
36

Incorporating Manageability into
Distributed Software
R.Chadhaand~ Wuu
Bellcore
445 South Street
Morristown, NJ 07960, USA
+1(201) 829-4869 (tel), +1(201) 829-5889 (fax)
chadha@ bellcore.com

Abstract

In today's world, where software applications have evolved from mainframe-based
applications to client/server-based distributed systems, the need for effective, easy
to develop, and open management systems is becoming painfully evident. The goal
of this work is to develop cost-effective methods and tools for managing software in
a manner analogous to the way in which network elements are managed in today' s
networks. In order to provide a flexible, interoperable, standards-compliant solution
to this problem, we have developed an infrastructure that conforms to the Telecom­
munications Management Network (1MN) suite of standards. The 1MN is based on
the OSI/CMISE systems management standards. Although telecommunications pro­
viders, both in the domestic and international markets, have been pressing equip­
ment and operations systems suppliers to start developing 1MN-compliant products,
the supplier community has been reluctant to move towards OSI/CMISE manage­
ment systems, largely due to the difficulty and expense of implementing OSI/
CMISE interfaces to management applications.

This document gives a description of the components of an infrastructure that
provides a middleware layer which shields software developers from much of the
complexity of OSI/CMISE management implementation. It presents techniques that
can be used to simplify the process of implementing TMN-compliant interfaces.
This layer will considerably ease the process of incorporating standards-based man­
agement interfaces into software components for the purpose of management.

Keywords

Managing distributed software, CMISE, CORBA

A. A. Lazar et al. (eds.), Integrated Network Management V
© Springer Science+Business Media Dordrecht 1997

490 Part One CORBA-Based Management

1 INTRODUCTION

In today's world, where software applications have evolved from mainframe-based
applications to client/server-based distributed systems, the need for effective, easy
to develop, and open management systems is becoming painfully evident. The qual­
ity of large, distributed software applications will ultimately depend upon the effec­
tiveness of their management systems. Management systems are required to perform
fault, configuration, accounting, performance, and security management. As stated
in the abstract, our work focuses on the problem of managing distributed software
applications. This entails a study of the whole lifecycle of an end-to-end manage­
ment application, starting with the definition of an information model, or manage­
ment information base (Mill); designing the interface between the management
application and the managed resources (which in this case are distributed software
applications); defining the functionality of the management application; and so on.

This paper describes an architecture for distributed systems management based
on OSI systems management. The use of OSI management provides the inherent
advantage of making available standard, open interfaces for management applica­
tions. OSI management systems have not been widely implemented and deployed,
in spite of support from international standardization bodies and government orga­
nizations. Even though OSI management offers a powerful, object-oriented manage­
ment model, proprietary protocols and SNMP (Case et al., 1990) are still the pre­
ferred solutions for a large section of the market. This has been attributed mainly to
the difficulty of OSI management implementation. In this paper, we show how we
have hidden much of the complexity of OSI implementation from developers who
need to make their applications manageable. We have analyzed, from a developer's
viewpoint, the steps required to make an application manageable. In order to make
a software application manageable, it will be necessary for developers to instrument
their applications so that an agent will be able to retrieve management information
from these applications; also, these software applications must be designed to emit
the appropriate event reports, as defined by the information model. As mentioned
earlier, it is naturally desirable that this be accomplished with a minimum of effort,
so as not to add a disproportionate burden to the developer's task. With this in mind,
we examine the steps required to make an application manageable, and suggest ways
to partially automate this task.

A preliminary description of this work was given in (Chadha and Wuu, 1996a),
where we described an end-to-end management system that managed a set of simple
CORBA software components. In this paper, we describe in greater detail the steps
required to build an agent for the managed resources, and to make applications man­
ageable. This paper is organized as follows. Section 2 outlines the contributions of
this work. Section 3 describes the system architecture and information model used
for our prototype development, and the various components that make up the sys­
tem. In Section 4, we describe the steps required to build an agent for our system.
The steps for incorporating manageability into software components appear in Sec­
tion 5. Some related work is discussed in Section 6, with conclusions in Section 7.

