
17

Secure Service Management
Virtual Service Networks

Hai Qu
Computer and Information Science Department
University of Delaware, Newark, DE 19716, USA
Tel: +1 619 6511543 Fax: +1 619 6582243
Email: qu@cis.udel.edu

Tuncay Saydam
Computer and Information Science Department
University of Delaware, Newark, DE 19716, USA
Tel: +1 302 8312716 Fax: +1 302 8318458
Email: saydam@cis. udel. edu

Abstract

• In

This paper extends our discussion and treatment of security of service management appli­
cations. After a brief discussion of the key players within the secure service management
environment, it presents in detail the security service protocol and application program­
ming interface (API) to facilitate request and response between a service management
application and its security server. Guidelines on defining service management protocol
and extending current CMIP's security management functions are also given. Conclusions
encapsulate the results so far achieved as well as the future work and directions of our
study.

Keywords
Service Management, 1\"etwork Management, Security Services, Security Service Protocols,
Security Server, ASX.l.S, SP, ACSE..S, CMIP, Security Management, Security MIB.

1 INTRODUCTION

Service Management is an emerging topic on how to make network users to have friendly,
flexible and secure control over QOS of their communications. In this area, security of
Service Management is still not fully developed, and more study needs to be done on that

A. A. Lazar et al. (eds.), Integrated Network Management V
© Springer Science+Business Media Dordrecht 1997

220 Part Five Management Paradigms

[PRI93] [PRI94]. Our problem to solve is to protect service management communications
from various security threats by providing the following security services: Authentication,
Data Confidentiality, Data Integrity, Access Control, Security Audit and Security Alarm.

In [Qu96], we designed the extensions of ASN.l, Presentation Layer and ACSE, which
were named ASN.l.S, SP and ACSE..S respectively, in order to provide a generic approach
to serve the common needs of protected communications among application processes. In
this paper, we will try to solve our problem using this generic approach as the basis, by
defining Security Service Protocol and API (Application Programming Interface), giving
guidelines for designing Service Management Protocols, and specifying the extensions to
be done for CMIP's Security Management functions.

2 EXTENSIONS TO ASN.l, PRESENTATION LAYER AND ACSE

Here we will only briefly introduce how the extensions to ASN.l, Presentation Layer and
ACSE were done. The details are in [Qu96].

2.1 ASN.l.S: ASN.l Extended for Security

We extend the current ASN.l by introducing new data types as follows. The extended
ASN.l is called ASN.l.S. The extended encoding rules are called BER.l.S, which is
BER.l plus the new encoding rules for these new data types.

ENCRYPTED Type

This new data type is defined as having tag UNIVERSAL 11, which is not used in current
ASN.l standard. The format for this data type is as follows.

ENCRYPTED
{ algorithm

keyType
toBeEncrypted

OBJECT IDENTIFIER,
KeyType,
ANY }

KeyType : := ENUMERATION
{ noKey(O),

secretKey(l),
senderPrivateKey(2),
receiverPublicKey(3),
sessionKey(4),
CAPrivateKey(5)

-- some checksum needs no key
-- the symmetric secret key
-- the asymmetric private key
-- the asymmetric public key
-- the symmetric temporary key
-- the assymetric private key }

algorithm indicates the encryption algorithms to be used for this data type. The encryption
key to be used is indicated by keyType, which can be the symmetric secret key, sender's
asymmetric private key, receiver's public key or a session key dynamically generated during
connection establishment. In the definition of this data type, the actual value for algorithm

Secure service management in virtual service networks 221

and keyType may or may not be fixed. They can be assigned different values each time
the application tries to send encrypted data.

The data to be encrypted is toBeEncrypted which can be any AS:'-i.l.S type. The Presen­
tation Layer first encodes it according to BER.l.S into a BIT STRING. Then it encrypts
this BIT STRING into another BIT STRING. The final data to be transferred in PPDU
includes object identifier value for algorithm, enumeration value for keyType and the latter
BIT STRING. The encoding for ENCRYPTED data type is just like the encoding for a
SEQUENCE data type, as follows.

