
52
Generating Diagnostic Tools for
Network Fault Management

Mikaela Sabin, Robert D. Russell, and Eugene C. Freuder
Department of Computer Science
University of New Hampshire
Durham, NH 03824
mcs, rdr, ecf@cs. unh. edu

Abstract
Today's network management applications mainly collect and display information, while
providing limited information processing and problem-solving capabilities. A number of
different knowledge-based approaches have been proposed to correct this deficiency, evolv­
ing from rule-based systems through case-based systems, to more recent model-based sys­
tems. Part of this evolution has been the recognition of the importance of constraints in
a management context. This makes possible the assimilation into network management
of a mature, theoretically developed technology from artificial intelligence, namely, the
constraint satisfaction problem {CSP). In this paper we investigate the role of constraints
in manipulating management data, and give an example of the use of the constraint sat­
isfaction framework in diagnosing problems arising with Internet domain name service
configurations. We also present ADNET, a system for automatically constructing C++
diagnostic programs from a model written in a simple modeling language.

Keywords
Network fault management, configuration fault management, model-based diagnosis, con­
straint satisfaction, diagnostic tools.

1 INTRODUCTION

Today's network management applications mainly collect and display information, while
providing limited information processing and problem-solving capabilities. The techno­
logical stages in managing network data classify network management applications into
three distinct categories, suggestively characterized in (Rose 1993) as "browsers, mappers,
and (very few) thinkers". Two essential factors explain the lack of the "thinkers": (1) the
heterogeneity of managed objects which themselves are not problem solvers, and (2) the
missing formalism and, consequently, technology for relating MIB modules within a con­
figured, operational network. Thus, beyond the technical asp€cts of accessing formally
defined managed objects through management protocols, an indispensable task is these­
mantic interpretation of this extremely heterogeneous data (Meyer et al. 1995): "Since the

A. A. Lazar et al. (eds.), Integrated Network Management V
© Springer Science+Business Media Dordrecht 1997

Generating diagnostic tools 701

semantic heterogeneity of managed data has grown explosively in recent years, the task of
developing meaningful applications has grown more onerous". To address the problem of
effective management applications, a framework for management applications should be
centered around a global network model which explains the flow of data or the occurrence
of events in the network with regard to some functions performed by the network.

In recent years, more knowledge-based systems developed in the network management
domain have adopted the model-based approach for representing and reasoning about man­
agement information. In this approach, the building blocks of the network model are the
elementary structural and behavioral descriptions which define the network components:
devices, links, services. The network model, however, describes not only its constituents,
but also how they relate to each other. The model-based reasoning paradigm has been
successfully applied in the diagnosis task (Hamacher et al. 1992).

In this paper we propose a constraint-based modeling and problem-solving approach to
network fault management. The approach is based on the concept of constraints which
capture the structure and behavior of the network to be diagnosed, and which represent
relations among network components. The network is found faulty if some constraints
cannot be satisfied, in which case the violated constraints are precise indicators of the
cause of the fault. The main contributions of the paper are:

• to show how an existing technology for reasoning with constraints can be applied to
network management,

• to introduce a declarative modeling language,
• to present a system for automating the synthesis of special purpose diagnosticians, and
• to illustrate how these can be applied in a sample model of a high-level network service.

This paper is organized as follows. In the next section we define the constraint-based
approach to the diagnosis problem, and the algorithmic solution to it. Section 3 describes
the general structure of a diagnostician implementing this approach. Section 4 presents the
architecture of ADNET, a system that builds these diagnosticians. Based on the example
described in Section 5, Section 6 illustrates the ADNET modeling language. In Section 7
we briefly review existing knowledge-based approaches to network management, and in
the last section we summarize our results.

2 DIAGNOSIS AS CONSTRAINT SATISFACTION

The constraint satisfaction problem (CSP) paradigm has proved its applicability in var­
ious areas of artificial intelligence, such as design, configuration, simulation, scheduling,
and diagnosis. Its success has been assured by both the simplicity of formulating the
problem, and the diversity of continually improved algorithms to solve it. In a constraint
satisfaction model of a diagnosis problem, the constraints capture the structure and be­
havior of the system to be modeled, and represent relations among the attributes of the
system components. A component attribute is modeled as a CSP variable, characterized
by possible values to which the variable can be instantiated, according to either the de­
sign specifications or observation measurements on the modeled attribute. The diagnosed
system is found faulty if some constraints cannot be satisfied, in which case the violated
constraints are precise indicators of the cause of the fault.

