
51
Automated Proactive Anomaly Detection

C. S. Hood and C. Jit
Department of Computer Science and Applied Mathematics
Illinois Institute ofTechnology, Chicago, IL USA 60616
chood@ charlie. ens. iit. edu

tDepartment of Electrical, Computer and Systems Engineering
Rensselaer Polytechnic Institute, Troy, NY USA 12180
chuanyi@ ecse. rpi. edu

Abstract
To address the increasing complexities of fault management, we propose an automated,
proactive monitoring system using adaptive statistical techniques. Requiring only a minimal
amount of network specific information a priori, the system continually collects data, uses the
data to Jearn the normal behavior of the network, and detects deviations from the norm. The
proposed system is thereby able to detect unknown or unseen faults. Experimental results on
real network data demonstrate that the proposed system can detect abnormal behavior before
a fault actually occurs.

Keywords
Fault detection, proactive network monitoring, statistical learning methods, MIB, SNMP

1 INTRODUCTION

Fault management is the part of network management responsible for detecting and
identifying faults in the network. Interest in fault management has increased over the past
decade due to the growing number of networks that have become a critical component of the
infrastructure of many organizations, making faults and downtime very costly. In addition, as
computer networks evolve from providing only "best effort" service to providing a range of
service guarantees to accommodate real-time applications (e.g. video), higher levels of
reliability are required. By preserving network reliability, fault management Jays the

A. A. Lazar et al. (eds.), Integrated Network Management V
© Springer Science+Business Media Dordrecht 1997

Automated proactive anomaly detection 689

foundation for the stringent Quality of Service (QoS) requirements placed on networks by
real-time applications.

As the fault management problem becomes more important, it has also become more
difficult. This can be traced primarily to the dynamic nature and heterogeneity of current
networks. Fundamental changes to the network occur much more frequently due to the
growing demands on the network and the availability of new, improved components and
applications. With network components and applications developed in an open environment,
a network can be configured by mixing and matching several vendors' hardware and
software. While this allows the network to utilize the latest technologies and be customized
to the needs of the users, it also increases the risk of faults or problems [18].

Previous research in fault management has covered approaches such as expert systems [7],
Finite State Machines (FSMs) [13], advanced database techniques [17], and probabilistic
approaches [3]. A review of communication network fault detection and identification can
be found in [8]. The approaches mentioned above require specification of the faults to be
detected. This limits the performance of these approaches since it is not feasible to specify
all possible faults. In addition, changes in network configuration, applications and traffic can
change the types and nature of faults that may occur, making modeling faults more difficult
and in many cases impractical. Research using learning machines to detect anomalies [11]
addresses the issue of fault modeling, but does not provide a method for correlating the
information collected in space or time.

The problem we will tackle is automated fault detection without specific models of faults.
We propose an adaptive learning system for network monitoring. The system learns the
normal behavior of each measurement variable. Deviations from the norm are detected and
the information gathered is combined in the probabilistic framework of a Bayesian network.
Benefits from this approach include the ability to detect unknown faults, the ability to
correlate information in space and time, and the ability to detect subtle changes occurring
before the actual failure. This allows faults to be detected when they are developing so the
network manager has time to take corrective action to prevent outages or downtime. In
addition, this approach requires minimal amounts of network specific information, so it can
be generalized across network nodes and types of networks. Our approach is tested on a
computer network. We monitor the Management Information Base (MJB) variables collected
within the Simple Network Management Protocol (SNMP) framework. No specialized
hardware is required for monitoring.

The paper is organized as follows. Section 2 provides background material on Bayesian
networks. Our intelligent monitoring approach is described in Section 3. Detailed
information about the data we collected is given in Section 4, and Section 5 contains results
and comparisons. Conclusions and areas for further investigation are discussed in Section 6.

2 BAYESIAN NETWORK BACKGROUND

A Bayesian network, also called a belief network or a causal network, is a graphical
representation of relationships within a problem domain. More formally, a Bayesian network
is a directed acyclic graph (DAG), where certain conditional independence assumptions hold
[7]. The nodes of the DAG represent random variables. The conditional independence

690 Part Five Fault Management II

assumptions are as follows: Given a DAG G = (N,E), where n e N is a node in the
network and e e E is a directed arc. For each n eN, let p(n)!: N be the set of all parents

of n, and d(n)!:: N be the set of all descendents of n. For every subset
W!: N- (d(n) u {n}), W and n are conditionally independent given p(n). In other words,

for any node in the DAG, given that node's parents, that node is independent of any other
node that is not its descendent. Figure 1 illustrates the independence assumptions for a
Bayesian network similar to the one we will use in our monitoring system.