[UNIVERSAL 11] IMPLICIT SEQUENCE

CHECKSUMMED Type

{ algorithm
keyType
encrypted

OBJECT IDENTIFIER,
KeyType,
BIT STRING }

This new data type is defined as having tag UNIVERSAL 12, which is not used in current
ASN.l standard. The format for this data type is as follows.

CHECKSUMMED
{ algorithm

keyType
toBeChecksu.mm.ed

OBJECT IDENTIFIER,
KeyType,
ANY }

Most features are the same as in ENCRYPTED type. The encoding of this data type is
like the encoding of the following.

[UNIVERSAL 12] IMPLICIT SEQUENCE
{ algorithm

keyType
toBeChecksu.mm.ed
checksum

OBJECT IDENTIFIER,
KeyType,
ANY,
BIT STRING }

2.2 SP: Presentation Layer Extended for Security

There is no new Presentation Layer service primitives to be introduced. But we need to
add more parameters into P-COKXECT primitives as shown in Table l. (In the tables of
this paper, M means Mandatory, C means Conditional, 0 means Optional and= means
the same value.)

Table 1 l'\ew Parameters of SP-CONXECT Primitives

222 Part Five Management Paradigms

request indication response confirmation

secret Key 0 0
initiatorPrivateKey 0
responderPublicKey 0
responderPrivateKey 0
initiatorPublicKey 0
suggestedSecrecy Info List 0 0
suggestedlntegrity Info List 0 0
result Secrecy InfoList 0 0(=)
resultlntegritylnfoList 0 0(=)

2.3 ACSE_S: ACSE Extended for Security

ACSE_S supports authentication itself and also supports negotiation of other security
parameters by pass-through to SP. In SA-ASSOCIATE.request, we need to add some
new parameters to the existing A-ASSOCIATE.request. Also, a new group of service
primitives, SA-AUTHENTICATE, are introduced for both parties to authenticate the
other party any time during a connection by requesting certificate, password or challenge
number.

Table 2 New Parameters of SA-ASSOCIATE Primitives

request indication response confirmation

initiatorDN 0 0(=)
recipientDN 0 0(=)
initiatorAuthenticator 0 0(=)
responder Authenticator 0 0(=)
secret Key 0 0
initiatorPrivateKey 0
responderPublicKey 0
responder PrivateKey 0
initiator PublicKey 0
suggestedSecrecylnfoList 0 0
suggestedlntegrity InfoList 0 0
result Secrecy Info List 0 0(=)
resultlntegritylnfoList 0 0(=)

3 THE PLAYERS AND THE PROTOCOLS IN THE SOLUTION

In Figure 1, we show all the players and protocols used in the solution.

3.1 Service Management Application and Local S_MIB

Service Management Application is a special network communication application that
makes service management functions (value-added services) usable to the users of com-

Secure service management in virtual service networks 223

munication services, e.g. bandwidth management, connection management and QOS man­
agement in VPN (Virtual Private Network) and UPT (Universal Personal Telecommuni­
cation) [PR194]. The application processes are running at SMS (Service Management Sys­
tem), NMS (Network Management System) or CPN-NMS (Customer Premises Network
NMS). They communicate with each other using Pl, the Service Management Protocol,
which will be defined later.

r::l
~

/

; Virtual Service Networks

Figure 1 Security of Service Management

Our principal concern here is how to make these application processes to communicate
in a secure and controlled way. The Local S_\1IB (Local Security MIB) at the Service
Management Application will keep some local security information that the application
can easily access without contacting the Security Server. The Security Server in the same
domain with the application will manage the application's Local S_\1IB, using P2, the
Security Management Protocol, in a hierarchical management framework, or using some
other proprietary management protocol where the Security Server acts as the proxy agent
on behalf of the applications which are indirectly managed by the Security Manager.