702 Part Five Fault Management II

We formulate the diagnosis problem as a partial CSP (PCSP) (Freuder and Wallace
1992), where the partial solutions stand for the minimal sets, under set inclusion, of vi­
olated constraints, also called minimal diagnoses (Sabin et al. 1995). For synthesis tasks
such as configuration, the constraint problem is of a more dynamic nature. (Mittal and
Falkenhainer 1990) defines the dynamic CSP (DCSP) formalism to take into account con­
ditional activation of those parts of the CSP (variables and constraints) which are relevant
to the current configuration decisions. However, we have adapted Mittal's approach in two
aspects, in order to deal with the task of diagnosing configuration problems, rather than
configuration itself (Sabin et al. 1995). First, the domains of values are not restricted to
predefined sets of values, instead they can be acquired at search time by observing the
network. Second, the DCSP which models the configuration of some network service is
solved as a partial CSP, where the partial solutions leave minimal sets of constraints un­
satisfied. These partial solutions capture the inconsistencies between actual observations
and model predictions, and hence pinpoint the faults in the diagnosed system.

Combinations of branch-and-bound and CSP techniques have been used in algorithms
that search for a solution that leaves minimum-cardinality sets of constraints unsatis­
fied (Freuder and Wallace 1992). We have adapted one of these algorithms to search for
solutions with minimal sets of unsatisfied constraints, in order to provide a more compre­
hensive explanation of the possible faults. The algorithm keeps track of the best solutions
found during the search, in the sense that any proper superset of these solutions is dis­
carded, and any solution is replaced by its proper subset when such a subset is found.
The algorithm serves as the inference engine of the diagnostic tool described next.

3 THE GENERATED DIAGNOSTIC TOOL

USER j Model 1 PREDICTIONS DIAGNOSTICIAN

I ~PCSPI
----1~ Probing I r--LAI2oritbm I
NETWORK Tools I OBSERVATIONS

DIAGNOSES

Figure 1 Architectural description of a diagnostician for network services

Automatic diagnosis employs a diagnostic engine which outputs the expected diagnoses
based on the predictions of the model of the system to be diagnosed, and the observations,
or measurements, performed during the system operation (Figure 1). Measuring the actual
system behavior can be fully automated by incorporating probing or monitoring tools in
this diagnosis scheme. The modeling descriptions are expressed in a form congenial to the
human network manager, and embed only declarative knowledge, as found for example in
system specifications manuals. The user of the diagnostician is shielded from the details of
how the information is to be used, or what algorithms process this information. The model
of correct (and possibly fat•lty) behavior of the network service is expressed in CSP terms,
as explained in Section 6. The PCSP algorithm for computing the minimal diagnoses is
used to check the consistency between the model predictions and system observations.

Generating diagnostic tools 703

4 A SYSTEM FOR GENERATING DIAGNOSTIC TOOLS

The diagnosis scheme implemented in a diagnostician can be further automated if special­
ized diagnosticians are automatically generated to handle different categories of problems.
For example, the model component in Figure 1 can describe network service problems in
one of the following categories:

• user interaction problems, when a network service is improperly used,
• protocol operation problems caused by incompatibilities between the end-systems on

which the protocol operates, and
• configuration problems, when the network service configuration contains missing or

conflicting information.

Each model description is compiled into a C++ diagnostic program that handles the types
of problems described in the model. The CSP formulation for each of these groups of
problems has been detailed in (Sabin et al. 1995). In this paper we focus on the prototype
system that automates the construction of constraint-based diagnosticians.

The automatic diagnosis system for network services (ADNET) constructs constraint­
based diagnostician programs in C++ from a library of network probing tools, a library of
constraint-based diagnosis tools, and a model. Figure 2 outlines the ADNET architecture.
The model is written in the ADNET constraint-based modeling language. The resulting
diagnostician is compiled and linked with a library of network probing tools and a library
of constraint-based reasoning tools, to form an operational diagnostician. We describe
each of the AD NET components next.