These assumptions allow us to estimate the conditional probabilities of any of the nodes
(or random variables) in the Bayesian network given the observed information or evidence.
The strength of Bayesian networks is that they provide a theoretical framework for
combining statistical data with prior knowledge about the problem domain. Therefore, they
are particularly useful in practical applications.

p[W,n I p(n)] = p[W I p(n)] p[n I p(n) I

Figure 1 Example of Bayesian network independence assumptions.

Bayesian networks have been widely used for medical diagnosis [15] [4], troubleshooting
[5], and in the communication network field, they have been proposed to diagnose faults in
Linear Lightwave Networks [6]. In [6] other methods have been used for detection and the
Bayesian networks are used for diagnosis only. In this work, we propose using a Bayesian
network as a mechanism to combine information from different variables for the purpose of
detecting anomalies.

3 MONITORING SYSTEM

We propose an automated monitoring system that is able to detect anomalies without specific
models of the behavior to be detected. The premise of this approach is that anomalous or

Automated proactive anomaly detection 691

unusual network behavior is an indication of a fault within the network. The logical flow of
information through the monitoring system components are shown in Figure 2.

Raw
Measurement

Variables

Observation
Processing

Combination
of

Information

Node's view
of network
behavior

Figure 2 Logical flow of information through the monitoring system.

The system resides locally, allowing each node in the network to compose a picture of the
network's health. To get this picture, measurement information must be combined with prior
knowledge about the network. To accomplish this, the monitoring system has two main
components; observation processing and combination of information. The raw measurement
variables are processed to estimate the probability of each measured variable at a given time.
The probabilities are then combined using a Bayesian network to provide a broader picture of
the network's behavior. By doing this locally, we can correlate this information in time and
space. This allows the central network manager to receive a more complete, less noisy
picture of each node's view of network health. This can ease the alarm correlation problem.
It also allows the node to take corrective actions if necessary.

3.1 Observation processing

The goal of the observation processing part of the monitoring system is to take the raw
measurement variables and transform them into a set of measures indicating the behavior of
each variable. Each measurement variable is a time series. Many of the measurement
variables are representative of network traffic. To date, the characterization of network
traffic signals is an active research area [9]. Therefore, the signals (i.e. measurement
variables) to be processed are not considered to be well understood and as such there is not
an optimal, or even standard method to characterize the behavior of these signals.

In processing the information we use a change detection methodology. Since the behavior
of the network is dynamic, the behavior of the measurement variables change frequently. As
most changes are related to network traffic, simply detecting that a change has occurred is not
enough. The goal is to try to recognize the changes that are important in terms of fault
detection. We do this by characterizing the behavior of the measurement variables.

Segmentation
One of the challenges presented by the network dynamics is the non-stationarity of the
observations. Since our goal is to extract pertinent information, we need to group the time
series data in some way so that features can be calculated. To do this we segment the data
into variable length pieces. Each piece contains a portion of the time series that is
statistically similar.

692 Part Five Fault Management II

There are two primary benefits realized from segmentation: (1) the statistics calculated
from each segment are more representative of the signal, and (2) signal processing techniques
requiring a stationary signal can be used within each segment. fu terms of monitoring, the
segmentation provides the benefit of temporally correlating the observations. Since many of
the network signals are bursty, the temporal correlation can help distinguish between a burst
and a change in the nature of the signal. The sequential segmentation algorithm described in
[1] is used. Once the observations have been grouped into segments, the pertinent
information must be captured from each segment.

Feature extraction
Before our approach to feature extraction is discussed, we first need to examine the
shortcomings of commonly used methods. Thresholds are the primary method currently used
in both practice [10] and research [3] for detecting abnormal behavior. The feature is not the
value of the threshold itself, but the information on whether or not the threshold has been
exceeded by a particular measurement variable. One of the difficulties with thresholds is
properly setting the threshold level, since they are highly dependent on the traffic level.

