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Abstract 
To address the increasing complexities of fault management, we propose an automated, 
proactive monitoring system using adaptive statistical techniques. Requiring only a minimal 
amount of network specific information a priori, the system continually collects data, uses the 
data to Jearn the normal behavior of the network, and detects deviations from the norm. The 
proposed system is thereby able to detect unknown or unseen faults. Experimental results on 
real network data demonstrate that the proposed system can detect abnormal behavior before 
a fault actually occurs. 
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1 INTRODUCTION 

Fault management is the part of network management responsible for detecting and 
identifying faults in the network. Interest in fault management has increased over the past 
decade due to the growing number of networks that have become a critical component of the 
infrastructure of many organizations, making faults and downtime very costly. In addition, as 
computer networks evolve from providing only "best effort" service to providing a range of 
service guarantees to accommodate real-time applications (e.g. video), higher levels of 
reliability are required. By preserving network reliability, fault management Jays the 
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foundation for the stringent Quality of Service (QoS) requirements placed on networks by 
real-time applications. 

As the fault management problem becomes more important, it has also become more 
difficult. This can be traced primarily to the dynamic nature and heterogeneity of current 
networks. Fundamental changes to the network occur much more frequently due to the 
growing demands on the network and the availability of new, improved components and 
applications. With network components and applications developed in an open environment, 
a network can be configured by mixing and matching several vendors' hardware and 
software. While this allows the network to utilize the latest technologies and be customized 
to the needs of the users, it also increases the risk of faults or problems [ 18]. 

Previous research in fault management has covered approaches such as expert systems [7], 
Finite State Machines (FSMs) [13], advanced database techniques [17], and probabilistic 
approaches [3]. A review of communication network fault detection and identification can 
be found in [8]. The approaches mentioned above require specification of the faults to be 
detected. This limits the performance of these approaches since it is not feasible to specify 
all possible faults. In addition, changes in network configuration, applications and traffic can 
change the types and nature of faults that may occur, making modeling faults more difficult 
and in many cases impractical. Research using learning machines to detect anomalies [ 11] 
addresses the issue of fault modeling, but does not provide a method for correlating the 
information collected in space or time. 

The problem we will tackle is automated fault detection without specific models of faults. 
We propose an adaptive learning system for network monitoring. The system learns the 
normal behavior of each measurement variable. Deviations from the norm are detected and 
the information gathered is combined in the probabilistic framework of a Bayesian network. 
Benefits from this approach include the ability to detect unknown faults, the ability to 
correlate information in space and time, and the ability to detect subtle changes occurring 
before the actual failure. This allows faults to be detected when they are developing so the 
network manager has time to take corrective action to prevent outages or downtime. In 
addition, this approach requires minimal amounts of network specific information, so it can 
be generalized across network nodes and types of networks. Our approach is tested on a 
computer network. We monitor the Management Information Base (MJB) variables collected 
within the Simple Network Management Protocol (SNMP) framework. No specialized 
hardware is required for monitoring. 

The paper is organized as follows. Section 2 provides background material on Bayesian 
networks. Our intelligent monitoring approach is described in Section 3. Detailed 
information about the data we collected is given in Section 4, and Section 5 contains results 
and comparisons. Conclusions and areas for further investigation are discussed in Section 6. 

2 BAYESIAN NETWORK BACKGROUND 

A Bayesian network, also called a belief network or a causal network, is a graphical 
representation of relationships within a problem domain. More formally, a Bayesian network 
is a directed acyclic graph (DAG), where certain conditional independence assumptions hold 
[7]. The nodes of the DAG represent random variables. The conditional independence 
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assumptions are as follows: Given a DAG G = (N,E), where n e N is a node in the 
network and e e E is a directed arc. For each n eN, let p(n)!: N be the set of all parents 

of n, and d(n)!:: N be the set of all descendents of n. For every subset 
W!: N- (d(n) u {n}), W and n are conditionally independent given p(n). In other words, 

for any node in the DAG, given that node's parents, that node is independent of any other 
node that is not its descendent. Figure 1 illustrates the independence assumptions for a 
Bayesian network similar to the one we will use in our monitoring system. 