Network
Probing

Tools

Figure 2 The ADNET architecture for the automatic construction of diagnosticians

The models are written in the ADNET modeling language and formulate a standard
or dynamic CSP corresponding to those aspects of a network service which are to be
diagnosed. The AD NET modeling language has the advantages of constraint programming
in general, namely, the language is:

• declarative: stating the constraints does not require the user to envision how the infor­
mation is to be used,

• natural: constraints are expressed in a form congenial to the user,
• efficient: heuristics and inference methods can mitigate the problems of combinatorial

search.

704 Part Five Fault Management II

The constraint-based reasoning tools form a C++ library that comprises different CSP
algorithms and heuristics used to solve the constraint-based diagnosis problem. In the cur­
rent implementation of AD NET, the diagnostician builder is programmed to use only the
branch and bound algorithm for solving dynamic partial CSPs, discussed in Section 2.
Maintaining a repository of CSP techniques has the advantage of enabling another in­
teresting developing direction, namely, of tailoring the generated diagnosticians to the
problem at hand to meet better efficiency requirements.

The network probing tools perform two functions in the ADNET architecture. First,
they can provide the model with complete domains of values, which have been previously
stored in the network at network configuration time. Tools that dynamically probe the
network configuration parameters save the user from a preliminary phase of manually
gathering this modeling data, and, more importantly, guarantee that the model always
accurately reflects the current configuration values being used in the real network. Second,
the probing tools can collect observational information for those CSP variables whose val­
ues depend on the actual network operation. Both features are available in the ADNET
modeling language through the variable declaration construct. A variable declaration in­
cludes the function call that probes the network and gives the expected values (predefined
as configuration data, or currently observed in the running network). Unlike modeling;
probing the network is a device-dependent task. Some probing is general enough to be
applied to a wide variety of networks, such as the Internet ping program to test the reach­
ability of another site on the network. Other probing programs may be more specific to
the type of the network resource to be examined. Thus, the AD NET system provides for
both user-defined and system predefined probing functions.

5 AN EXAMPLE: DIAGNOSING DNS CONFIGURATIONS

The ADNET diagnostician for DNS configurations can diagnose configuration problems
with DNS. The common DNS error message: unknown host may have different causes
related to the various underlying configurations of the DNS. For each of these configu­
rations, the diagnostician program constructed by ADNET figures out the problem and
provides a more meaningful message. Before we give such an example, we briefly present
the DNS configuration as it is required by BIND (the DNS implementation written for
Berkeley's 4.3BSD UNIX), running on DEC OSF /1:

• The file I etc/ svc. conf is consulted to see what services are available and in what
order they are to be used, as indicated by the hosts statement in this file. The possi­
bilities are local and bind. Local resolution is used for small networks configured by a
single administrator, with no traffic to outside world, whereas bind resolution becomes
a "must" if the local network is connected to a larger network.

• The local resolution is provided by consulting the file /etc/hosts which contains a
table of known names and IP addresses.

• The bind resolution is provided by contacting a server daemon, called named. The
client that accesses the name server is called a resolver, and its configuration is defined
in the /etc/resolv.conf file. A resolver creates the query, sends it ac.ross a network
to a name server, interprets the response, and returns it back to the program that
requested it. If the /etc/resolv .conf file is present, it is consulted to find an ordered

Generating diagnostic tools 705

list of the IP addresses of server daemons to be contacted. Resolution fails if none of the
servers responds, or if the first one that does respond is not able to resolve the name.
If the I etc/resol v. conf file is not present, an attempt is made to contact the local
server daemon, running on the local host.

• Each name server has its own configuration, as a primary server, secondary server, or
forwarder. While the resolver configuration requires, at most, one configuration file,
several files are used to configure named. For example, the boot file defines the type
of the server and the location of other configuration files, such as the database files, the
loopback address file, and the cache data file.

Although the above specification of the DNS configuration is not complete, it can be
used to completely model the local resolution service. The diagnosis shown in Figure 3
explains the simple problem caused by incompletely specifying the /etc/hosts file, when
only the local option is specified in the /etc/svc. conf file. The repair procedure for this
problem is straightforward once the cause of the problem is clearly explained. More subtle

Command: telnet alpha
DNS Error Message: unknown host: alpha
Configuration: Local resolution only Is indicated in /etc/svc.conf. alpha name Is not in /etc/hosts.
Diagnosis: *** Loc:al resolution failed. No alpha In /etc/hosts.