While properly set thresholds do a good job of detecting large rises and falls in a
measurement variable, more subtle behavior changes are missed. For example, a change in
the variance of a signal, or a subtle change in the mean will not be detected using thresholds.
These types of changes may be symptoms of something problematic in the network - this
behavior is unusual for the variable. Detection of the more subtle signs of problems may
allow corrective action to be taken to avoid a bigger problem. Identification of the problem
also becomes easier with a more complete description of the symptoms rather than just the
extreme cases.

Our goal is to extract information that will help determine whether the behavior of the
measurement variable is normal or abnormal. Ideally we want to capture information in the
signal that will change or become abnormal only when a problem is occurring. To do this we
would need a feature that is invariant to the network traffic patterns and other influences that
cause the non-stationarities. This is an open problem, so we choose a feature that changes
along with the network and continually adapt the model of normal behavior.

To detect the more subtle changes in the nature of the measured variables, we use the
parameters of an AR(2) or second-order autoregressive process as features. The AR(2)
process is defined as

where y(t) is the value of the signal at timet , a1 and a2 are the AR parameters that we use

as features, and e(t) is white noise. Additional features have been investigated in [6].

Learning the behavior
The features provide the ability to detect subtle changes, but they must first be used to
establish a description of normal behavior. The description of the behavior is in the form of a
probability distribution. Changes can then be detected relative to the distribution.

Ideally, for each sample we would like to estimate its likelihood given that, (1) the network
is operating normally, and (2) there is a fault. To do this, we need to know exactly when the

Automated proactive anomaly detection 693

network as a whole, and each of its functions is operating normally. This type of information
is not typically available. We are able to get some information about the health of the
network from the tools currently used to report problems (i.e., log files). The information
available contains reports on certain types of serious network problems that have occurred.
From a learning perspective, we can use these reports as labels.

One way of using the labels is to learn the probability distribution of each measurement
variable, given that its related network function is abnormal. This sounds promising, but in
fact is extremely difficult due to the sparse nature of abnormal data. With so few examples
of problems, we do not have the variety (i.e., many examples of different problems) or the
depth (i.e., several examples of the same type of problem) to effectively learn the distribution
[2].

Instead we learn only the likelihood of the sample given the network function is normal.
We define normal behavior to be the behavior of the variable during the time period when the
distribution is learned. This time period will be referred to as the learning window. Since
what we are learning is the usual behavior of the variable during the learning window, there
is no guarantee that this always corresponds to the network or network functions being
healthy. If there is a problem in the network that impacts the behavior of the network for a
significant portion of the learning window, the problematic behavior will be learned as the
usual behavior. We assume that this is rarely the case.

3.2 Combination of Information

The goal of this part of the monitoring system is to combine the processed measurement
variable information into higher-level measures of network behavior. These higher-level
measures provide the monitored node's view of the network behavior. These measures can
be used to trigger local control actions or a message to a centralized network manager.

Each measurement variable measure is combined in the probabilistic framework of a
Bayesian network. The Bayesian network is used because it provides a method for
estimating probabilities and it allows observed information to be combined with prior
knowledge.

We begin by defining the random variables or nodes in the Bayesian network. There are
two types of variables, those that are observed and those that are not observed and thus need
to be estimated. We will call the variables that are not observed the internal variables. The
observed variables directly correspond to the Mill variables. The internal variables are
defined to be Network, Interface (IF), IP, and UDP. The IF, IP, and UDP variables
correspond to the Mill groups. Logically they represent different types of network
functionality. The Mill variables within a group are the measurement variables for that
network function (nf).

The Network variable is defined to correspond to all of the network functionality. In this
work, we assume that the network is comprised only of the IF, IP, and UDP functions since
these were the functions being used at the router where we were monitoring. Other network
functions can easily be added. The structure of the Bayesian network is shown in Figure 3.
The arrows between the nodes in Figure 3 go from cause to effect.

In our model, the health of the network is the most general information estimated and can
be considered to be an underlying influence on the rest of the nodes in the Bayesian network.

694 Part Five Fault Management II

Internal network variables
to be estimated

Figure 3 Bayesian network for fault detection.

The overall health of the network directly influences the health of the three functions of the
network (i.e., IF, IP, and UDP). This is indicated in our model by the arrows from the
network random variable to the IF, IP, and UDP random variables.

