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Abstract 
Management activities are based on the state of distributed system components, relations 
of these components, and their behaviour. Since management policies are applied across an 
abstraction of distributed systems, the quality of decisions is dependent on the represen­
tation fidelity of the real system state. Obviously, the data collection process updating the 
abstract representation of real distributed system components has a major impact on the 
quality of management decisions. Gathering most topical management data improves the 
quality of management decisions, but requires a high degree of monitoring activity. This 
is contradictory to the request for low impact management systems, where the amount of 
system resources used for management purpose should be as small as possible. 

In this paper we present a twofold approach to this problem: First a high level ma­
nagement architecture is described where monitoring is performed by distributed agents 
with generic functionality for filtering and event creation. The distribution of active ma­
nagement agents reduces the amount of management related traffic and avoids a potential 
bottleneck on a centralized management station. Second an adaptive polling frequency ap­
proach is presented which enables the monitoring agents to adapt their polling frequency 
automatically to different behavioral parameters of managed components. The automatic 
adaptation reduces the performance impact of the agents significantly while at the same 
time a high accuracy of management relevant information about critical components is 
ensured. Implementation aspects of the introduced management architecture in a CORBA 
environment are also discussed. 
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1 INTRODUCTION 

Two paradigms are currently used for system management: the platform-centered mana­
gement (commonly used by proprietary architectures) and the distributed management 
(recommended by OSI and ODP standards). Distribution is viewed either as heterogene­
ous management entities localized on specific sites and cooperating for a common problem 
solution, or homogeneous management units, distributed on many sites (so called System 
Management Application Entity (SMAE} in OSI standards). Management activities are 
based on the state of DS (Distributed System) components, relationships of these com­
ponents, and their behavior. 

Managers must accurately know the state of managed components. Within the notifi­
cation approach, a DS component automatically sends notifications upon state changes to 
specialized agents. The agent forwards this notification to its own manager. The amount of 
traffic increases with the number of changes and the system performance decreases. Beside 
that, many times the notification data may not be relevant for the system management. 

In the polling approach, supervisors (agents for the real resources, or managers for 
agents) send actions to collect data (eventually updated). Collecting commands could be 
issued periodically with a variable or fixed frequency. The process of collecting information 
at regular intervals is known as polling. The result of a polling operation is either new 
data (as information message), or no new changes (control message without reports). 

The polling procedure is characterized by three important features: the polling interval 
defined as the amount of time between two consecutive polling operations within which the 
polled component has not transmitted new data; the walk time representing the amount 
of polling interval consumed by polling messages; and the response time referring to the 
amount of time between a command and the appropriate response. Evaluation of these 
features depends on several management aspects. 

Gathering most topical management data usually improves the quality of management 
decisions, but requires a high degree of monitoring activity. This is contradictory to the 
request for low impact management systems, where the amount of system resources used 
for management purpose should be as small as possible. In this paper we present a twofold 
approach to this problem: In Section 2 a high level management architecture is described 
where monitoring is performed by distributed agents with generic functionality for filte­
ring and event creation. Section 3 shortly defines behavioral parameters which are used 
in Section 4 as input for an adaptive polling frequency approach which enables the mo­
nitoring agents to adapt their polling frequency automatically with respect to different 
behavioral parameters of managed components. Implementation aspects of the introduced 
management architecture in a CORBA environment are discussed in Section5. 

2 ARCHITECTURAL ISSUES 

A comprehensive management architecture requires the provision of several generic ma­
nagement services. Figure 1 provides an overview of the architectural concept. Different 
management applications share a set of generic management services. These services are 
focused on management issues only, distribution transparencies are provided by appro­
priate middleware components. The integration of different management applications into 
a common architecture allows simplified cooperation and coordination of activities from 
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Figure 1 Overview of the management architecture 

different management areas. This integrity is required to avoid unexpected side effects 
where activities in one management application has a major impact on the result of ac­
tivities in another area. The performance management of multimedia applications, for 
example, depends usually on the underlying network, which is managed by a network 
management application. Coordination of both management activities allows us to reach 
an optimized result for both areas. 

A common graphical user interface (GUI) provides access to the management services. 
This interface allows the human administrator editing of policies and domains, activation 
and deactivation of services and monitoring of management activity. It is important to 
note that the management services in this architecture are considered to be a distributed 
application running on an appropriate middleware platform. State of the art manage­
ment protocols, like the Simple Network Management Protocol (SNMP) or the Common 
Management Information Protocol (CMIP), and an object oriented database are enclosed 
within the middleware and therefore transparent to the management services and applica­
tions. Elementary services, like communication or data-storage, are provided by standard 
operating systems. 

