: manager-agent script skeleton I j: agent-agent script skeleton 

Figure 5 Agent-to-agent communication. 

Figure 5 shows this process in which agent-agent communication is achieved via 
COOs between two delegation agents called "delegation agentl" and "delegation 
agent2." An EOO of "delegation agentl" first gives its COO the names of the 
required function and of an agent that contains it (in this case "delegation agent2"), 
as well as the arguments used to invoke the function (Figure 5(1)). This COO sends 
a script skeleton containing these arguments to the COO of "delegation agent2" 
(Figure 5(2)), which forwards the skeleton to the agent's script processor. The 
script processor locates the EOO containing the required function, executes the 



Delegation agents: design and implementation 749 

skeleton with it (Figure 5(3)), and gives the results of the execution to the COO 
to be sent back to the COO of "delegation agentl" (Figure 5(4)). 

4.2 Case study: path tracing 

To test the feasibility of our delegation agent architecture, we have applied it to 
the task of tracing a VP trail in ATM networks. Figure 6 illustrates an example 
of tracing a VP trail called "vpTrail#1" between two ATM NEs called "node.A" 
and "node..B." A manager sends a script skeleton invoking the function for trac­
ing "vpTrail#l" to "delegation agentl" managing "node.A." In the skeleton, an 
operator describes the abstract name specifying the required VP trail (in this case 
"vpTrail#1"). In "delegation agentl," "vpTrail#l" is translated into the DN of 
the VP trail termination MO instance (e.g. the vpTTPBidrectional-MO instance 
(Alex, 1996)) to enable MO access. If tracing the VP trail requires invoking the 
path tracing function provided by the other delegation agent (in this case "delega­
tion agent2" managing "node..B"), "delegation agentl" sends a script skeleton for 
tracing "vpTrail#1" to "delegation agent2." In "delegation agent1," the skeleton 
is automatically created with the DN of an MO instance for initiating MO access 
in "delegation agent2." Then, "delegation agent2" sends the execution result of the 
skeleton to "delegation agentl," and "delegation agent1" sends the tracing result 
back to the manager. 

I ~ : manager-agent script skeleton I ~ : agent-agent script skeleton 

Figure 6 Tracing a VP trail. 

Currently, we have implemented the operational objects and script skeletons in 
Java (Ken, 1996) except the MO access portion of the POO, which is written in 
C++- We used TCP /IP socket libraries to transfer script skeletons. The results of 
the implementation show that sending only a script skeleton to an agent enables the 
management traffic between a manager and an agent to be kept low, and it works 
well enough to suggest the feasibility of applying our design to other distributed 
network management functions as well as path tracing. 



750 Part Six Intelligent Agents 

5 CONCLUSION 

This paper has proposed a new architecture for management agents that is designed 
to achieve efficient distributed network management. In this architecture, which 
employs the dynamic delegation concept, a network management operator describes 
management operations in an operation-script, and the script is sent to an agent to 
execute. Adopting the delegation concept helps operators cope dynamically with 
any situation in network management. 

To implement the dynamic delegation concept efficiently in network management 
systems, we combine the use of a script skeleton with that of function objects. A 
script skeleton is independent of any agent implementation format and describes 
management operation flow. Function objects provide network management func­
tions and are stored in the agent. To help keep management traffic low, only a 
script skeleton is sent to an agent, where it is dynamically bound with operational 
objects in order to execute a complete operation-script. In designing function ob­
jects, we have employed the concept of component-ware, in which function objects 
consist of multiple operational objects. This design supports efficient distributed 
network management: it keeps management traffic low and extends agent functions 
dynamically. 

REFERENCES 

Network Management Forum. Application Services: Path Tracing Function (Forum 
014). 

Yechiam, Y., German, G. and Shaula, Y. (1991) Network Management by Delega­
tion. 2nd International Symposium on Integrated Network Management. 

Maria-Athina, M. and Gabi, D. (1996) Delegation of functionality: aspects and 
requirements on management architectures. 7th Distributed Systems: Operations 
& Management. 

Simon, Z., Michel, L. and Jean-Pierre, H. (1996) DEAL: delegated agent language 
for developing network management functions. 1st International Con£. and Exhi­
bition on the Practical Application of Intelligent Agents and Multi-Agent Tech­
nology. 

RFC 1271 (1991). Remote Network Monitoring Management Information Base. 
lAB. 

George, P., Kevin, M., Saleem, B. and Graham, K (1995). The OSIMIS platform: 
making OSI management simple. 4th International Symposium of Integrated 
Network Management. 

X/Open Preliminary Specification. System Management: Management Protocols 
API. X/Open Company, Ltd. 

Alex, G. (1996). Access Network Management Modeling. IEEE Communications 
Magazine, March, 62-72. 

Ken, A. and James, G. (1996). The Java Programming Language, Addison-Wesley 
Company. 



Delegation agents: design and implementation 751 

Motohiro SUZUKI received his B.E. and M.E. degrees in information systems 
engineering from Osaka University in 1992 and 1994, respectively. He joined NEC 
Corporation in 1994 and is now a member of the Network Research Laboratory, 
C&C Research Laboratories. He has been engaged in the research and development 
of network management sy~tems. 

Yoshiaki KIRmA received his B.E. and M.E. degrees in electronic commu­
nication engineering from Waseda University in 1985 and 1987, respectively. He 
joined NEC Corporation in 1987 and is now a member of the Network Research 
Laboratory, C&C Research Laboratories. He has been engaged in the research and 
development of network management systems and distributed artificial intelligence 
systems. 

Shoichiro NAKAI received his B.E. and M.E. degrees from Keio University in 
1981 and 1983, respectively. He joined NEC Corporation in 1983 and has been en­
gaged in the research and development of local area networks, distributed systems, 
and network management systems. 