Figure 3 DNS configuration diagnosis: incompletely specified host table

problems, such as forgetting to increment the serial number of the primary's zone files,
or even syntax errors in the boot and database files, can be diagnosed by a diagnostician
compiled with AD NET, if a complete DCSP model of the DNS configuration is provided.

6 ADNET MODELING LANGUAGE

Based on studies of FTP and DNS network services, and models built for them using the
CSP formalism, we have designed a simple language for describing models in CSP terms.
A model specified in the ADNET modeling language consists of four sections. The first
two sections define (1) the set of variables and their correspondiil.g domains of values,
and (2) the set of constraints, also called compatibility constraints. The next two sections
specify the activation of those variables and constraints which are relevant to the observed
configuration decisions. Figure 4 presents that part of the local resolution model for the
DNS example which describes the variables that may play a role in localizing the faults
with the configuration of local resolution, and the constraints that restrict the values these
variables can take.

The variables are defined with VAR statements. Each variable has a name and a domain
of possible values. The modeling language offers two built-in mechanisms for specifying
the domain of values for a variable. The DEF slot of the VAR statement specifies the
domain of values known at modeling ti::ne, while the ASK slot represents the mechanism
for supplying values at diagnosis time, either from the running network directly or from
the user who observes the network. Referring to Figure 4, the remote-host variable has

706 Part Five Fault Management II

the value returned by the ASK function prompt-user, while the variable ping-path has a
single predefined value '' /sbin/ping' ',specified in the DEF slot. ASK functions invoke
system calls for internally managed information, such as currently running processes, or
prompt the user. The ADNET system offers some built-in network probing tools, such
as prompt_user and ping, and provides the means to add new functions, customized
for specific measurements. User-defined ASK functions, such as resolve-services and
resolve-host shown in Figure 4, are written as generator functions, allowing the user to
investigate network resources and get possible values for the current variables, one value
at a time. The function is called repeatedly to return all values in the domain, until the
values are exhausted or an error condition is encountered. In the latter case, the error
message reports the violation of the unary constraint implicitly associated with ASK-ed
variables, and is added to the diagnostic messages of the current violated constraints.

VAR remote-host ASK prompt-user(''Remote host name:'')
VAR ping-path DEF ''/sbin/ping''
VAR ping-response ASK ping($remote-host)
VAR services-file DEF ''/etc/svc.conf''
VAR resolution-type ASK resolve-services($services-file, ''hosts'')
VAR hosts-file DEF ''/etc/hosts''
VAR hosts ASK resolve-host($hosts-file)
CON $remote-host IN $hosts

''***Local resolution failed. No $remote-host in $hosts-file.''

Figure 4 The VAR and CON declarations of the DNS local resolution model

The constraints are defined with CON statements. A constraint is defined on a set of
variables and can be specified either extensionally, as the set of tuples of values allowed by
the constraint, or intensionally, as predicates. The ADNET modeling language provides
the standard logical, set, and relational operators. The operands can be constants (strings,
numbers), current values of instantiated variables selected with $variable-name, or values
returned by user-defined function calls. In addition, the user can supply his own predicates,
taking as arguments any of the above. Part of the constraint declaration is a required
diagnostic message issued in case the constraint is violated.

In general, the configuration task consists of assembling parts into a whole. Since the
parts are taken from a larger (but fixed) set, some parts will never be used in the configured
system. Moreover, the process of configuration reflects dependency relations as to how
some parts of the configurable system require/exclude other parts to/from being present,
unconditionally, or under specific conditions. The process of configuration starts with
some key parts, always required in the system. To model these new features, the DCSP
extensions to the standard CSP are:

• among all the CSP variables, some of them become active variables, as they are relevant
to the configuration decis:ons checked at some point during the search,

• variable activity is controlled with the activity constraints,
• there is an initial set of active variables, called start variables.

Generating diagnostic tools 707

A program written in the ADNET modeling language for diagnosing a configuration
problem adds to the VAR and CON sections in Figure 4 two more sections:

• the START section, which defines the set of initially active variables, and
• a section that defines the set of activity constraints (always require variable and require

variable constraints, introduced by the ARV and RV statements, respectively).

Figure 5 completes the DNS configuration model described in Figure 4 with the DCSP
information, namely, the declaration of the START variables, and the activity constraints.