Figure 2 provides an overview of the runtime environment. Updated data is collected 
in two phases namely, at a physical level (from real resources to standardized records) 
and at a management level (from management agents to their correspondent managers). 
As shown in Figure 2, these data is collected from the real resources either by the source 
initiative as change events (physical notifications, management notifications), or by spe­
cialized software agents (physical actions, management actions). 

At runtime most management activities are triggered by events created from monitoring 
results. Monitoring provides actual values about the state of managed objects either by 
requesting the values at a regular interval or by receiving notifications from the managed 
objects. Evaluation of monitored values may result in an event if a predefined threshold 
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Figure 2 Agents and Interfaces in a CORBA environment 

or a combination of critical values is reached. The functionality of the monitoring service 
comprises operations for: 

• Instantiation and removal of monitoring agents based on informations provided by the 
event service. 

• Management of agents including behavior adapt ion to different polling intervals, thres­
holds, etc. 

• Provision of monitored values on request from the management service. 

Monitoring is performed by generic monitoring agents (Koch and Kramer 1996, Koch 
1995) which are installed by the monitoring service and located close to the managed 
object. 

The management architecture is realized as a distributed CORBA application, there­
fore the interfaces are described in CORBA IDL. Figure2 provides an overview of several 
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possible management interfaces. On the left side an interface to the Internet management 
environment is displayed. Access to the SNMP manager is performed with method invo­
cations on a CORBA interface. Number and complexity of interface functions depend on 
the capability of the SNMP manager. The management interface will be implemented as 
CORBA server and the capabilities are fixed with the code. Therefore the functionality of 
the SNMP manager is not a subject of flexible policy definitions. Any change to the beha­
vior requires recoding of the CORBA server. It is an important design decision to provide 
most general but still powerful capabilities. The minimum capabilities are prescribed by 
the functionality of the SNMP protocol. This simple approach is obviously unsufficient for 
comprehensive management tasks. Enhanced capabilities depend strongly on the type of 
resource that will be managed. The use of the CORBA interface inheritance mechanism 
could provide a solution. An elementary SNMP management interface to the CORBA 
environment provides the SNMP functionality only and serves as parent class for more 
specialized interfaces providing enhanced functionality for certain types of resources. This 
approach additionally ensures openness to new resources that may provide an enhanced 
SNMP MIB. 

A similar problem occurs with the inclusion of the OSI management environment. 
A different partitioning of interface functionality is used for representation of an OSI 
managing process in the middle of Figure 2. Obviously the same style could be used for the 
representation of the SNMP manager or conversely. The problem of assigning appropriate 
capabilities to the interfaces could also be solved in the same way as proposed for the 
SNMP interface. 

Figure 2 also illustrates the major advantage of a management environment that is im­
plemented as a CORBA application. The architecture is open to any management protocol 
as long as an appropriate interface is defined. This allows the inclusion of applications as 
well as system and network components into a comprehensive management environment. 
The CORBA standard additionally ensures interoperability between different manage­
ment service objects, running on different CORBA implementations. 

3 BEHAVIORAL PARAMETERS 

Unexpected operational state changes of system components imply that the service availa­
bility of components can not be guaranteed in general. State changes could either refer to 
the operational availability of a component or to the quality of the provided service. In 
the sequel, we shortly present these parameters. The interested reader can find additional 
details on the health behavioral parameters in the appendix, and complete information 
in cited papers. 

3.1 Availability parameters 

Several run-time measurable features for the operational availability have been proposed 
and defined by Dini, v.Bochmann and Boutaba (1996) as follows. Current availability 
h( t) is a continuous function of time, defined as a quotient between the amount of time in 
which the resource has been in the enabled state, commonly called operational time, and 
the observation period, i.e. the period between the time t0 of the event start and the time 
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t of the end of the observation period. The notation t; represents time stamps attached 
to each event occurring in a system. 

3.2 Dynamics parameters 

Dini (1996) characterized dynamic aspects of the component behavior by several compu­
table features. These features refer to either stability or instability of the component. The 
stability order k evaluates how long an operational state holds, with respect to the prece­
ding change. There are three instability measures: the instability order, the repeatability 
order, and the multiplicity order. The instability order p gives a measure of how long 
in time an operational state holds. The repeatability order r defines a local instability 
within a vicinity of a change, whereas the multiplicity order m refers to a long time in­
stability. Each order is dynamically computed as an integer number and the appropriate 
time stamp is attached to it. Time stamp lists corresponding top, r, and m orders form 
the time behavioral history of a system component. 