The model has been designed based on the intuitive relationships from the structure of the
Mffi. The Bayesian network model requires the conditional independence assumptions
described in Section 2. These assumptions are reasonable since each of the network
functions represent independent functional components of the network. These components
may fail independently, although there is a relationship between the functions, and serious
problems in one component can eventually impact the other components. Since propagation
of a fault through the functional components depends on the type and location of the fault
(i.e., faults may propagate from low-level functions to high-level functions, or vice versa)
[16], it is difficult to incorporate a propagation structure into the model that will
accommodate all types of propagation.

In addition, the relationships between the nodes of the Bayesian network (network
functions and Mffi variables) are complex and not well understood. Therefore, as a starting
point, we have proposed a simple model where no a priori relationship between the network
functions is assumed, given the overall health of the network is known. Therefore we have
not assumed a fault propagation structure in our model. Alternative Bayesian network
structures that assume fault propagation structures have been investigated in [6].

Since we are monitoring locally, all of the evidence or probabilities estimated from the
observed Mffi variables is available to the system. This enables the system to calculate the
desired posterior probabilities using a complete and current set of observations.

4 DATA COLLECTION

Data for this work was collected from the RPI Computer Science Department network. The
network as shown in Figure 4 is comprised of 7 subnetworks, or subnets, and two routers.
The individual nodes (e.g., workstations, printers, etc.) on the subnets are not shown. Router
1 is the gateway between this network and the campus network, with all the traffic to and
from the campus and the outside world flowing through this router. Router 2 mainly routes

Automated proactive anomaly detection 695

the local traffic flowing between the subnetworks. A large portion of this traffic is access
from workstations to the fileservers. Data was collected from Router 2, the internal router.

To campus network

Figure 4 Configuration of the monitored network.

The data was collected by polling the router using SNMP queries. The router was polled
every 15 seconds. All of the available router Mffi variables were collected. Of these
variables, we studied the 14 that were active. The other variables changed infrequently and
during the times of recorded faults, they rarely provided information that was not provided
already by the active variables.

We monitored the router for approximately seven months. The monitoring was continuous
for most of the time. During this time the log files generated by the syslog function were also
saved to label the faults within the data. As syslog is not targeted specifically for network
errors, only a subset of all network problems will be reported by syslog. The network related
problems reported by syslog are usually severe. In fact, the type of network problem we
found to be most commonly reported by syslog was server not responding. This type of
message indicates a severe problem that may be occurring for a number of reasons (e.g.
server down, path unavailable). The syslog messages do not provide any information about
the cause of the problem.

5 EXPERIMENTAL RESULTS

The system proposed for anomaly detection was tested on a set of 10 faults observed on the
network in Figure 4 between October 1995 and March 1996. Most of the faults (9 out of 10)
have been recorded as server not responding. The remaining fault is a report of excess
Ethernet collisions on one of the subnets. Due to the mechanism currently used to log faults
on this network (syslog), we could only observe types of faults where a service provided by
the network is not operational. This mechanism provided accurate reports of severe faults,
but no account of less severe network faults.

696 Part Five Fault Management II

Although nine of the faults studied were the same, we did not observe the same types of
changes in the data from fault to fault. This can possibly be traced to the fact that the faults
were caused by different sets of circumstances or root causes. Even if the root causes were
similar, the problems could have manifested themselves differently due to the network
environment at the time they occurred. Specific root cause information may not be available
without knowledge of the implementation details of the nodes comprising the network.

The results along with comparisons with threshold methods are shown for one of the faults.
The results for the remaining faults are summarized.

5.1 Our Results

One of the faults the system was tested on was a fault that was reported as server not
responding between 6:33 am and 6:36 am on December 23, 1996. The fileserver that was not
responding was on Subnet 2. A total of 13 machines reported this problem (7 on Subnet 2, 4
on Subnet 3, and 2 on Subnet 4). The results are shown in Figure 5.

The asterisks denote the fileserver downtime period. Abnormal behavior is detected in the
Network approximately 12 minutes before the server is reported unreachable. Anomalies are
present before the problem in all three network functions, but only IP detects an anomaly
during the crash. Similar results were obtained when a 4 hour learning window was used.

