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Abstract 

• In 

This paper extends our discussion and treatment of security of service management appli­
cations. After a brief discussion of the key players within the secure service management 
environment, it presents in detail the security service protocol and application program­
ming interface (API) to facilitate request and response between a service management 
application and its security server. Guidelines on defining service management protocol 
and extending current CMIP's security management functions are also given. Conclusions 
encapsulate the results so far achieved as well as the future work and directions of our 
study. 
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1 INTRODUCTION 

Service Management is an emerging topic on how to make network users to have friendly, 
flexible and secure control over QOS of their communications. In this area, security of 
Service Management is still not fully developed, and more study needs to be done on that 
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[PRI93] [PRI94]. Our problem to solve is to protect service management communications 
from various security threats by providing the following security services: Authentication, 
Data Confidentiality, Data Integrity, Access Control, Security Audit and Security Alarm. 

In [Qu96], we designed the extensions of ASN.l, Presentation Layer and ACSE, which 
were named ASN.l.S, SP and ACSE..S respectively, in order to provide a generic approach 
to serve the common needs of protected communications among application processes. In 
this paper, we will try to solve our problem using this generic approach as the basis, by 
defining Security Service Protocol and API (Application Programming Interface), giving 
guidelines for designing Service Management Protocols, and specifying the extensions to 
be done for CMIP's Security Management functions. 

2 EXTENSIONS TO ASN.l, PRESENTATION LAYER AND ACSE 

Here we will only briefly introduce how the extensions to ASN.l, Presentation Layer and 
ACSE were done. The details are in [Qu96]. 

2.1 ASN.l.S: ASN.l Extended for Security 

We extend the current ASN.l by introducing new data types as follows. The extended 
ASN.l is called ASN.l.S. The extended encoding rules are called BER.l.S, which is 
BER.l plus the new encoding rules for these new data types. 

ENCRYPTED Type 

This new data type is defined as having tag UNIVERSAL 11, which is not used in current 
ASN.l standard. The format for this data type is as follows. 

ENCRYPTED 
{ algorithm 

keyType 
toBeEncrypted 

OBJECT IDENTIFIER, 
KeyType, 
ANY } 

KeyType : := ENUMERATION 
{ noKey(O), 

secretKey(l), 
senderPrivateKey(2), 
receiverPublicKey(3), 
sessionKey(4), 
CAPrivateKey(5) 

-- some checksum needs no key 
-- the symmetric secret key 
-- the asymmetric private key 
-- the asymmetric public key 
-- the symmetric temporary key 
-- the assymetric private key } 

algorithm indicates the encryption algorithms to be used for this data type. The encryption 
key to be used is indicated by keyType, which can be the symmetric secret key, sender's 
asymmetric private key, receiver's public key or a session key dynamically generated during 
connection establishment. In the definition of this data type, the actual value for algorithm 
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and keyType may or may not be fixed. They can be assigned different values each time 
the application tries to send encrypted data. 

The data to be encrypted is toBeEncrypted which can be any AS:'-i.l.S type. The Presen­
tation Layer first encodes it according to BER.l.S into a BIT STRING. Then it encrypts 
this BIT STRING into another BIT STRING. The final data to be transferred in PPDU 
includes object identifier value for algorithm, enumeration value for keyType and the latter 
BIT STRING. The encoding for ENCRYPTED data type is just like the encoding for a 
SEQUENCE data type, as follows. 

[UNIVERSAL 11] IMPLICIT SEQUENCE 

CHECKSUMMED Type 

{ algorithm 
keyType 
encrypted 

OBJECT IDENTIFIER, 
KeyType, 
BIT STRING } 

This new data type is defined as having tag UNIVERSAL 12, which is not used in current 
ASN.l standard. The format for this data type is as follows. 

CHECKSUMMED 
{ algorithm 

keyType 
toBeChecksu.mm.ed 

OBJECT IDENTIFIER, 
KeyType, 
ANY } 

Most features are the same as in ENCRYPTED type. The encoding of this data type is 
like the encoding of the following. 