4 ADAPTIVE POLLING FREQUENCY 

In this section we propose a model for an optimized monitoring agent that adapts its 
polling frequency automatically according to predefined criteria. The monitoring agent 
is initialized with a basic frequency computed for the monitored system component. We 
assume that the basic frequency fo is deduced from formulae of existing approaches presen­
ted by Stallings (1993) and Schwartz (1987). Since all these approaches ignore behavioral 
aspects related to the monitored components, the basic frequency fo represents the mini­
mum polling frequency established with respect to global conditions. This basic frequency 
will be modified by use of a correction coefficient. The proposed model allows two different 
adaptation styles: The polling frequency is either adapted with respect to the behavior 
history of the monitored component, or with respect to the current value of the monitored 
attribute. 

4.1 History based adaptation 

We assume that a basic polling frequency fo is computed with respect to global system 
parameters and known by the agent. This basic frequency will be adapted by the correction 
factor (; according to the following equation: 

fo, = fo (1 + (;) fori= 1, ... , 4 (I) 

Consequently, the basic value of fo can be calculated independently according to global 
statistical parameters, whereas the right polling frequency is increased by the fraction (; J0 • 

This term signifies the correction we apply by taking into account the health behavioral 
parameters presented in Section 3. Next we will present two sets of formulae which linearly 
or exponentially correct the basic polling formula. 

Linear adaptation 
Four different formulae are proposed for the calculation of the correction factor (;. 
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Formula 1 The current availability computed at the last time stamp t is represented 
by h(t). The unavailability at t is 1 - h(t). Then, a first correction factor is defined 
with respect to these two related parameters. The quotient between the availability and 
unavailability is a relevant evaluation of the operational state. The first formula that we 
propose is to adapt the basic polling frequency by: 

(I= (1/h(t) -1) (1) 

Formula 2 If the dynamics parameters are critical features for a component, we can 
combine them with the availability features. For the moment, we consider only the stabi­
lity orders (called k and k' for the enabled and disabled operational state, respectively). 
Intuitively, with increasing values of k or k' the polling interval should increase, i.e. the 
polling frequency decreases. Therefore the polling frequency is conversely proportional to 
the stability orders. Since k and k' are finite integers, for k =f 0 and k' =f 0, we propose: 

(2 =(I+ max(1/k, 1/k') (2) 

Formula 3 Commonly, an unavailability described by an instability order p with (t;­
ti-l = 10-P) is considered to be in the range [pmin,Pmax], where Pmim is the lowest mea­
sured value and Pmax is the highest value accepted for a component type. Consequently, 
1/(Pmax- Pmin) is the ratio for each p's unity which can be added to the previous equation 
(2). 

(3 = (2 + Po/(Pmax - Pmin), where Po = max{p;lt < t;} (3) 

Formula 4 For some network components, the repeatability and multiplicity orders 
are relevant management features. Since m = 1 and r = 1 are the lowest limits, we 
assume that mmax and rmax are extreme limits accepted for an order p. Naturally, when a 
component behaves with r > 1 and/or m > 1, the polling frequency must be adapted in a 
certain manner. If we consider mo and r0 similarly to Po, we could improve the coefficient 
expression: 

(4 = (3 + mo/(mmax- 1) + ro/(rmax- 1) (4) 

Remarks: With respect to the availability, Formula 1 multiplies the basic polling fre­
quency by a coefficient in the range [0, 1], if we admit a minimum availability of 0.5. Each 
of the subsequent formula increments the maximum value of the coefficient by one, with 
a maximum increase of / 0; = 6 X fo if Formula4 is used. 