It is important to keep in mind the structure of the network in Figure 4. The router that we
are monitoring continues to route all other traffic normally. The fileserver being down is not
problematic to the router, but still we are able to detect the problem by monitoring the router.
The router is able to detect that there is an anomaly in the network through changes to its
MIB variables. Therefore, the results that we have are from the routers view of the network.

io.a
e
1ij0.6
c
10.4
~0.2

0 1000 2000 3000
1ime (seconds)

Dec 23 6:ooam - 7:ooam

1

io.a ·e
1ij0.6
c
,0.4

~0.2
0

-

0'----1-000-2000--3000

time (seconds)

1

fo.a
Jo.e
\'10.4
!5 :::.0.2
0:

Figure 5 Results using I hour learning window.

Automated proactive anomaly detection 697

5.2 Composite results

More generally, 7 out of the 10 faults studied were detected using a 1 hour learning window
and 5 out of 10 were detected using a 4 hour learning window. We considered a fault to be
detected if the posterior probability that Network is abnormal is greater than 0.5.

These results need to be put into perspective. Ideally, we could calculate the number of
times that a fault is detected when there is no fault (false alarms). Since we only have labels
from the log file for the severe faults, it is not clear where other faults should or should not be
detected. Therefore, to get some measure of the sensitivity we calculated the percentage of
time that the posterior probability of the Network, IF, IP, and UDP is abnormal. The
following figures indicate the percentage of abnormal time.

Network abnormal
• 6.29% of time using 1 hr learning window
• 3.85% of time using 4 hr learning window

IF abnormal
• 35.97% of time using 1 hr learning window
• 24.85% of time using 4 hr learning window

IP abnormal
• 42.03% of time using 1 hr learning window
• 33.32% of time using 4 hr learning window

UDP abnormal
• 42.24% of time using 1 hr learning window
• 30.29% of time using 4 hr learning window.

5.3 Comparisons

Since thresholds are commonly used to detect faults, we compared our results to those
obtained using a feature set of an upper and lower threshold. The feature is whether the
particular variable is within the thresholds or not. To combine the information from each
Mill variable, we counted the total number of variables exceeding their thresholds at each
time instance. The thresholds were calculated using learning windows of 1 hour, 4 hours and
1 week. The first two correspond to the windows used by the monitoring system. The third
corresponds to the common practice of determining threshold levels using a large amount of
data.

The results from all of these methods are shown in Figure 6. The asterisks denote the
period where the fileserver was down. The results for 1 and 4 hour learning windows are
identical. Both have small peaks where thresholds have been exceeded by 3 of the 14 Mill
variables. The results using a 1 week learning window are essentially the same for the entire
hour, thereby providing no useful information.

Abnormalities at the highest level of our monitoring system (Network) are being
detected a small percentage of the time. Therefore the detection of the test faults is
significant. On the other hand, the faults that were not detected may not have had symptoms
present at the router, or the features we used may not have captured adequate information to
detect symptoms that were present.

698 Part Five Fault Management II

i
1 1

~0.8
:f! .2 0.6

!o.4

(a) 1 Hour

~0.2 II
~ 01'----'-..L.._-----l

0.8

0.6

0.4

(b)4 Hours

0.2 II
Ofl-....L....L_ __ -1

0.2

0

(c) 1 Week

/1. '-------....J
0 1000 2000 3000

time (seconds)
0 1000 2000 3000

time (seconds)
0

Figure 6 Results using thresholds.

6 CONCLUSION

1000 2000 3000
time (seconds)

We have shown that it is possible to use an adaptive learning machine to detect network
faults without using models of specific faults. The Bayesian network provided a theoretical
framework within which we were able to use prior knowledge to determine a structure and
learn the normal behavior of the measurement variables. The system was tested on real data
involving a fileserver crash on a computer network. It was able to successfully detect
something abnormal approximately 12 minutes before the fileserver crashed. The detection
was done from a router on the network which was operating properly. The router detected
that something was wrong in the network from changes to its measurement variables.

With early detection, the network manager can be warned of impending failure, take
corrective action and avoid the failure and costly downtime. Our approach is able to
accomplish early detection by recognizing deviations from normal behavior in each of the
measurement variables, correlating this information in time and then combining the
information in a probabilistic framework.

This work is viewed as a first step in the direction of an automated fault management
system that can generalize from network to network with minimal network specific
information required a priori. The fault management problem is very complex and the nature
of the problem evolves as networks evolve. Future work involves expanding the scope of
the experiment, as well as further investigation of the methods.