These assumptions allow us to estimate the conditional probabilities of any of the nodes 
(or random variables) in the Bayesian network given the observed information or evidence. 
The strength of Bayesian networks is that they provide a theoretical framework for 
combining statistical data with prior knowledge about the problem domain. Therefore, they 
are particularly useful in practical applications. 

p[W,n I p(n)] = p[W I p(n)] p[n I p(n) I 

Figure 1 Example of Bayesian network independence assumptions. 

Bayesian networks have been widely used for medical diagnosis [15] [4], troubleshooting 
[5], and in the communication network field, they have been proposed to diagnose faults in 
Linear Lightwave Networks [6]. In [6] other methods have been used for detection and the 
Bayesian networks are used for diagnosis only. In this work, we propose using a Bayesian 
network as a mechanism to combine information from different variables for the purpose of 
detecting anomalies. 

3 MONITORING SYSTEM 

We propose an automated monitoring system that is able to detect anomalies without specific 
models of the behavior to be detected. The premise of this approach is that anomalous or 
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unusual network behavior is an indication of a fault within the network. The logical flow of 
information through the monitoring system components are shown in Figure 2. 

Raw 
Measurement 

Variables 

Observation 
Processing 
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of 

Information 

Node's view 
of network 
behavior 

Figure 2 Logical flow of information through the monitoring system. 

The system resides locally, allowing each node in the network to compose a picture of the 
network's health. To get this picture, measurement information must be combined with prior 
knowledge about the network. To accomplish this, the monitoring system has two main 
components; observation processing and combination of information. The raw measurement 
variables are processed to estimate the probability of each measured variable at a given time. 
The probabilities are then combined using a Bayesian network to provide a broader picture of 
the network's behavior. By doing this locally, we can correlate this information in time and 
space. This allows the central network manager to receive a more complete, less noisy 
picture of each node's view of network health. This can ease the alarm correlation problem. 
It also allows the node to take corrective actions if necessary. 

3.1 Observation processing 

The goal of the observation processing part of the monitoring system is to take the raw 
measurement variables and transform them into a set of measures indicating the behavior of 
each variable. Each measurement variable is a time series. Many of the measurement 
variables are representative of network traffic. To date, the characterization of network 
traffic signals is an active research area [9]. Therefore, the signals (i.e. measurement 
variables) to be processed are not considered to be well understood and as such there is not 
an optimal, or even standard method to characterize the behavior of these signals. 

In processing the information we use a change detection methodology. Since the behavior 
of the network is dynamic, the behavior of the measurement variables change frequently. As 
most changes are related to network traffic, simply detecting that a change has occurred is not 
enough. The goal is to try to recognize the changes that are important in terms of fault 
detection. We do this by characterizing the behavior of the measurement variables. 

Segmentation 
One of the challenges presented by the network dynamics is the non-stationarity of the 
observations. Since our goal is to extract pertinent information, we need to group the time 
series data in some way so that features can be calculated. To do this we segment the data 
into variable length pieces. Each piece contains a portion of the time series that is 
statistically similar. 
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There are two primary benefits realized from segmentation: (1) the statistics calculated 
from each segment are more representative of the signal, and (2) signal processing techniques 
requiring a stationary signal can be used within each segment. fu terms of monitoring, the 
segmentation provides the benefit of temporally correlating the observations. Since many of 
the network signals are bursty, the temporal correlation can help distinguish between a burst 
and a change in the nature of the signal. The sequential segmentation algorithm described in 
[1] is used. Once the observations have been grouped into segments, the pertinent 
information must be captured from each segment. 

Feature extraction 
Before our approach to feature extraction is discussed, we first need to examine the 
shortcomings of commonly used methods. Thresholds are the primary method currently used 
in both practice [10] and research [3] for detecting abnormal behavior. The feature is not the 
value of the threshold itself, but the information on whether or not the threshold has been 
exceeded by a particular measurement variable. One of the difficulties with thresholds is 
properly setting the threshold level, since they are highly dependent on the traffic level. 

While properly set thresholds do a good job of detecting large rises and falls in a 
measurement variable, more subtle behavior changes are missed. For example, a change in 
the variance of a signal, or a subtle change in the mean will not be detected using thresholds. 
These types of changes may be symptoms of something problematic in the network - this 
behavior is unusual for the variable. Detection of the more subtle signs of problems may 
allow corrective action to be taken to avoid a bigger problem. Identification of the problem 
also becomes easier with a more complete description of the symptoms rather than just the 
extreme cases. 