3.2 Security Server and S_MIB

Security Server logically stores all the security information for its domain in the Security
MIB, i.e. S ... MIB, and provides security services to Service Management Application upon

224 Part Five Management Paradigms

request (e.g. providing authentication service) [Mu£93]. The application process acquires
security service using P3 API which will utilize P3 protocol, the Security Service Protocol,
if the Security Server is remote to the application process. If the security server is in the
same system as the application process, no open communication protocol activities are
involved. A given Security Server can serve more than one application process which are
normally in the same domain (e.g. a local area network). S.J.V.IIB will contain managed
objects such as security policies and domains, security services, security mechanisms,
security algorithms, security audit trails, security alarms, etc.

3.3 Security Manager and SMK

Security Manager is the manager role functionality of the security management (i.e. man­
agement of security). The corresponding agent role functionality is at the Security Server.
The manager and agent communicate using P2, the Security Management Protocol, which
is one of the five Specific Management Functional Areas in CMIP [Sta93]. The manager
needs a local database SMK (Shared Management Knowledge) that keeps such informa­
tion as the structure of all S.J.\1IBs it can manage, cached information about the roots of
subtrees in S.J.\1IBs, information about domain objects, security policies for managemen­
t, and so on, which will facilitate the manager to perform management operations over
security MIB objects on security servers and the applications.

A manager can manage more than one Security Server. The manager can remotely
manage the S....~.\1IB objects that correspond to the security service configuration pa­
rameters in the Security Server. The management functions include security object cre­
ation/deletion/modification, policy/domain management, authentication and access con­
trol management, security audit and alarm management, etc.

3.4 Pl: Service Management Protocol

Service Management Protocol is used to carry management information between peer
service management entities. There are quite a few studies which explore these service
management functionalities [Say95]. Since Pl needs to be defined from the scratch, it
would be better to define the PDus using the new ASK.l.S types, ENCRYPTED and
CHECKSUMMED, to make selective field data secrecy and integrity possible [Qu96].

3.5 P2: Security Management Protocol

The following security management functions are already defined among the thirteen
Systems Management Functions of CMIP which are within the Security Management
Functional Area [Sta93]. They are Security Alarm Reporting, Security Audit Trail and
Access Control Management. In addition to the above functions, we still need the following
functions to make Security Management in CMIP to be complete: Authentication Man­
agement, Confidentiality Management and Integrity Management. The formal definitions
of the managed objects for these functions will be studied in the future.

Secure service management in virtual service networks 225

3.6 P3: Security Service Protocol/ API

One of the main objectives of this study has been the definition of Security Service Pro­
tocol/ API (P3) to facilitate the security service request and response between service
management applications and Security Servers. No matter whether the security server is
local or remote to the service management application process, a set of API functions of
a programming language, e.g. C or C++, is to be defined for the application to access
security service. The actual entities in the application that will call these API functions
are SP, ACSE_S and ACSK.S user. If the security server is remote to the application, the
API functions will be responsible for acquiring corresponding services from security server
if it cannot provide the security services and/or parameters in its Local S_t\1IB.

Some Internet documents have already defined a Generic Security Service API (GSSAPI)
[RFC1508] [RFC1509]. Its goal is to provide a portable programming interface which
is independent of underlying security mechanisms. The user can only have pointers or
handles for security data. The user simply calls a sequence of API functions and sends
opaque tokens to peer user through in-band or out-of-band channel. There are some
drawbacks in GSSAPI.

• user data can be signed, can be sealed (integrity plus confidentiality), but cannot be
encrypted without integrity checksum.

• The security tokens are opaque to users, i.e. they are only byte strings to users. But the
way that user sends data over an application protocol makes it necessary to know the
structure of tokens in order to embed the tokens into protocol data. This is especially
true for applications defined using ASi\.1.

• Selective field confidentiality and integrity can not be achieved. There is no way to
indicate parts of data to be protected.

Our purpose of P3 API is different from GSSAPI. P3 API presents to user a concrete
method to access security services flexibly. The user still has choices to use different
mechanisms but has more direct control over the process of security service. These tan­
gible security services are building blocks for more abstract services. These functions will
overcome the drawbacks of GSSAPI.