The Bayesian formulation of this detection problem can be extended to incorporate more
types of information or Mm groups. It can also be extended to combine the observations of
several nodes in the network at the central network manager. With this extension, the
Bayesian network's ability to estimate probabilities with incomplete information could be
utilized. In addition, the use of learning to identify other possible structures for the Bayesian
network is also an area for further investigation. Another area to investigate is better usage
of the fault information that is available. This information can be used to help detect and
diagnose known faults and to improve the feature extraction.

Automated proactive anomaly detection 699

7 REFERENCES

[1] U. Appel, A.V. Brandt, "Adaptive Sequential Segmentation of Piecewise Stationary Time
Series," Information Sciences, vol. 29, 1983, pp. 27-56.

[2] C. Cortes, L.D. Jackel, W-P Chiang, "Predicting Failures of Telecommunication paths:
Limits on Learning Machine Accuracy Imposed by Data Quality," Proceeding of the
International Workshop on Applications of Neural Networks to Telecommunications 2,
Stockholm, 1995.

[3] R.H. Deng, A.A. Lazar, W. Wang, "A Probabilistic Approach to Fault Diagnosis in
Linear Lightwave Networks," IEEE JSAC, vol. 11, no. 9, Dec. 1993, pp. 1438-1448.

[4] D. Heckerman, "A tractable algorithm for diagnosing multiple diseases," Proceedings of
the Fifth Workshop on Uncertainty in Artificial Intelligence, Windsor, ON, 1989, pp. 174-
181.

[5] D. Heckerman, J.S. Breese, K. Rommelse, "Decision-Theoretic Troubleshooting,"
Communications of the ACM, vol. 38, March 1995, pp. 49-57.

[6] C. Hood, "Intelligent Detection For Fault Management of Communication Networks,"
Ph.D. Dissertation, Rensselaer Polytechnic Institute, 1997.

[7] G. Jakobson, M.D. Weissman, "Alarm Correlation," IEEE Network, Nov. 1993, pp. 52-
59.

[8] A.A. Lazar, W. Wang, R. Deng, "Models and Algorithms for Network Fault Detection
and Identification: A Review," ICC, Singapore, Nov. 1992.

[9] W. Leland, M. Taqqu, W. Willinger and D. Wilson, "On The Self Similar Nature of
Ethernet Traffic (extended version)," IEEE/ACM Trans. Networking, vol. 2, pp. 1-15, Feb.,
1994.

[10] E.L. Madruga, L.M.R. Tarouco, "Fault Management tools for a Cooperative and
Decentralized Network Operations Environment," IEEE JSAC, vol. 12, no. 6, Aug. 1994,
pp. 1121-1130.

[11] R. Maxion, F. Feather, "A Case Study of Ethernet anomalies in a Distributed
Computing Environment," IEEE Trans. on Reliability, vol. 39, Oct. 1990, pp. 433-443.

[12] J. Pearl, Probabilistic Reasoning in Intelligent systems: Networks of Plausible Inference.
San Mateo, CA: Morgan Kaufman, 1988.

[13] I. Rouvellou, "Graph Identification Techniques Applied to Network Management
Problems," Ph.D dissertation, Columbia University, 1993.

[14] P. Smyth, "Markov Monitoring with Unknown States," IEEE JSAC, vol. 12, 1994, pp.
1600-1612.

[15] D.J. Spiegelhalter, A.P. Dawid, S.L. Lauritzen, R.G. Cowell, "Bayesian Analysis in
Expert Systems," Statistical Science, vol. 8, no. 3, 1993, pp. 219-288.

[16] Z. Wang, "Model of network faults," Integrated Network Management I, B. Meandzija
and J. Westcott (eds.), New York, NY, Elsevier Science Publishing Company, 1989.

[17]0. Wolfson, S. Sengupta, Y. Yemini, "Managing Communication Networks by
Monitoring Databases," IEEE Transactions on Software Engineering, vol. 17, no. 9, 1991.

[18] Y. Yemini, "A Critical Survey of Network Management Protocol Standards,"
Telecommunications Network Management Into the 21'1 Century, S. Aidarous and T.
Plevyak (eds.), New York, NY, IEEE press, 1994.