[UNIVERSAL 12] IMPLICIT SEQUENCE 
{ algorithm 

keyType 
toBeChecksu.mm.ed 
checksum 

OBJECT IDENTIFIER, 
KeyType, 
ANY, 
BIT STRING } 

2.2 SP: Presentation Layer Extended for Security 

There is no new Presentation Layer service primitives to be introduced. But we need to 
add more parameters into P-COKXECT primitives as shown in Table l. (In the tables of 
this paper, M means Mandatory, C means Conditional, 0 means Optional and= means 
the same value.) 

Table 1 l'\ew Parameters of SP-CONXECT Primitives 
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request indication response confirmation 

secret Key 0 0 
initiatorPrivateKey 0 
responderPublicKey 0 
responderPrivateKey 0 
initiatorPublicKey 0 
suggestedSecrecy Info List 0 0 
suggestedlntegrity Info List 0 0 
result Secrecy InfoList 0 0(=) 
resultlntegritylnfoList 0 0(=) 

2.3 ACSE_S: ACSE Extended for Security 

ACSE_S supports authentication itself and also supports negotiation of other security 
parameters by pass-through to SP. In SA-ASSOCIATE.request, we need to add some 
new parameters to the existing A-ASSOCIATE.request. Also, a new group of service 
primitives, SA-AUTHENTICATE, are introduced for both parties to authenticate the 
other party any time during a connection by requesting certificate, password or challenge 
number. 

Table 2 New Parameters of SA-ASSOCIATE Primitives 

request indication response confirmation 

initiatorDN 0 0(=) 
recipientDN 0 0(=) 
initiatorAuthenticator 0 0(=) 
responder Authenticator 0 0(=) 
secret Key 0 0 
initiatorPrivateKey 0 
responderPublicKey 0 
responder PrivateKey 0 
initiator PublicKey 0 
suggestedSecrecylnfoList 0 0 
suggestedlntegrity InfoList 0 0 
result Secrecy Info List 0 0(=) 
resultlntegritylnfoList 0 0(=) 

3 THE PLAYERS AND THE PROTOCOLS IN THE SOLUTION 

In Figure 1, we show all the players and protocols used in the solution. 

3.1 Service Management Application and Local S_MIB 

Service Management Application is a special network communication application that 
makes service management functions (value-added services) usable to the users of com-
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munication services, e.g. bandwidth management, connection management and QOS man­
agement in VPN (Virtual Private Network) and UPT (Universal Personal Telecommuni­
cation) [PR194]. The application processes are running at SMS (Service Management Sys­
tem), NMS (Network Management System) or CPN-NMS (Customer Premises Network 
NMS). They communicate with each other using Pl, the Service Management Protocol, 
which will be defined later. 

r::l 
~ 

/ 

; Virtual Service Networks 

Figure 1 Security of Service Management 

Our principal concern here is how to make these application processes to communicate 
in a secure and controlled way. The Local S_\1IB (Local Security MIB) at the Service 
Management Application will keep some local security information that the application 
can easily access without contacting the Security Server. The Security Server in the same 
domain with the application will manage the application's Local S_\1IB, using P2, the 
Security Management Protocol, in a hierarchical management framework, or using some 
other proprietary management protocol where the Security Server acts as the proxy agent 
on behalf of the applications which are indirectly managed by the Security Manager. 

3.2 Security Server and S_MIB 

Security Server logically stores all the security information for its domain in the Security 
MIB, i.e. S ... MIB, and provides security services to Service Management Application upon 
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request (e.g. providing authentication service) [Mu£93]. The application process acquires 
security service using P3 API which will utilize P3 protocol, the Security Service Protocol, 
if the Security Server is remote to the application process. If the security server is in the 
same system as the application process, no open communication protocol activities are 
involved. A given Security Server can serve more than one application process which are 
normally in the same domain (e.g. a local area network). S.J.V.IIB will contain managed 
objects such as security policies and domains, security services, security mechanisms, 
security algorithms, security audit trails, security alarms, etc. 

3.3 Security Manager and SMK 

Security Manager is the manager role functionality of the security management (i.e. man­
agement of security). The corresponding agent role functionality is at the Security Server. 
The manager and agent communicate using P2, the Security Management Protocol, which 
is one of the five Specific Management Functional Areas in CMIP [Sta93]. The manager 
needs a local database SMK (Shared Management Knowledge) that keeps such informa­
tion as the structure of all S.J.\1IBs it can manage, cached information about the roots of 
subtrees in S.J.\1IBs, information about domain objects, security policies for managemen­
t, and so on, which will facilitate the manager to perform management operations over 
security MIB objects on security servers and the applications. 