API Functions in C

Here we specify the C function prototypes for the API functions and also describe the
functionalities the application may need to access by explaining what the API functions
will accomplish. All the following functions return an integer value where 0 means success
and other values mean failure.

(1) int GetSessionKey (int *length, char **sessionKey);

Given the requested length of session key to be generated, this function will generate
a session key or get a session key from security server and set the actual length of the
key when returning. This function will be called by SP to generate a session key during
connection establishment time.

226 Part Five Management Paradigms

(2) int CryptoRequest { enum Algo algo, char *parm, char *key, int size, char *data, int
*resultSize, char **resultData };

Given the cryptographic algorithm, the parameters, the cryptographic key and the data,
this function produce new data to be pointed to by resultData by performing cryptographic
algorithm on the original data. This function will be called by SP.

(3) int GetRandomNumber (int *length, char **randomN };

Given the requested length of random number to be generated, this function will generate
a random number or get a random number from security server and set the actual length
of the result when returning. This function will be called by ACSE..S in order to generate
a random challenge number for authentication purpose. SP will also call this function if
it is performing some cryptographic algorithm and is in need of a good source of random
numbers that is not available in local system.

(4) int AuthCheck (char *myDN, char *peerDN, AuthData *authData);

myDN and userDN are the DNs (Distinguished Names) in the X.500 Directory Service
format. An application process can claim a specific user identity among the possible more
than one identities it may act for. Given the DN that API caller is claiming, peer user's DN
and the authentication data that peer user provides, this function checks the authenticity
of this peer user. This function is called by ACSE..S user to verify if his peer's password
or certificate is correct or not.

(5) int AccessControl {char *myDN, enum Op op, char *subjectDN, char *targetDN };

Given the operation requested, the subject, i.e. the requester of an operation, the target
on which the requested operation will be performed, this function checks them against
the access control rules that may be stored locally or in security server, and rejects or
accepts the requested operation. This function will be called by ACSE_S user.

(6) int SecurityAlarm (int type, int cause, char *detector, char *provider, char *addi­
tionallnfo };

When an entity, either SP, ACSE..S or ACSE..S user, detects a security attack, it can
generate a security alarm that the event discriminator will send to security manager or
security server who will forward this alarm to security manager. This function will be
called by SP, ACSE..S or ACSE..S user.

(7) int SecurityAuditTrail (int type, int cause, char *additionallnfo };

This function generates a security audit trail which may be logged by the security server.
This function will be called by SP, ACSE_S or ACSE..S user.

(8) int GetMyAuthData (char *myDN, char *peerDN, Authenticator *auth };

Before it establishes application association with another user with identity peerDN, the

Secure service management in virtual service networks 227

API caller claiming myDN as its identity calls this function to get information that is nec­
essary for it to make authentication data which will be sent to peer user during association
establishment. This function will be called by ACSE..S user.

(9) int GetCertijicate (char *v.serDN, Certificate *cert };

The main purpose of this function is for the sender of data to get the public key of peer
indicated by v.serDN, for encrypting data to be sent, or for decrypting signed data. This
function will be called by ACSE_S which will pass the public key to SP.

(10) int GetPrivateKey (char *myDN, int *length, char **privateKey };

The API caller claiming myDN calls this function to get its asymmetric private key. The
keys can be acquired by means that is out of the scope of our study, or from Security
Server through Security Management exchange. This function will be called by ACSE_S.

(11) int GetSecretKey (char *myDN, int *length, char **secretKey };

The API caller claiming myDN calls this function to get its symmetric secret key. The
keys can be acquired by means that is out of the scope of our study, or from Security
Server through Security Management exchange. This function will be called by ACSE..S.

P 3 Service Specification

P3 uses ACSE_S directly for association control and authentication services. All other
services as defined below will be provided through SP-DATA service primitives. We list
the parameters for one group of service primitives as an example, which are basically
corresponding to the arguments in API functions described earlier.