START remote-host
ARV remote-host => (ping-path ping-response)
RV $ping-response = ''unknown'' => (services-file resolution-type)
RV $resolution-type = ''local'' => (hosts-file hosts)

Figure 5 The START variable and activity constraints of the DNS local resolution model

The START variable remote-host has to be instantiated no matter what configuration
decisions are followed in the model. Once the value of this variable is known, two other
variables become part of the diagnosis process: ping-path and ping-response. These
variables are always required by the remote-host variable, regardless of its value, as the
ARV constraint shows in Figure 5. The remaining activity constraints in the example
are require variable constraints. These constraints activate certain variables based on the
values assigned to the already active variables. For example, if the ping-response variable
has the value "unknown", then the information about the service file /etc/svc.conf
becomes part of the search space. Similarly, when the value "local" is observed for the
resolution-type variable, only the host table information is further explored.

Assembling the CSP specification in Figures 4 and 5, we obtain the complete model
for diagnosing the DNS local resolution. The declarative nature of the CSP formulation
permits us to easily extend this model for diagnosing BIND resolution as well. To provide
a basic insight on how further information about DNS configuration can be added to
the local resolution model, we make use of a graphical representation of the ADNET
modeling language constructs. Figure 6 illustrates the DNS local resolution model and
outlines how the BIND resolution model can be built from the DNS problem description
given in Section 5. The conventions in this graphical representation are simple:

• the circles, labeled CON, are the compatibility constraints, whose violations provide the
diagnostic message associated with them.

• the arrows are the active variables, and are labeled with their names. These variables
change dynamically in response to decisions made during the course of problem solving.
An outward arrow shows the required activation of the variable, while an inward arrow
shows the active variable requiring the activation.

• the variable activity is controlled by the activity constraints, drawn as boxes. They
are either ARV constraints or RV constraints. In Figure 6, the ARV constraint in the
Local Resolution Model activates the variables ping-path and ping-response once the
variable remote-host is active. The RV constraints activate other variables if some
already active variables satisfy some condition. Since the condition of the RV constraints

708 Part Five Fault Management II

:-- - - --------- j.;~u;;u;- -----·········-~~~.,~~~---·····- siNo.Fiesolu.tio~-Mod~i··············· ---- i
-i-"'T"'t-r--..{::..:}-----! ... ,,;;.;,...t----:, : ;;:esc;rilifo"rij;.pe· · · · · · ~~- · · m.ifv<:conr · · · · · · · ·· · ·: :

~oct• I :

remote_bost

rmtote...)lost

'' '' '' ''
'' '' ''

erver Model

to~ _file_rontenl$
: : .._---L
'' '.
''
: : sec_zone_contents

'

: __ ' =: ::.::. ::::::::::::::::::.:::.:.:::::.:.:.:::.:.::.:::::::::::.::::.::::::: ~-------.

Figure 6 DNS configuration model formulated as a DCSP

in the example in Figure 6 requires some already active variable to have a specific value,
the box representing the activity constraint is labeled with that particular value.

Although the BIND Resolution Model shown in Figure 6 is not completely specified,
the description given is still .a working model, in the sense that the diagnosis covers the
configuration problems produced by the failure of any of the compatibility constraints
specified in the model, and the failure of the consistency check of any implicit unary
constraint associated with the access to the domain values of a variable.

7 RELATED WORK

Knowledge-based technologies are characterized by utilizing domain knowledge repre­
sented in a declarative form, and human expertise expressed as rules of inference applied
to the domain knowledge for performing a specific task. Knowledge-based systems for net­
work fault management evolved from rule-based reasoning (RBR) systems to case-based
reasoning (CBR) systems, and, more recently, to model-based reasoning (MBR) systems.
In the following, we briefly illustrate this line of evolution, and outline the limitations
each approach has encountered, as well as the solutions that have been proposed either
within each approach or, more radically, by another one.

The well-known problems inherent to the RBR systems are the brittleness problem,
or the imp.ossibility of coping with unforeseen situations, and the knowledge acquisition
problem, which arises when knowledge base growth endangers the manageability and
consistency of the knowledge base itself. These problems are not critical in small, homo­
geneous, relatively static networks, but cannot be ignored in today's telecommunications
networks, with their high rate of technological change. Thus, RBR systems become un-

Generating diagnostic tools 709

maintainable and unpredictable as more ad hoc rules are added to the knowledge base,
with the imminent effect of proliferating unintended rule interactions and conflicts. How­
ever, different strategies of structuring the knowledge base hierarchically and providing
higher-order relationships among constituent modules help diminish these problems, as
is shown in the expert systems presented in (Frontini et a/. 1991), (Schroder and Schodl
1991), (Lor 1993).