A manager can manage more than one Security Server. The manager can remotely 
manage the S....~.\1IB objects that correspond to the security service configuration pa­
rameters in the Security Server. The management functions include security object cre­
ation/deletion/modification, policy/domain management, authentication and access con­
trol management, security audit and alarm management, etc. 

3.4 Pl: Service Management Protocol 

Service Management Protocol is used to carry management information between peer 
service management entities. There are quite a few studies which explore these service 
management functionalities [Say95]. Since Pl needs to be defined from the scratch, it 
would be better to define the PDus using the new ASK.l.S types, ENCRYPTED and 
CHECKSUMMED, to make selective field data secrecy and integrity possible [Qu96]. 

3.5 P2: Security Management Protocol 

The following security management functions are already defined among the thirteen 
Systems Management Functions of CMIP which are within the Security Management 
Functional Area [Sta93]. They are Security Alarm Reporting, Security Audit Trail and 
Access Control Management. In addition to the above functions, we still need the following 
functions to make Security Management in CMIP to be complete: Authentication Man­
agement, Confidentiality Management and Integrity Management. The formal definitions 
of the managed objects for these functions will be studied in the future. 
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3.6 P3: Security Service Protocol/ API 

One of the main objectives of this study has been the definition of Security Service Pro­
tocol/ API (P3) to facilitate the security service request and response between service 
management applications and Security Servers. No matter whether the security server is 
local or remote to the service management application process, a set of API functions of 
a programming language, e.g. C or C++, is to be defined for the application to access 
security service. The actual entities in the application that will call these API functions 
are SP, ACSE_S and ACSK.S user. If the security server is remote to the application, the 
API functions will be responsible for acquiring corresponding services from security server 
if it cannot provide the security services and/or parameters in its Local S_t\1IB. 

Some Internet documents have already defined a Generic Security Service API (GSSAPI) 
[RFC1508] [RFC1509]. Its goal is to provide a portable programming interface which 
is independent of underlying security mechanisms. The user can only have pointers or 
handles for security data. The user simply calls a sequence of API functions and sends 
opaque tokens to peer user through in-band or out-of-band channel. There are some 
drawbacks in GSSAPI. 

• user data can be signed, can be sealed (integrity plus confidentiality), but cannot be 
encrypted without integrity checksum. 

• The security tokens are opaque to users, i.e. they are only byte strings to users. But the 
way that user sends data over an application protocol makes it necessary to know the 
structure of tokens in order to embed the tokens into protocol data. This is especially 
true for applications defined using ASi\.1. 

• Selective field confidentiality and integrity can not be achieved. There is no way to 
indicate parts of data to be protected. 

Our purpose of P3 API is different from GSSAPI. P3 API presents to user a concrete 
method to access security services flexibly. The user still has choices to use different 
mechanisms but has more direct control over the process of security service. These tan­
gible security services are building blocks for more abstract services. These functions will 
overcome the drawbacks of GSSAPI. 

API Functions in C 

Here we specify the C function prototypes for the API functions and also describe the 
functionalities the application may need to access by explaining what the API functions 
will accomplish. All the following functions return an integer value where 0 means success 
and other values mean failure. 

(1) int GetSessionKey ( int *length, char **sessionKey ); 

Given the requested length of session key to be generated, this function will generate 
a session key or get a session key from security server and set the actual length of the 
key when returning. This function will be called by SP to generate a session key during 
connection establishment time. 
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(2) int CryptoRequest { enum Algo algo, char *parm, char *key, int size, char *data, int 
*resultSize, char **resultData }; 

Given the cryptographic algorithm, the parameters, the cryptographic key and the data, 
this function produce new data to be pointed to by resultData by performing cryptographic 
algorithm on the original data. This function will be called by SP. 

(3) int GetRandomNumber ( int *length, char **randomN }; 

Given the requested length of random number to be generated, this function will generate 
a random number or get a random number from security server and set the actual length 
of the result when returning. This function will be called by ACSE..S in order to generate 
a random challenge number for authentication purpose. SP will also call this function if 
it is performing some cryptographic algorithm and is in need of a good source of random 
numbers that is not available in local system. 