Incorporating manageability into distributed software 491

2 CONTRIBUTIONS OF THIS WORK

The main contribution of this work is that it demonstrates the feasibility of applying
OSI management to distributed systems management. In this paper, we show how
OSI management and the OMG CORBA (OMG, 1994) framework can be easily
integrated, and why this approach is a good one. We demonstrate that the task of
making a distributed CORBA application manageable can be reduced to the task of
implementing some automatically generated CORBA interfaces.

The most important feature of our software management infrastructure is that the
developers of the distributed software application being managed do not have to
have any expertise in OSI systems management. Their task is to write server code to
implement management operations (such as a function to "get" an attribute value),
and to make calls to remote objects in order to send them information about events
that occur in the application that the management application needs to know about.
Thus they only deal with CORBA interfaces and are completely shielded from
details about the CMIP protocol (CCITT, 1991) and about populating ASN.1 data
structures (CCITT, 1988), which can be a formidable task, and which is an integral
part of OSI management.

The second advantage of our approach is that it provides a precisely defined
method for going from a GDMO (CCITT, 1992b) information model (which is the
starting point of any OSI management application) to an implementation. The use of
CORBA interfaces which are automatically generated from a GDMO information
model provides a uniform starting point for all developers who need to make their
applications manageable.

Finally, due to its implementation of OSI management standards, the manage­
ment infrastructure described in this paper provides an open interface for manage­
ment applications. Implementing such an open interface will make the distributed
software application attractive to customers who wish to implement their own man­
agement applications in order to customize the latter to fit their needs.

3 AN END-TO-END MANAGEMENT SYSTEM

In this section, we describe a prototype implementation of a management infrastruc­
ture for managing distributed software applications. The following sections describe
the architecture of this system, the implementation platforms and the information
model used.

3.1 The information model

We have developed an information model (using GDMO) to represent managed
software applications. This model defines a new managed object class called soft­
wareProcess. This managed object class inherits all the properties of the man­
aged object class software, which is defined in (CCITT, 1992d). The purpose of

492 Part One CORBA-Based Management

this managed object class is to encapsulate information about network and software
configuration (including distributed software dependencies), performance (includ­
ing process health and status), and faults. In addition to the attributes inherited from
the software managed object class, the softwareProcess managed object
class contains the following attributes: serverList, peerList, cli­
entList, processid, processingEquipmentName, process­
Name, processCreationTime, processUpTime, processUserid,
processGroupid, processEfUserid, processEfGroupid, pro­
cessArguments, threadsUsed, cpuTime, filesOpened. The first
three attributes listed here are pertinent for monitoring distributed processes, while
the rest provide information about the process and its health. These attributes are
more fully described in (Chadha and Wuu, 1996a). The softwareProcess man­
aged object class can also emit a number of notifications inherited from the soft­
ware managed object class. The complete GDMO description of this information
model can be found in (Chadha and Wuu, 1996b).

3.2 System Architecture

Figure 1 shows the architecture of the system and the platforms chosen to implement
this prototype. All applications and platforms in this prototype run on Sun SPARe­
stations™ running Solaris™ 2.3. There are essentially three distinct components in
this architecture: the manager, the agent, and the managed application (or managed
resources). The interface between the manager and the agent is a standard CMIP
interface. The manager and agent communicate using SunLink™1 OSI 8.0, a full 7-
layer OSI stack. The managed software application is implemented using the Com­
mon Object Request Broker Architecture (CORBA ™2) (OMG, 1994). The interface
between the agent and the managed application is CORBA. CORBA was developed
by the Object Management Group (OMG), and defines mechanisms by which dis­
tributed objects transparently make requests and receive responses. It provides
interoperability between applications on different machines in heterogeneous dis­
tributed environments. CORBA provides an Interface Definition Language (IDL)
for defining the interface to an object. Section 3.3 discusses the translation of a
GDMO description of an object into a CORBA IDL description. Our choice of
CORBA as the distributed application platform was motivated by the emergence of
CORBA as one of the prime candidates for the next generation of distributed com­
puting platforms. The following subsections describe the manager, agent, and man­
aged resources platforms in more detail.