SS-CRYPTO request

algo M
parm 0
key M
data M
result
resultData

P3 Protocol Specification

indication response confirmation

M(=)
0(=)
M(=)
M(=)

M
c

M(=)
C(=)

There is no P3 PDT.; for association establishment, which will be done by using SA­
ASSOCIATIOX, SA-RELEASE, SA-ABORT and SA-P-ABORT primitives directly. SA­
AT.;THEXTICATE primitives could also be used for extra authentication during the as­
sociation.

There is a simple correspondence between the service primitives and the PDus for P3. The

228 Part Five Management Paradigms

request and indication primitives for a service are mapped to one PDU and the response
and confirmation are mapped to another PDU.

Below, we only list the names of the PDUs and how the service primitives are mapped
into PDUs.

Table 3 P3 PDUs

SS-SESSION-KEY
SS-CRYPTO
SS-RAKDOM-NUMBER
SS-AUTH-CHECK
SS-ACCESS-CONTROL
SS-ALARM
SS-AUDIT
SS-AUTH-DATA
SS-CERTIFICATE

reqfind

SESS-RQ
CRYP-RQ
RAND-RQ
AUTH-RQ
AC-RQ
ALM-RQ
AUDIT-RQ
AUDA-RQ
CERT-RQ

respjconf

SESS-RE
CRYP-RE
RAND-RE
AUTH-RE
AC-RE
ALM-RE
AUDIT-RE
AUDA-RE
CERT-RE

The ASN.l.S definitions of these PDUs are to be studied in future. Basically the ASN.l.S
definitions are corresponding to the parameters in the service primitives. Here we give the
PDU definitions for CRYP-RQ and CRYP-RE as examples. We suppose the data integrity
function in SP is either used for each whole PDU, or never used in a connection. Hence,
in the ASN.l.S definitions, CHECKSUMMED data type is not needed. The security
server and the application will, at connection set-up time, negotiate on whether data
integrity will be used or not. Encryption is based on selective field approach, therefore
ENCRYPTED data type appears in the definitions.

CRYP-RQ ::=[APPLICATION 2] SEQUENCE
{ algo [0] OBJECT IDENTIFIER,

parm [1] ANY OPTIONAL,
secretData [2] ENCRYPTED

{ DES,
secretKey,
SEQUENCE

{ key
data

CRYP-RE [APPLICATION 16] SEQUENCE
{ result [0] Result,

OCTET STRING,
OCTET STRING } } }

resultData [1] OCTET STRING }

Result : := ENUMERATION
{ success(O),

algoNotAvail(1),
invalidParameter(2),
invalidAuditType(3),

Secure service management in virtual service networks

invalidUser(4),
noAccessRight(5),
wrongPassword(6),

}

229

Most likely the keys used for both encryption and checksumming will be the symmetric
key, because the symmetric keys are easier to manage for systems that are in the same
domain than the public/private key pairs. Also, if the Security Server and the Service
Management Application are located physically very closely, these two security services
will not be used for better performance so that the application could get security services
from its Security Server efficiently.

Virtual

Service

llletworka

I
I

I
I

I

I
I

I

Security
Sarvara
Layer

Service
-~t
Applicaticma
Layer

Figure 2 Hierarchical Organization of Security Entities and Domains

4 HIERARCHICAL ORGANIZATION OF THE SOLUTION

As a hint to specifying the solution more formally in the future, here we present the
hierarchical organization of entities and domains [Slo94] in our solution as in Figure 2.

SMA, the Service Management Application process, can communicate with other SMAs in

230 Part Five Management Paradigms

the same security domain or in different domains. The SMAs constitute the Service Man­
agement Applications Layer in this logical organization. SS, the Security Server process,
will help provide security services to SMAs in the same domain. These SS's constitute the
Security Servers Layer. SM, the Security Manager process, which is at the Service Man­
agement Layer, will manage SS's directly and SMAs indirectly. The SS's themselves are
also organized in another hierarchy, e.g. the hierarchy of certification authorities, which
reflects the hierarchical web of trust among the Security Servers. So, domains A and B in
Figure 2 may form a bigger domain.