(4) int AuthCheck (char *myDN, char *peerDN, AuthData *authData ); 

myDN and userDN are the DNs (Distinguished Names) in the X.500 Directory Service 
format. An application process can claim a specific user identity among the possible more 
than one identities it may act for. Given the DN that API caller is claiming, peer user's DN 
and the authentication data that peer user provides, this function checks the authenticity 
of this peer user. This function is called by ACSE..S user to verify if his peer's password 
or certificate is correct or not. 

(5) int AccessControl {char *myDN, enum Op op, char *subjectDN, char *targetDN }; 

Given the operation requested, the subject, i.e. the requester of an operation, the target 
on which the requested operation will be performed, this function checks them against 
the access control rules that may be stored locally or in security server, and rejects or 
accepts the requested operation. This function will be called by ACSE_S user. 

(6) int SecurityAlarm ( int type, int cause, char *detector, char *provider, char *addi­
tionallnfo }; 

When an entity, either SP, ACSE..S or ACSE..S user, detects a security attack, it can 
generate a security alarm that the event discriminator will send to security manager or 
security server who will forward this alarm to security manager. This function will be 
called by SP, ACSE..S or ACSE..S user. 

(7) int SecurityAuditTrail ( int type, int cause, char *additionallnfo }; 

This function generates a security audit trail which may be logged by the security server. 
This function will be called by SP, ACSE_S or ACSE..S user. 

(8) int GetMyAuthData (char *myDN, char *peerDN, Authenticator *auth }; 

Before it establishes application association with another user with identity peerDN, the 
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API caller claiming myDN as its identity calls this function to get information that is nec­
essary for it to make authentication data which will be sent to peer user during association 
establishment. This function will be called by ACSE..S user. 

(9) int GetCertijicate (char *v.serDN, Certificate *cert }; 

The main purpose of this function is for the sender of data to get the public key of peer 
indicated by v.serDN, for encrypting data to be sent, or for decrypting signed data. This 
function will be called by ACSE_S which will pass the public key to SP. 

(10) int GetPrivateKey (char *myDN, int *length, char **privateKey }; 

The API caller claiming myDN calls this function to get its asymmetric private key. The 
keys can be acquired by means that is out of the scope of our study, or from Security 
Server through Security Management exchange. This function will be called by ACSE_S. 

(11) int GetSecretKey (char *myDN, int *length, char **secretKey }; 

The API caller claiming myDN calls this function to get its symmetric secret key. The 
keys can be acquired by means that is out of the scope of our study, or from Security 
Server through Security Management exchange. This function will be called by ACSE..S. 

P 3 Service Specification 

P3 uses ACSE_S directly for association control and authentication services. All other 
services as defined below will be provided through SP-DATA service primitives. We list 
the parameters for one group of service primitives as an example, which are basically 
corresponding to the arguments in API functions described earlier. 

SS-CRYPTO request 

algo M 
parm 0 
key M 
data M 
result 
resultData 

P3 Protocol Specification 

indication response confirmation 

M(=) 
0(=) 
M(=) 
M(=) 

M 
c 

M(=) 
C(=) 

There is no P3 PDT.; for association establishment, which will be done by using SA­
ASSOCIATIOX, SA-RELEASE, SA-ABORT and SA-P-ABORT primitives directly. SA­
AT.;THEXTICATE primitives could also be used for extra authentication during the as­
sociation. 

There is a simple correspondence between the service primitives and the PDus for P3. The 
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request and indication primitives for a service are mapped to one PDU and the response 
and confirmation are mapped to another PDU. 

Below, we only list the names of the PDUs and how the service primitives are mapped 
into PDUs. 