A CBR system addresses the brittleness and knowledge acquisition problems by exhibit­
ing learning and adaptability capabilities. Past experience is accumulated and retrieved
whenever identical or possibly similar situations are encountered. Unanticipated cases are
solved by adapting existing ones. Once solved, the cases are "learned" by being added
to the case repository. The prototype system for network traffic management described
in (Goyal 1991) is one example of how a case-based reasoner can recognize, treat, and
monitor traffic routing problems. Another example is presented in (Lewis 1993), where
the diagnosis functionality is built on top of a trouble ticket system. The critical factors
in CBR, however, are the similarity metrics based on which the retrieval of cases similar
to the current one is possible, and the adaptation methods that ensure the transformation
of the current case into one for which the solution is already known.

The MBR paradigm has emerged from the need to overcome the long-term, ever-growing
dependency of the system on the experience gained with the system itself. The expert
knowledge, which forms the empirical associations collected into rules in a RBR system,
or the similarity metrics and adaptation functions in a CBR system, is now formalized into
the model of the system to be managed. (Jordaan and Paterok 1993) describes a prototype
event correlation application which needs "very little or no preconfigured knowledge",
compared to RBR systems. The underlying idea is that in practice almost all objects
modeling the network are related in some fashion, but just a few relationships prove to
describe fault propagation effectively, and cover the vast majority of, otherwise ad-hoc,
heuristic associations. Keeping modeling simple is the underlying idea in (Crawford et al.
1995), where the approach outlined in (Jordaan and Paterok 1993) is further formalized.

A distinct modeling technique that has recently emerged in the field of network man­
agement is the utilization of constraints. However, the constraint-based technique has not
been explicitly related to the existing work on constraint satisfaction problems (CSPs)
as they are well-known in the artificial intelligence community. For example, (Goli et al.
1995) proposes a constraint-based solution to the problem of checking MIB update valid­
ity, and describes the design of a network constraint management system to implement
this approach. Another application of constraints is the modeling of temporal relations
for the event correlation task, as presented in (Jakobson and Weissman 1995). The model
captures temporal constraints and, thus, reasons about time. Constraints are also used to
describe connectivity and containment relationships for the network configuration model.
The description language presented in (Pell et al. 1995) is centered around the constraint
concept. It supports network fault management through the means of checking all the
constraints that define the characteristics of a particular network resource.

8 CONCLUSION

In this paper we proposed a constraint-based modeling and problem-solving approach to
the diagnosis of network services. This approach is based on the concept of constraints

710 Part Five Fault Management II

which capture the structure and behavior of the system to be diagnosed, and which repre­
sent relations among system components. The automatic diagnosis employs a diagnostic
engine which outputs the expected diagnoses, based on the model of the system and the
observations performed during system operation. We further automated this diagnostic
scheme along two directions: (1) a modeling language is provided to describe, in a declar­
ative way, the structure and behavior of the network service, and (2) observational data
can be dynamically requested from the running network by incorporating general-purpose
and user-defined probing tools in the diagnostic system. We showed how these features
have been incorporated in ADNET, a prototype system which automates the construction
of specialized C++ diagnostic tools. We also described the ADNET modeling language
and illustrated its use in a model for diagnosing configuration problems with DNS. The
ADNET architecture makes possible the integration of diagnostic tools within existing
network management platforms, so that the collection and display of managed data can
be complemented with the problem-solving capabilities of ADNET diagnosticians.

ACKNOWLEDGMENTS

This material is based on work supported by the National Science Foundation under
Grant No. IRI-9504316, and by Digital Equipment Corporation, for which we would like
to especially acknowledge the contributions of Neil Pundit and Ed Valcarce.

REFERENCES

Crawford, J., Dvorack, D.L., Litman, D., Mishra, A.K. and Patel-Schneider, P.F. (1995)
Device representation and reasoning with affective relations. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence, 1814-1820.

Freuder, E.C. and Wallace , R.W. (1992) Partial constraint satisfaction. Artificial Intel­
ligence, 58, 21-71.