5 CONCLUSIONS

In this paper, we discussed the functions of the players in the solution to the problem
of Secure Service Management. Service Management Application processes communicate
with each other using Service Management Protocol, which is designed to utilize the
security services provided by the underlying SP and ACSE..S. Its security information is
managed by its Security Server in the same domain. The Security Server provides security
services to SP, ACSE..S and the application process through a newly designed P3 API
and P3 protocol which is protected by the underlying SP and ACSE..S. The security
information in Security Server is managed by the Security Manager.

Because we utilized the generic security service approach involving ASN.LS, SP and
ACSE_S, there was no duplicate effort done for providing security services to the ap­
plications. This unique, comprehensive and flexible underlying approach helps solve our
problem very efficiently. Also, P3 API provides a portable programming interface that
can eliminate the need for the application to know whether the Security Server is on local
system or on a remote system.

Another result we achieved is to have solved the problem of security of OSI network
management, i.e. security of CMIP. We don't need to redefine CMIP PDUs and services,
but need to implement CMIP entity on top of SP and ACSE..S. Access control function
has been partially defined in CMIP; that is, the managed objects for access control have
been defined, but how to actually achieve access control has not been defined. We can use
Distinguished Names as the identifiers of subjects and targets. Other security management
functions to be extended in CMIP were also suggested in this paper.

Our future work will include the perfection of the logical structure of the problem, the
complete formal specifications of the three protocols and security-related managed objects
definitions in CMIP, and object-oriented modeling [Col94] [Say95] of the solution.

6 REFERENCES

[Col94] Derek Coleman, et al. (1994) Object-Oriented Development: The fusion method,
Prentice Hall

[Muf93] Sead Muftic, et al. (1993) Security Architecture for Open Distributed Systems,
John Wiley & Sons Ltd.

Secure service management in virtual service networks 231

[PRI93] Service Management Reference Configuration, RACE Project 2041 PRISM, 1993

[PRI94] VPN and UPT Service Management: Second Case Study Report, RACE Project
2041 PRISM, 1994

[RFC1508] J. Linn (1993) Generic Security Service Application Program Interface, Zolot
Associates

[RFC1509] J. Wray (1993) Generic Security Service API: C-bindings, DEC

[Qu96] Hai Qu and Thncay Saydam (1996) Security of Service Management: A Generic
Approach to Secure Communications within OSI, draft paper to be submitted

[Say95] Thncay Saydam, et al. (1995) Object-oriented design of a VPN bandwidth man­
agement system, pp344-355, Integrated Network Management, IV, edited by Adarshpal
Sethi, et al., Chapman & Hall

[Sch96] Bruce Schneier (1996) Applied Cryptography: protocols, algorithms, and source
code in C, John Wiley & Sons, Inc.

[Slo94] Morris Sloman, editor (1994) Network and Distributed Systems Management,
Addison-Wesley Publishing Company

[Sta93] William Stallings (1993) SNMP, SNMPv2 and CMIP: The Practical Guide to
Network-Management Standards, Addison-Wesley Publishing Company

7 BIOGRAPHY

Hai Qu is a PhD student in Computer & Information Science Department, "Cniversity of
Delaware. He got B.Sc. and M.Sc. degrees in Computer Science from Fudan l.Jniversity,
Shanghai, China. Since his graduate study, he worked on research and development of
computer network protocols and applications. He was a Lecturer in Fudan University
doing teaching, researching and network application development. He worked in :\"ational
Computing Center, L.JK, on OSI protocol testing. He started his PhD study in 1994 working
on network management and service management related issues.

Thncay Saydam is a professor of computer science and computer networks at the "Cni­
versity of Delaware since 1979. He has received Dipl.Ing., YLS. and Ph.D. degrees from
Istanbul Technical "Cniversity and the "Cniversity of Texas. He has been an invited research
professor at the Swiss Federale Institute of Technology (ETHZ) and Ecole Polytechnique
Federale de Lausanne, where he has been active in research. He has more than 20 years
of academic and intensive consulting experience. Author of more than 50 research papers,
Prof. Saydam's current research interests include service management, QoS management,
virtual networking and telecommunications software engineering.