Our goal is to extract information that will help determine whether the behavior of the 
measurement variable is normal or abnormal. Ideally we want to capture information in the 
signal that will change or become abnormal only when a problem is occurring. To do this we 
would need a feature that is invariant to the network traffic patterns and other influences that 
cause the non-stationarities. This is an open problem, so we choose a feature that changes 
along with the network and continually adapt the model of normal behavior. 

To detect the more subtle changes in the nature of the measured variables, we use the 
parameters of an AR(2) or second-order autoregressive process as features. The AR(2) 
process is defined as 

where y( t) is the value of the signal at timet , a1 and a2 are the AR parameters that we use 

as features, and e(t) is white noise. Additional features have been investigated in [6]. 

Learning the behavior 
The features provide the ability to detect subtle changes, but they must first be used to 
establish a description of normal behavior. The description of the behavior is in the form of a 
probability distribution. Changes can then be detected relative to the distribution. 

Ideally, for each sample we would like to estimate its likelihood given that, (1) the network 
is operating normally, and (2) there is a fault. To do this, we need to know exactly when the 
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network as a whole, and each of its functions is operating normally. This type of information 
is not typically available. We are able to get some information about the health of the 
network from the tools currently used to report problems (i.e., log files). The information 
available contains reports on certain types of serious network problems that have occurred. 
From a learning perspective, we can use these reports as labels. 

One way of using the labels is to learn the probability distribution of each measurement 
variable, given that its related network function is abnormal. This sounds promising, but in 
fact is extremely difficult due to the sparse nature of abnormal data. With so few examples 
of problems, we do not have the variety (i.e., many examples of different problems) or the 
depth (i.e., several examples of the same type of problem) to effectively learn the distribution 
[2]. 

Instead we learn only the likelihood of the sample given the network function is normal. 
We define normal behavior to be the behavior of the variable during the time period when the 
distribution is learned. This time period will be referred to as the learning window. Since 
what we are learning is the usual behavior of the variable during the learning window, there 
is no guarantee that this always corresponds to the network or network functions being 
healthy. If there is a problem in the network that impacts the behavior of the network for a 
significant portion of the learning window, the problematic behavior will be learned as the 
usual behavior. We assume that this is rarely the case. 

3.2 Combination of Information 

The goal of this part of the monitoring system is to combine the processed measurement 
variable information into higher-level measures of network behavior. These higher-level 
measures provide the monitored node's view of the network behavior. These measures can 
be used to trigger local control actions or a message to a centralized network manager. 

Each measurement variable measure is combined in the probabilistic framework of a 
Bayesian network. The Bayesian network is used because it provides a method for 
estimating probabilities and it allows observed information to be combined with prior 
knowledge. 

We begin by defining the random variables or nodes in the Bayesian network. There are 
two types of variables, those that are observed and those that are not observed and thus need 
to be estimated. We will call the variables that are not observed the internal variables. The 
observed variables directly correspond to the Mill variables. The internal variables are 
defined to be Network, Interface (IF), IP, and UDP. The IF, IP, and UDP variables 
correspond to the Mill groups. Logically they represent different types of network 
functionality. The Mill variables within a group are the measurement variables for that 
network function (nf). 

The Network variable is defined to correspond to all of the network functionality. In this 
work, we assume that the network is comprised only of the IF, IP, and UDP functions since 
these were the functions being used at the router where we were monitoring. Other network 
functions can easily be added. The structure of the Bayesian network is shown in Figure 3. 
The arrows between the nodes in Figure 3 go from cause to effect. 

In our model, the health of the network is the most general information estimated and can 
be considered to be an underlying influence on the rest of the nodes in the Bayesian network. 
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Internal network variables 
to be estimated 

Figure 3 Bayesian network for fault detection. 

The overall health of the network directly influences the health of the three functions of the 
network (i.e., IF, IP, and UDP). This is indicated in our model by the arrows from the 
network random variable to the IF, IP, and UDP random variables. 