1. Sun SPARCstation, Solaris, and SunLink are registered trademarks of Sun Microsystems, Inc.

2. CORBA is a registered trademark of Object Management Group, Inc.

Incorporating manageability into distributed software

Platform

etlabs' DiMONS 3G

DSET'sGDMO
Agent Toolkit

Figure 1 System Architecture.

MANAGER

AGENT

MANAGED

RESOURCES

3.2.1 The manager platform: NetlabsTM3' DiMONS 3G

493

In order to reduce the complexity of building an OSI manager, we used Netlabs'
DiMONS 3G management platform. The DiMONS 3G platform includes GDMO
and ASN.l compilers, which are used to incorporate new GDMO object definitions
into the platform. An API called the Portable Management Interface (PMI) is pro­
vided for manipulating managed object information and building management
applications. Access control lists are used to govern access to management informa­
tion. It should be noted that Netlabs no longer supports the DiMONS 3G product,
and much of their technology has been licensed by Sun Microsystems, Inc. and is
incorporated in SunSoft's Solstice™ Enterprise Manager™4 product. We plan to
migrate to Sun's platform in the near future.

3.2.2 The agent platform: DSETTM5's GDMO Agent Toolkit

The agent was built using DSET's GDMO Agent Toolkit. This toolkit provides a
suite of tools for building lightweight agent applications with low memory require­
ments. It provides GDMO and ASN.l compilers that generate C data structures for

3. Netlabs is a registered trademark of Netlabs, Inc.

4. Solstice and Enterprise Manager are registered trademarks of Sun Microsysterns, Inc.

5. DSET is a trademark ofDSET Corp.

494 Part One CORBA-Based Management

access by a program. It also provides a C/C++ API called ASN.C/ASN.C++ to
enable programmers to manipulate ASN.1 data structures with ease. The platform is
built on top of the Distributed Systems Generator, a DSET proprietary product.

3.2.3 The managed resources platform: IONA's Orbix™6

IONA 's Orbix (lona, 1996) is a commercially available implementation of CORBA.
This product provides a CORBA IDL compiler, which generates a C++ class for
each IDL interface. Each operation in an IDL interface is mapped into a C++ mem­
ber function. An IDL interface consists of operation and attribute specifications.
Each attribute is mapped into a pair of C++ member functions: one to read (get) the
value, and the other to write (set) the value. IDL attributes can also be "readonly";
these attributes map to a single function, which returns the attribute value. IDL
allows one interface to inherit from another, thereby creating an inheritance hierar­
chy. The object-oriented nature ofiDL makes it relatively easy to define a mapping
between the object models of CORBA IDL and GDMO; such a mapping will be dis­
cussed in the next section.

3.3 GDMO to CORBA IDL translation

The OSI Systems Management suite of standards has defined a language to be used
for defining managed objects, namely GDMO. However, in order to implement OSI
management, it is necessary to translate this GDMO specification into a language
closer to the implementation platform. Since we have chosen the CORBA platform
for implementing managed applications, we need a way to translate GDMO to
CORBA IDL. Fortunately, the X/Open Joint Inter-Domain Management Taskforce
(XollDM) has been working on this problem for the past several years, and has
developed a GDMO to CORBA IDL specification translation algorithm. Commer­
cial compilers have recently become available for performing this translation. For a
complete description of this translation algorithm, see (X/Open, 1994).

Figure 2 shows a fragment of an object description in GDMO, and its translation
into CORBA IDL. The GDMO fragment defines an attribute (administra­
ti veSta te) and the management operations that can be performed on it (GET and
REPLACE). The corresponding CORBA IDL contains two methods, one to perform
the management operation GET (administrativeStateGet ())and one to
perform the management operation REPLACE (administrativeState­
Set ()).

The XollDM taskforce has also been working on a Dynamic Interaction Trans­
lation document, which provides a mapping between CMISE services and OMG ser­
vices. The GDMO to CORBA IDL specification translation algorithm mentioned

6. Orbix is a registered trademark of IONA Technologies Ltd.

Incorporating manageability into distributed software

ATTRIBUTES administrativeState
GET-REPLACE;

administrativeState ATTRIBUTE WITH ATTRIBUTE SYNTAX
Attribute-ASNlModule.AdministrativeState;

MATCHES FOR EQUALITY;

Figure 2 (a) Fragment of GDMO definition of an attribute.