Exponential adaptation 
Another way to weight the current behavioral parameter values is to consider the expo­
nential function, which better emphasizes new values with respect to their magnitude. 
Let us consider a large range of the interval [a, b] described by exp([a, b]). If z E [a, b], the 
relation z $ ( e• -1) holds for all z. Consequently, we have a larger spectrum to distribute 
the polling frequency within the same range of(;. Each of the previous formulae becomes 
(I = exp((;) and the maximum polling frequency is given by !max = fo X 6 X (e- 1), 
where e = 2. 73 ... 
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Figure 3 Threshold based frequency adaptation 

4.2 Threshold based adaptation 

The second adaptation style is based on the idea that in general the polling frequency 
should be increased if the measured value gets close to a predefined threshold. The speci­
fication of the threshold based frequency adaptation is very simple. The system admini­
strator specifies a base frequency fo and up to n thresholds with individual characteristics. 
The concept is illustrated in Figure 3 with a base frequency fo = 0.1 1/ •. Here the mo­
nitored value is in the range [0, 100], which is typically for some kind of load measured 
in %. The monitoring agent will create a notification at the threshold values 60 (Ti) and 
80 (T2), respectively. A more detailed description of the agent behavior and the optional 
characteristics for each threshold is given by Koch, Krell and Krii.mer (1996), and in Koch 
and Kramer (1996). If a frequency adaptation is desired, the administrator may optionally 
specify three additional values for each threshold: 

Factor: The factor ai describes the desired polling frequency at the corresponding thres­
hold Ti. The desired frequency is calculated by multiplication of the base frequency 
with ai. 

hi= fox ai 

The example in Figure3 uses the factors a 1 = 1.5 for T1 and a 2 = 3 for T2 • 

Low: The low value f31i describes the frequency adaptation for measured values below the 
corresponding threshold Ti. For simplified definition the agent assumes a linear increase 
from the base frequency to the increased frequency defined with ai. The frequency on 
a slope is therefore described by 

(II) 
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where vk is the last monitored value. Based on this definition f3cj defines the value where 
the increased slope will meet the base frequency. The following equations are used to 
determine the parameters acj and bcr 

a· -1 
acj = -T3 {3 fo 

j- lj 

In the example the values f3ll = 50 and f3c 2 = 60 are used. 

(III) 

(IV) 

High: The high value f3hj mirrors the functionality of f3cj for the degrading slope above 
the threshold Tj. The equations (II), (III) and (IV) are used with an index h instead 
of l for definition of the slope. In the example no values for f3hj are defined, therefore 
the agent uses by default a vertical slope for all values above the threshold. 

The polling frequency will be adjusted in every measurement cycle. The agent always uses 
the highest value if several slopes are applicable. The resulting curve is printed as a bold 
line in Figure 3. 

The threshold based approach could be used in combination with the history based 
adaptation as presented in Section 4.1. In the combined approach, the base frequency fo 
will be adapted by (I) according to the history of the managed component. 

5 IMPLEMENTATION ASPECTS 

As explained in Section 2 our architecture is implemented in a CORBA environment, we 
use the Orbix implementation (IONA 1995). The monitoring agent is therefore realized 
as a CORBA object consisting of several modular components. The modularity allows an 
easy exchange or enhancement of the internal components to create a more specialized 
agent (Perrow, Hong, Lutfiyya and Bauer 1995). 

Figure4 gives an overview of the generic agent. The agent provides two interfaces: The 
service interface is used to retrieve monitoring information from the agent, like the current 
value Wk or the content of the buffer. The management interface provides functionality 
for controlling the agents behavior. 

Organizer. This component coordinates the internal activity of an agent and provides 
the functionality for b~th service and management interface. At startup time the organi­
zer reads configuration information from an initialization file and passes the appropriate 
parameters to the components (indicated with dashed arrows in Figure4). Monitoring is 
performed automatically with an adaptive measurement frequency. To ensure data inte­
grity, invocations on any of the interfaces are blocked until a complete measurement and 
evaluation cycle is finished. 

The Filter. transforms an input stream of values (here vk) into an output stream (wk) 
according to a number of predefined filter functions. They include identity, median with 
window size, and medium with window size. 

The Trigger function performs a call to the Event Handler whenever a predefined 
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Figure 4 Monitoring agent with frequency adaptation 

condition occurs on the filtered data stream. An arbitrary set of threshold values with 
different characteristics for each threshold can be programmed. 

The Adaptor implements the algorithms for the calculation of an adequate polling 
frequency as described in Section 4. The adaptor learns about every measured value Vk 

and provides a new frequency fk for the organizer. 
Buffer. This component stores up to N previous measurements , where the buffer size 

N is adjustable through the management interface. The buffer is organized as a ring 
buffer, that is, as soon as the buffer is filled for the first time, it starts to override old 
values according to a FIFO strategy. 