The model has been designed based on the intuitive relationships from the structure of the 
Mffi. The Bayesian network model requires the conditional independence assumptions 
described in Section 2. These assumptions are reasonable since each of the network 
functions represent independent functional components of the network. These components 
may fail independently, although there is a relationship between the functions, and serious 
problems in one component can eventually impact the other components. Since propagation 
of a fault through the functional components depends on the type and location of the fault 
(i.e., faults may propagate from low-level functions to high-level functions, or vice versa) 
[16], it is difficult to incorporate a propagation structure into the model that will 
accommodate all types of propagation. 

In addition, the relationships between the nodes of the Bayesian network (network 
functions and Mffi variables) are complex and not well understood. Therefore, as a starting 
point, we have proposed a simple model where no a priori relationship between the network 
functions is assumed, given the overall health of the network is known. Therefore we have 
not assumed a fault propagation structure in our model. Alternative Bayesian network 
structures that assume fault propagation structures have been investigated in [6]. 

Since we are monitoring locally, all of the evidence or probabilities estimated from the 
observed Mffi variables is available to the system. This enables the system to calculate the 
desired posterior probabilities using a complete and current set of observations. 

4 DATA COLLECTION 

Data for this work was collected from the RPI Computer Science Department network. The 
network as shown in Figure 4 is comprised of 7 subnetworks, or subnets, and two routers. 
The individual nodes (e.g., workstations, printers, etc.) on the subnets are not shown. Router 
1 is the gateway between this network and the campus network, with all the traffic to and 
from the campus and the outside world flowing through this router. Router 2 mainly routes 
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the local traffic flowing between the subnetworks. A large portion of this traffic is access 
from workstations to the fileservers. Data was collected from Router 2, the internal router. 

To campus network 

Figure 4 Configuration of the monitored network. 

The data was collected by polling the router using SNMP queries. The router was polled 
every 15 seconds. All of the available router Mffi variables were collected. Of these 
variables, we studied the 14 that were active. The other variables changed infrequently and 
during the times of recorded faults, they rarely provided information that was not provided 
already by the active variables. 

We monitored the router for approximately seven months. The monitoring was continuous 
for most of the time. During this time the log files generated by the syslog function were also 
saved to label the faults within the data. As syslog is not targeted specifically for network 
errors, only a subset of all network problems will be reported by syslog. The network related 
problems reported by syslog are usually severe. In fact, the type of network problem we 
found to be most commonly reported by syslog was server not responding. This type of 
message indicates a severe problem that may be occurring for a number of reasons (e.g. 
server down, path unavailable). The syslog messages do not provide any information about 
the cause of the problem. 

5 EXPERIMENTAL RESULTS 

The system proposed for anomaly detection was tested on a set of 10 faults observed on the 
network in Figure 4 between October 1995 and March 1996. Most of the faults (9 out of 10) 
have been recorded as server not responding. The remaining fault is a report of excess 
Ethernet collisions on one of the subnets. Due to the mechanism currently used to log faults 
on this network (syslog), we could only observe types of faults where a service provided by 
the network is not operational. This mechanism provided accurate reports of severe faults, 
but no account of less severe network faults. 
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Although nine of the faults studied were the same, we did not observe the same types of 
changes in the data from fault to fault. This can possibly be traced to the fact that the faults 
were caused by different sets of circumstances or root causes. Even if the root causes were 
similar, the problems could have manifested themselves differently due to the network 
environment at the time they occurred. Specific root cause information may not be available 
without knowledge of the implementation details of the nodes comprising the network. 

The results along with comparisons with threshold methods are shown for one of the faults. 
The results for the remaining faults are summarized. 

5.1 Our Results 

One of the faults the system was tested on was a fault that was reported as server not 
responding between 6:33 am and 6:36 am on December 23, 1996. The fileserver that was not 
responding was on Subnet 2. A total of 13 machines reported this problem ( 7 on Subnet 2, 4 
on Subnet 3, and 2 on Subnet 4). The results are shown in Figure 5. 

The asterisks denote the fileserver downtime period. Abnormal behavior is detected in the 
Network approximately 12 minutes before the server is reported unreachable. Anomalies are 
present before the problem in all three network functions, but only IP detects an anomaly 
during the crash. Similar results were obtained when a 4 hour learning window was used. 