Attribute-ASNlModule::AdministrativeStateType
administrativeStateGet() raises (CMIP_ATTRIBUTE_ERRORS);

void administrativeStateSet(in
Attribute_ASNlModule::AdministrativeStateType Value)
raises (CMIP_ATTRIBUTE_ERRORS);

Figure 2 (b) Translation of GDMO into CORBA IDL.

495

above only addresses the syntactic translation of GDMO to CORBA IDL, and
ignores the dynamic policies of object behavior defined by other GDMO templates.
For example, NameBinding templates define the policies governing the lifecycle of
a managed object (i.e. rules governing creation, deletion, copying, and naming of
managed objects). The specification translation also does not make use of any of the
OMG Common Object Services (OMG, 1995). The Dynamic Interaction Transla­
tion document is intended to deal with issues such as support for conditional pack­
ages, distribution of event reports using the OMG Event Service, and support for a
Management Information Repository.

The XoJIDM Dynamic Interaction Translation provides several scenarios for
CMIP-CORBA interworking. In one scenario, the managing system is COREA­
based, and the agent is in an OSI managed system, which communicates with the
manager using CMIP. In such a case, a gateway function must be part of the manag­
ing system in order to translate the manager's CORBA requests into CMIP requests,
to translate the agent's responses from CMIP to CORBA, and to translate CMIP
event reports received from the agent into CORBA (see Figure 3). In another sce­
nario, the situation is reversed: the managed system is CORBA-based, whereas the
managing system is OSI-based. A gateway function is now required in the managed
system, to translate between CORBA and CMIP (see Figure 4).

Finally, it is possible to have a scenario where both the managing and managed
systems are CORBA-based, and they communicate using either CORBA, or two
CMIP-CORBA gateways (one in the agent and one in the manager).

4 BUILDING THE AGENT: CMIP-CORBA INTERWORKING

In our architecture, the managing system is OSI-based, and the managed system
belongs to the CORBA world, a situation similar to that depicted in Figure 4. This

496 Part One CORBA-Based Management

CORBA-based managing system OSI Manager

~ ~~ CMIP

pORBA-CMIP Gateway Function CORBA-CMIP (ateway Function

t CMIP ~
G;V ~ORBA-based managed system

Fi~ure 3 CORBA manager and Figure 4 OSI manager and CORBA
OS agent. agent.

situation requires us to build a gateway function in the managed system. Rather than
build such a system from scratch, we chose to use the infrastructure provided by the
DSET GDMO Agent Toolkit, which handles much of the CMIP communications
tasks, and leaves only a small portion of the gateway to be implemented by us. Thus
in our system, the gateway function will be incorporated inside the agent application
in the managed system.

Our agent application has to perform a number oftasks. It has to maintain a Man­
agement Information Tree (MI1) for the managed object instances; it has to translate
management operations into CORBA operations to be performed on the managed
software components; and it has to set up a CORBA server to receive notifications
from the managed software components, which it must then translate into CMISE
event reports and send to the manager. In order to be able to receive notifications
sent from CORBA applications (which are the managed resources), the agent starts
up a thread that implements a CORBA server. This thread waits for notifications to
arrive from the managed software components, and translates them into notifications
that are sent to the manager. The tasks performed by the agent are described in detail
in the following subsections.

4.1 The agent's Management Information Tree

When an agent starts up, it can create instances of managed objects in its MIT. For
our purposes, let us assume that it creates two managed object instances. The first
instance created is an instance of the system managed object class. This instance
is used as the root of the MIT. The second instance created is an instance of the
event:ForwardingDiscriminator managed object class, defined in
(CCIT f, 1992a). This is a special-purpose managed object class, whose function is
defined in (CCITT, 1992c). This managed object class contains attributes which
determine how incoming event reports from managed resources will be disposed of.

Incorporating manageability into distributed software 497

Two of the more important attributes of this managed object class are the desti­
nation attribute, which specifies a list of managers to whom event reports should
be forwarded, and the dis crimina torConstruct attribute, which allows the
specification of a filter that ensures that only event reports satisfying this filter are
forwarded to managers whose address is specified by the destination attribute.