6 CONCLUSION 

We have presented a distributed management architecture in which monitoring is per­
formed by distributed agents with generic functionality for filtering, polling frequency 
adaptation and event creation. The distribution of active management agents reduces the 
amount of management related traffic and avoids a potential bottleneck on a centrali­
zed management station. The automatic adaptation reduces the performance impact of 
the agents significantly while at the same time a high accuracy of management relevant 
information about critical components is ensured. Several adaptation strategies allow a 
flexible configuration of the agent according to the individual requirements of the managed 
component. 
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APPENDIX 1 AVAILABILITY AND DYNAMICS HEALTH 
PARAMETERS 

Availability parameters 

Current availability. Observed availability h(t) is a feature of a component representing 
the availability of the component's services up to a given time. Its value defines how long 
this component has been in operational state with respect to the observation period T. 

h: [to, T] -+ [0, 1]h(t) = tap/(t- to) where tap is computed withi.n [t- to] 

Within a period [to, T], the availability A(T) is considered as equal to h(T). The availabi­
lity of a component type is commonly defined as the average of the h(T) of all components 
of this type across a period [t0 , T]. Since the availability is a global evaluation, A is cal­
culated across many periods T1 , T2 , T3 , ••• 

Minimum current availability. Across an observation period, the minimum value of h(t) 
is called minimum observed availability and is defined as: 

hmin : [to, T] -+ [0, 1] 
hmin( t) = min{ h( t) Ito :S t :S T} 
Since we have concluded that the local extreme values of h(t) occur when a state change 
event arrives, hmin(t) is among these peak point values. 



564 Part Two Network Monitoring Policies 

Weighted current availability. As defined above f! is a global evaluation without di­
stinction between-later or recent h(t) values. Since the health is the current observed 
availability, it seems necessary to emphasize the recent .health values more with respect 
to the earlier ones. We introduce the weighted average of observed availability which ex­
ponentially weights the later h(t) values. Consequently, the h(t) values will be taken into 
account by an exponential power. This power is dependent on the time and the change 
intervals, as follows: 

-h(t,·) __ h(ti-d + l x h(ti) x exp(ti- ti-d ( ) for i > 0 
1 + exp(ti- ti-l) 

where l = 0 if the operational state within [ti-I, ti] is disabled, and l = 1 if the operational 
state within [ti-h ti] is enabled. 

Dynamics parameters 

Stability order. The stability order k accurately qualifies a stationary state with respect 
to change frequencies. We say that a state has the order k of stability if for t; - ti-l ~ 
k x ti-l no state change event occurs. 

Instability order. The instability order p refers to state change events only (no com­
mands) and consequently depends only on the ti time stamps. We define the instability 
order of magnitude p if 8i-l,i ~ 10-P x ti-l· Explicitly, the calculus formula is obtained 
by a logarithmic function p = r -log(ti- ti-l )/ti-ll, where r a l is the greatest integer less 
than or equal to a. The instability order is therefore an integer number. 

Within a given time period tr, a component could have different instability orders 
{p~, P2, ... p.}. The instability of its operational state is first described by [pmin, Pmax], 
where Pmin = min{pil1 :5 i :5 s} and Pmax = max{p;l1 :5 i :5 s}, and second, by the 
complete set of order values. 

Repeatability order. If the instability occurs consecutively, say r times, we call that the 
instability of order p has a repeatability of order r. 

Thus, if 0;+;-2,i+i-l ~ 10-P xti+;-2 , for j = 1, 2, ... , r, the managing objects must consi­
der not only the health value, but equally, the (p, r )-instability of order p and repeatability 
of order r. 

An instability order Pi could have, in turn, several repeatability orders {rio, ri1, ... riw}· 
As for the instability order, each Pi order is characterized by rifmin = min{ri;IO :5 j :5 
w, 1 :5 i :5 s} and ri/max = max{ri;IO :5 j :5 w, 1 :5 i :5 s }. Semantically this is equivalent 
to the minimum, and respectively maximum number of consecutive change intervals of 
the same range p, within an approximation given by the error of the function I( X) = r X l· 
The repeatability order is also an integer number. 

Multiplicity order. The multiplicity order m represents the number of times a real re­
source has been involved into an instability of order Pi (with or without a repeatability 
order) during a given period. Consequently, at any pair (pi, ri;) one could attach the mul­
tiplicity order m(pi,rij,T) which captures the number of times the instability of order Pi and 
repeatability ri; have been raised within the tr time period. The multiplicity order is an 
integer number. 