It is important to keep in mind the structure of the network in Figure 4. The router that we 
are monitoring continues to route all other traffic normally. The fileserver being down is not 
problematic to the router, but still we are able to detect the problem by monitoring the router. 
The router is able to detect that there is an anomaly in the network through changes to its 
MIB variables. Therefore, the results that we have are from the routers view of the network. 
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Figure 5 Results using I hour learning window. 
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5.2 Composite results 

More generally, 7 out of the 10 faults studied were detected using a 1 hour learning window 
and 5 out of 10 were detected using a 4 hour learning window. We considered a fault to be 
detected if the posterior probability that Network is abnormal is greater than 0.5. 

These results need to be put into perspective. Ideally, we could calculate the number of 
times that a fault is detected when there is no fault (false alarms). Since we only have labels 
from the log file for the severe faults, it is not clear where other faults should or should not be 
detected. Therefore, to get some measure of the sensitivity we calculated the percentage of 
time that the posterior probability of the Network, IF, IP, and UDP is abnormal. The 
following figures indicate the percentage of abnormal time. 

Network abnormal 
• 6.29% of time using 1 hr learning window 
• 3.85% of time using 4 hr learning window 

IF abnormal 
• 35.97% of time using 1 hr learning window 
• 24.85% of time using 4 hr learning window 

IP abnormal 
• 42.03% of time using 1 hr learning window 
• 33.32% of time using 4 hr learning window 

UDP abnormal 
• 42.24% of time using 1 hr learning window 
• 30.29% of time using 4 hr learning window. 

5.3 Comparisons 

Since thresholds are commonly used to detect faults, we compared our results to those 
obtained using a feature set of an upper and lower threshold. The feature is whether the 
particular variable is within the thresholds or not. To combine the information from each 
Mill variable, we counted the total number of variables exceeding their thresholds at each 
time instance. The thresholds were calculated using learning windows of 1 hour, 4 hours and 
1 week. The first two correspond to the windows used by the monitoring system. The third 
corresponds to the common practice of determining threshold levels using a large amount of 
data. 

The results from all of these methods are shown in Figure 6. The asterisks denote the 
period where the fileserver was down. The results for 1 and 4 hour learning windows are 
identical. Both have small peaks where thresholds have been exceeded by 3 of the 14 Mill 
variables. The results using a 1 week learning window are essentially the same for the entire 
hour, thereby providing no useful information. 

Abnormalities at the highest level of our monitoring system (Network) are being 
detected a small percentage of the time. Therefore the detection of the test faults is 
significant. On the other hand, the faults that were not detected may not have had symptoms 
present at the router, or the features we used may not have captured adequate information to 
detect symptoms that were present. 
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Figure 6 Results using thresholds. 

6 CONCLUSION 
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We have shown that it is possible to use an adaptive learning machine to detect network 
faults without using models of specific faults. The Bayesian network provided a theoretical 
framework within which we were able to use prior knowledge to determine a structure and 
learn the normal behavior of the measurement variables. The system was tested on real data 
involving a fileserver crash on a computer network. It was able to successfully detect 
something abnormal approximately 12 minutes before the fileserver crashed. The detection 
was done from a router on the network which was operating properly. The router detected 
that something was wrong in the network from changes to its measurement variables. 

With early detection, the network manager can be warned of impending failure, take 
corrective action and avoid the failure and costly downtime. Our approach is able to 
accomplish early detection by recognizing deviations from normal behavior in each of the 
measurement variables, correlating this information in time and then combining the 
information in a probabilistic framework. 

This work is viewed as a first step in the direction of an automated fault management 
system that can generalize from network to network with minimal network specific 
information required a priori. The fault management problem is very complex and the nature 
of the problem evolves as networks evolve. Future work involves expanding the scope of 
the experiment, as well as further investigation of the methods. 

The Bayesian formulation of this detection problem can be extended to incorporate more 
types of information or Mm groups. It can also be extended to combine the observations of 
several nodes in the network at the central network manager. With this extension, the 
Bayesian network's ability to estimate probabilities with incomplete information could be 
utilized. In addition, the use of learning to identify other possible structures for the Bayesian 
network is also an area for further investigation. Another area to investigate is better usage 
of the fault information that is available. This information can be used to help detect and 
diagnose known faults and to improve the feature extraction. 
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