Whenever a managed software component comes up, it makes a call to the agent
CORBA server (implemented as a thread within the agent application) and sends it
an objectcreation (CCITT, 1992a) notification. This notification contains all
the information needed by the agent to create an instance of the appropriate managed
object class. This managed object class will typically be softwareProcess, or
a more application-specific managed object class that inherits all properties from the
softwareProcess managed object class. This instance is created by the agent,
and an obj ectCreation notification is sent to the manager. If this software com­
ponent goes down or terminates, an objectDeletion notification (CCITT,
1992a) is emitted.

4.2 Mapping CMIP requests to function calls in the agent

One of the tasks of the gateway function in Figure 4 is to take a CMIP request
(received from the manager), translate it into an appropriate method call on a
CORBA interface, and invoke that method. Using the DSET Toolkit, CMIP requests
received from the manager are automatically mapped to function calls; however, it
is the user's responsibility to specify what functions will be called. As an example,
suppose that the manager issues an M-GET operation on a managed object with dis­
tinguished name X. This M-GET request is received by the DSET agent, and trans­
mitted to the managed object with distinguished name X. Now, for every attribute of
this managed object, the user is expected to have specified a function to be called
whenever an M-GET is issued on this attribute. Thus, for every attribute of the man­
aged object X, the corresponding user-specified function is automatically called.
Figure 6 below illustrates the operation of this strategy. Note that the gateway func­
tion is actually implemented inside the agent here.

Since the user is required to specify what function is called when a CMIP request
is received, let us examine how this relates to the XoJIDM translation specification.
Using the example in the previous section, suppose the manager issues an M-GET
request on managed object X. Suppose X has two attributes, al and a2. According
to the XollDM translation specification, M-GET requests for these two attributes
map to the two methods

alGet () and a2Get ().
Therefore, we wrote a function that is called whenever a GET has to be per­

formed on the attribute al (and similarly for attribute a2); this function does the fol­
lowing:

1. Makes a call to a method called alGet () implemented in the CORBA object
which is represented by the managed object to which al belongs

498 Part One CORBA-Based Management

Manager issues
M-GET on
managed object
X

Managed systeJ

Agent translates M-GET
into multiple function
calls, one for each
attribute of X, and
e~i~s..r_es...J2om;e~ _

I Managing system I

~

Managed system I
Figure 6 Manager performs M-GET.

Agent collects responses
from managed resources,
translates them into
CMIP, and sends M-GET
resrum...2.e .19 m.a@QID" _

I Managing system I
~
M~

Managed system I

2. Stores the return value in the data structure allocated for that managed object in
the agent.

The DSET Toolkit handles the formatting and dispatching of the M-GET
response.

4.3 Mapping CORBA event reports to CMIP event reports

The XollDM translation specification maps event reports to methods. These meth­
ods can therefore be invoked by the CORBA managed resources whenever an event
report is to be forwarded to the agent. Once such a method invocation is received by
the agent, the following must be done:

1. The agent forwards this event report to all Event Forwarding Discriminator
objects and Log objects in its MIT.

2. The Event Forwarding Discriminator objects check their discriminator
construct and scheduling attributes to determine whether this event report needs

Incorporating manageability into distributed software 499

to be forwarded to a manager; if so, the event report is forwarded to all managers
listed in the Event Forwarding Discriminator's destination attribute.

3. The Log objects check their discriminator construct and scheduling attributes to
determine whether this event report needs to be logged; if so, appropriate log
records are created in the agent's MIT.

The DSET Toolkit simplifies this entire process by providing an API for notifi­
cations. Thus, instead of performing steps 1 through 3 listed above, a call to an
appropriate function in this API conveys all the notification information to the Tool­
kit engine, which takes care of steps 1 through 3.

We implemented this process in our agent by setting up a thread which is a
CORBA server that waits for notifications from managed objects. Whenever a noti­
fication is received, it populates the necessary data structures and makes a call to the
appropriate function in the DSET notification API.