Frontini, M., Griffin, J. and Towers,S. (1991) A knowledge-based system for fault localiza­
tion in wide area networks. In I. Krishnan and W. Zimmer, editors, Integrated Network
Management, II, 519-530. Elsevier Science Publishers B.V., North-Holland.

Goli, S.K., Haritsa, J. and Roussopoulos, N. (1995) Icon: A system for implementing
constraints in object-based networks. In A.S. Sethi andY. Raynaud, editors, Integrated
Network Management, IV, 537-549. Chapman & Hall, London,.

Goyal, S.K. (1991) Knowledge technologies for evolving networks. In I. Krishnan and
W. Zimmer, editors, Integrated Network Management, II, 439-461. Elsevier Science
Publishers, B.V., North-Holland.

Hamscher, W., Consosle, L. and de Kleer, J., editors (1992) Readings in Model-Based
Diagnosis. Morgan Kaufmann Publishers, San Mateo, CA.

Jakobson, G. and Weissman, M. (1995) Real-time telecommunication network manage­
ment: extending event correlation with temporal constraints. In A. S. Sethi andY. Ray­
nand, editors, Integrated Network Management, IV, 291-301. Chapman & Hall, London.

Jordaan, J.F. and Paterok, M.E. (1993) Event correlation in heterogeneous networks using
the OSI management framework. In H.-G. Hegering andY. Yemini, editors, Integrated
Network Management, III, 683-695. Elsevier Science Publishers B.V., North-Holland.

Generating diagnostic tools 711

Lewis, L. (1993) A case-based reasoning approach to the resolution of faults in commu­
nication networks. In Integrated Network Management, III, 671-682. Elsevier Science
Publishers B.V., Amsterdam.

Lor, K.-W. E. (1993) A network diagnostic expert system for Acculink multiplexers based
on a general diagnostic scheme. In H.-G. Hegering and Y. Yemini, editors, Integrated
Network Management, 659-669. Elsevier Science Publishers, B.V., North-Holland.

Meyer, K., Edinger, M., Betser, J., Sunshine, C., Goldszmidt, G. and Y. Yemini (1995)
Decentralizing control and intelligence in network management. In A.S. Sethi and
Y. Raynaud, editors, Integrated Network Management, IV, 5-15. Chapman & Hall,
London.

Mittal, S. and Falkenhainer, B. (1990) Dynamic constraint satisfaction problems. In
Proceedings of the 8th National Conference on Artificial Intelligence, 25-32.

Pell, A.R., Eshgi, K., Moreau, J.-J. and Towers, S.T. (1995) Managing in a distributed
world. In A.S. Sethi and Y. Raynaud, editors, Integrated Network Management, IV,
95-105. Chapman & Hall, London.

Rose, M.T. (1993) Challenges in network management. IEEE Network, 7(6), 16-19.
Sabin, D., Sabin, M., Russell, R.D. and Freuder, E.C. (1995) A constraint-based ap­

proach to diagnosing software problems in computer networks. In Proceedings of the
1st International Conference of Principles and Practice on Constraint Programming,.

Schroder, J. and Schodl, W. (1991) A modular knowledge base for local area network
diagnosis. In I. Krishnan and W. Zimmer, editors, Integrated Network Management, II,
493-503. Elsevier Science Publishers, B.V., North-Holland.

BIOGRAPHIES

Mihaela Sabin received her MS in Computer Science from the Polytechnic Institute of
Bucharest, Romania, in 1984. Currently, she is working towards her PhD in Computer
Science at the University of New Hampshire. Her research interests include constraint
satisfaction, diagnosis, modeling, and network management. She is a student member of
AAAI and IEEE. Her home page address is http:/ fwww.cs.unh.edufmcs.

Robert D. Russell is an associate professor in the University of New Hampshire
Department of Computer Science. His research interests include network protocol devel­
opment, LAN-based parallel programming, ATM Quality of Service specification, and
network management. He is a member of IEEE and ACM.

Eugene C. Freuder is a professor in the University of New Hampshire Department
of Computer Science and Director of its Constraint Computation Center. He is a Fel­
low of the American Association for Artificial Intelligence. He is the founding editor of
Constraints, An International Journal (Kluwer Academic Publishers) and a member of
the Organizing Committee of the International Conference on Principles and Practice of
Constraint Programming. His home page address is: http:/ /www.cs.unh.edu/ecf.html.