Table 3 P3 PDUs 

SS-SESSION-KEY 
SS-CRYPTO 
SS-RAKDOM-NUMBER 
SS-AUTH-CHECK 
SS-ACCESS-CONTROL 
SS-ALARM 
SS-AUDIT 
SS-AUTH-DATA 
SS-CERTIFICATE 

reqfind 

SESS-RQ 
CRYP-RQ 
RAND-RQ 
AUTH-RQ 
AC-RQ 
ALM-RQ 
AUDIT-RQ 
AUDA-RQ 
CERT-RQ 

respjconf 

SESS-RE 
CRYP-RE 
RAND-RE 
AUTH-RE 
AC-RE 
ALM-RE 
AUDIT-RE 
AUDA-RE 
CERT-RE 

The ASN.l.S definitions of these PDUs are to be studied in future. Basically the ASN.l.S 
definitions are corresponding to the parameters in the service primitives. Here we give the 
PDU definitions for CRYP-RQ and CRYP-RE as examples. We suppose the data integrity 
function in SP is either used for each whole PDU, or never used in a connection. Hence, 
in the ASN.l.S definitions, CHECKSUMMED data type is not needed. The security 
server and the application will, at connection set-up time, negotiate on whether data 
integrity will be used or not. Encryption is based on selective field approach, therefore 
ENCRYPTED data type appears in the definitions. 

CRYP-RQ ::=[APPLICATION 2] SEQUENCE 
{ algo [0] OBJECT IDENTIFIER, 

parm [1] ANY OPTIONAL, 
secretData [2] ENCRYPTED 

{ DES, 
secretKey, 
SEQUENCE 

{ key 
data 

CRYP-RE [APPLICATION 16] SEQUENCE 
{ result [0] Result, 

OCTET STRING, 
OCTET STRING } } } 

resultData [1] OCTET STRING } 

Result : := ENUMERATION 
{ success(O), 

algoNotAvail(1), 
invalidParameter(2), 
invalidAuditType(3), 
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invalidUser(4), 
noAccessRight(5), 
wrongPassword(6), 

} 

229 

Most likely the keys used for both encryption and checksumming will be the symmetric 
key, because the symmetric keys are easier to manage for systems that are in the same 
domain than the public/private key pairs. Also, if the Security Server and the Service 
Management Application are located physically very closely, these two security services 
will not be used for better performance so that the application could get security services 
from its Security Server efficiently. 
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Figure 2 Hierarchical Organization of Security Entities and Domains 

4 HIERARCHICAL ORGANIZATION OF THE SOLUTION 

As a hint to specifying the solution more formally in the future, here we present the 
hierarchical organization of entities and domains [Slo94] in our solution as in Figure 2. 

SMA, the Service Management Application process, can communicate with other SMAs in 
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the same security domain or in different domains. The SMAs constitute the Service Man­
agement Applications Layer in this logical organization. SS, the Security Server process, 
will help provide security services to SMAs in the same domain. These SS's constitute the 
Security Servers Layer. SM, the Security Manager process, which is at the Service Man­
agement Layer, will manage SS's directly and SMAs indirectly. The SS's themselves are 
also organized in another hierarchy, e.g. the hierarchy of certification authorities, which 
reflects the hierarchical web of trust among the Security Servers. So, domains A and B in 
Figure 2 may form a bigger domain. 

5 CONCLUSIONS 

In this paper, we discussed the functions of the players in the solution to the problem 
of Secure Service Management. Service Management Application processes communicate 
with each other using Service Management Protocol, which is designed to utilize the 
security services provided by the underlying SP and ACSE..S. Its security information is 
managed by its Security Server in the same domain. The Security Server provides security 
services to SP, ACSE..S and the application process through a newly designed P3 API 
and P3 protocol which is protected by the underlying SP and ACSE..S. The security 
information in Security Server is managed by the Security Manager. 

Because we utilized the generic security service approach involving ASN.LS, SP and 
ACSE_S, there was no duplicate effort done for providing security services to the ap­
plications. This unique, comprehensive and flexible underlying approach helps solve our 
problem very efficiently. Also, P3 API provides a portable programming interface that 
can eliminate the need for the application to know whether the Security Server is on local 
system or on a remote system. 

Another result we achieved is to have solved the problem of security of OSI network 
management, i.e. security of CMIP. We don't need to redefine CMIP PDUs and services, 
but need to implement CMIP entity on top of SP and ACSE..S. Access control function 
has been partially defined in CMIP; that is, the managed objects for access control have 
been defined, but how to actually achieve access control has not been defined. We can use 
Distinguished Names as the identifiers of subjects and targets. Other security management 
functions to be extended in CMIP were also suggested in this paper. 

Our future work will include the perfection of the logical structure of the problem, the 
complete formal specifications of the three protocols and security-related managed objects 
definitions in CMIP, and object-oriented modeling [Col94] [Say95] of the solution. 
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