4.4 How dependent is this architecture on the DSET Toolkit?

In designing this architecture, one of our primary objectives was to ensure that our
design would survive platform and tool changes. The preceding sections described
much of the work that we did in order to integrate the management of CORBA soft­
ware components using an agent built using the DSET GDMO Agent Toolkit. How­
ever, the fact that we are using the XollDM specification translation makes the
architecture flexible. Once implementations of gateway functions (as depicted in
Figures 3 and 4) based on the XoJIDM work become available on commercial plat­
forms, it should be a simple task to migrate our approach to any commercial platform
which provides such a gateway implementation. At this stage, since no commercial
gateway implementations were available, we were forced to implement our own
gateway function, and were able to successfully leverage DSET's GDMO Agent
Toolkit for this purpose.

5 MAKING SOFfW ARE MANAGEABLE

The first step to making a CORBA application manageable is to select the managed
object classes that are going to be used to represent the managed information. This
can be done by developing new GDMO descriptions of managed object classes, or
re-using existing ones. This GDMO document can then be translated automatically
into CORBA IDL. The IDL thus generated consists oftwo parts: one contains inter­
faces for which the managed application is a client, and the other contains interfaces
for which the managed application is a server. The managed application will act as
a server when management operations are performed (see Section 5.1), and will act
as a client when it needs to send notifications to the agent (see Section 5.2).

500 Part One CORBA-Based Management

5.1 Instrumenting managed software components to respond to
management operations

In order to implement the server part of the IDL, the developer must write code to
implement the functions specified therein. An example of such a function is a func­
tion to "get" the value of an attribute. For example, using our example from Section
4.3, a function to retrieve the value of an attribute al would be called alGet (),
and would return the current value of this attribute. Much of the task of implement­
ing these functions can be simplified too. First, consider attributes that can be
obtained from the operating system (such as, for example, the processid, pro­
cessUpTime, and cpuTime attributes of the softwareProcess managed
object class). Clearly, the code to obtain the values of such attributes is independent
of the managed software component. Thus, these functions can be implemented
once, and this code can be linked in with every managed software component. This
makes the instrumentation for these attributes almost trivial. For other attributes that
require explicit population by each developer (e.g. the affectedObjectList
attribute, which specifies the object instances which can be directly affected by a
change in state or deletion of a given managed object), much of the code can be writ­
ten once, leaving only a few constants and parameters to be filled in by the devel­
oper. Thus the burden of instrumenting a managed software component is reduced
to a minimum.

5.2 Emitting notifications from managed software components

The client side of the IDL is used for sending notifications; thus the semantics of the
notifications (i.e. when does a notification need to be sent?) need to be analyzed and
then implemented by populating the notification parameters and calling the notifica­
tion functions wherever and whenever required. For example, in some cases, when­
ever the value of some attribute of interest changes, an at tribu teVal­
ueChange notification is sent to the agent. This notification contains information
such as the name of the object sending the notification, the type of event, and the
attribute that has changed along with its new value. Another example is that an
obj ectCrea tion notification must be sent when the application starts up. The
developer must incorporate client calls in order to send these notifications to the
agent.

6 RELATED WORK

Although OSI management standards have been in existence for a number of years,
OSI management systems have not been deployed on a large scale. This is partly due
to the difficulty of implementing OSI management systems. A large number of
researchers have been looking at the problem of simplifying the implementation of

Incorporating manageability into distributed software 501

management systems. Some have opted for non-standards-based approaches, by
defining their own tools and protocols for management. The obvious disadvantage
of such approaches is the lack of standardization.

A lot of work has been done in the area of simplifying the task of implementing
OSI management systems. The OSIMIS (OSI Management Information Service)
platform (Pavlou et al., 1993) is an object-oriented development environment in
C++ based on the OSI management model. It provides APis for hiding the details of
the underlying management services. An OSI management library is described in
(Deri and Mattei, 1995). This paper also describes tools for facilitating the develop­
ment of OSI management applications. Their approach for representing ASN.l syn­
tax using strings resembles that used by the IBM cmipWorks platform (Geiger et al.,
1994). In addition to these platforms, there are a number of commercially available
development tools and platforms (some of which were used in our work and men­
tioned in Section 3.2) that speed the process of OSI management implementation.
However, none of these platforms provide any method for integrating OSI manage­
ment and the OMG CORBA framework, which is one of the main features of our
work.

7 CONCLUSION

In this paper, we described the internals of the service management infrastructure
outlined in (Chadha and Wuu, 1996a). Special attention was paid to the details of
building an agent, and methods for simplifying the process of making software com­
ponents manageable. The construction of a CORBA-CMIP gateway allows trans­
parent management of CORBA software components using OSI management, and
hides the complexity of OSI management from the software developers.

8 REFERENCES

Case, G., Fedor, M., Schoffstall, M., Davin, J. (1990) "A Simple Network Manage­
ment Protocol (SNMP)",Request for Comments 1157.

CCITT Recommendation X.208 (1988), ISO/IEC 8824, Spec. of Abstract Syntax
Notation One (ASN.1).

CCITT Recommendation X.711 (1991), ISO/IEC 9596-1, Information Technology
- OSI, Common Management Information Protocol (CMIP) - Part 1: Specifica­
tion.

CCITT Recommendation X.721 (1992a), ISO/IEC 10165-2, Information Technol­
ogy - OSI- Management Information Services- Structure of Management Infor­
mation - Part 2: Definition of Management Information.

CCITT Recommendation X.722 (1992b), ISO/IEC 10165-4, Information Technol­
ogy- OSI- Management Information Services- Structure of Management Infor­
mation - Part 4: Guidelines for the Definition of Managed Objects.

502 Part One CORBA-Based Management

CCITI Recommendation X.734 (1992c), ISO/IEC 10164-4, Information Technol­
ogy - OSI - Systems Management: Event Report Management Function.

CCITI Recommendation M.3100 (1992d), Generic Network Information Model.
Chadha, R., Wuu, S. (1996a), "Managing Distributed Systems using OS/ Manage­

menf', Proceedings of the Second Inti. IEEE Workshop on Systems Manage­
ment, Toronto Ontario, Canada, pp. 117-126.

Chadha, R., Wuu, S. (1996b), "Service Management Infrastructure", Bellcore TM-

25364.
Deri, L., Mattei, E. (1995), "An object-oriented approach to the implementation of

OS/ managemenf', Computer Networks and ISDN Systems 27, pp. 1367-1385.
Geiger, G., Allen, W., Majtenyi, A., Reder, P. (1994), "IBM cmipWorks: Technical

paper'', IBM.
Iona (19%), "Welcome to Iona'', IONA Technologies Ltd., http://www .iona.ie.
OMG (1994), "Common Object Services Specification", Volume I, OMG Document

Number 94-1-1.
OMG (1995), "Common Object Request Broker Architecture 2.0 Specification".
Pavlou, G. Bhatti, S. N., Knight, G. (1993), "The OS/ Management Information Ser­

vice: User's Manual, Version /.0".
X/Open (1994), "GDMO to OMG IDL Specification Translation Algorithm", XI

Open Company Ltd.

BIOGRAPHY

Ritu Chadha obtained her Ph. D. in Computer Science from the University of North
Carolina at Chapel Hill in 1991. The subject of her dissertation was the mechanical
generation of loop invariants for the purpose of program verification. She joined
IBM in 1991, where she worked on software testing tools. In 1992, she joined
Bellcore as a Research Scientist. She has worked on areas in software testing, mod­
eling and simulation, distributed systems, and network and service management.
She is currently working on issues related to Web site management. Dr. Chadha is
also a part-time faculty member at Rutgers University.

Sze-Ying Wuujoined Bellcore in 1990 as a Research Scientist. She has worked
on areas in distributed systems, distributed directories, multi-media conferencing
systems, Internet and Intranet, network and service management, and web manage­
ment. She was granted a patent in 1986 for her research work in distributed directory
technology. She previously was the Engineering Manager at JvNCnet, an Internet
Service Provider, where she was responsible for network management, operations,
and engineering. She also worked with Bellcore as a consultant on telecommunica­
tion signaling and call processing systems from 1986 to 1989. Sze-Ying received an
MS in Computer Science from the University of Wisconsin-Madison in 1985.

