ViewNet - Conceptual Design and Modelling of Navigation

Jiirgen E. Ziegler

Fraunhofer Institute IAO
Nobelstrasse 12, D-70569 Stuttgart
GERMANY
Juergen.Ziegler@iao.fhg.de

ABSTRACT This paper presents an approach to modelling navigation structurcs for complex. database-oriented
applications. Navigation dialogues are first classified according to a number of underlying principles. The ViewNet
techmnique is introduced for the conceptual design of the navigation structure of a systcm. ViewNets are diagrams composed
ol views and navigation links. Different view types are introduced on the basis of the mapping from conceptual objects to
views and their role in the dialogue. These types are represented by specific graphical symbols which support the designer in
gelting a clear overview of the navigation structure and for optimizing dialogues according to the user’s task.

KEYWORDS design methods, modelling techniques, navigation, dialogue structures, object-oriented user interfaces

1. INTRODUCTION

The main design issucs in developing complex, data-
basc-oriented applications with graphical user interfaces
arc increasingly related to defining the dialogue structure
of an application .in the large, i. e. to designing the
overall structure of the user interface. Whereas design aids,
¢. g.in the form of styleguides are available for selecting
and designing the standard interaction objects of a
graphical user interface, the issue of designing suitable
dialogue structures must usually be solved by the
developer for each application specifically. In the best
case. this process is currently supported by guidelines
which are specific to an application or an organization. As
yet, there is little methodological support for solving the
complex design decisions involved. An appropriate
conceptual design of the dialogue paths which make the
functionality of a complex system accessible is , however,
cssential for the usability of the system, particularly as
users arc becoming more and more familiar with the basic
handling of graphical user interfaces.

In order to better distinguish it from those parts of the
dialogue which serve for manipulating the different in-
teraction objects (likc buttons, cntry ficlds or lists), the
term ,,navigation” shall be used here to describe the user’s
movement through the different views of a system. A
wview* is defined here as a collection of elements which
represent one or morc underlying application objects or
tasks in a coherent manncr, e. g. in a window or screen
form.

A number of techniques for modelling navigation se-
quences have been developed till now which basically aim
at describing precisely the system’s behaviour depending
on the system’s state and the user’s input. Those
techniques are typically based on state transition diagrams
(see e. g. Denert 1977, Jacob 1986) or Petri nets (see e. g.
Janssen 1993). Due to the detailed specification of trigger
events, conditions and actions, however, they entail thc
danger of obstructing the view of the overall dialogue
structure for the developer rather than making it
transparent. Although some approaches have becn
proposed for designing the structure of the navigation e.g.
in the field of hypermedia systems (see Nielsen 1990, Berk

Human-Computer Interaction: INTERACT’97 S. Howard, J. Hammond & G. Lindgaard (editors)

Published by Chapman & Hall ©IFIP 1997

54 Part Two Technical Sessions

& Devlin 1991, they are not well suited to database-
oriented applications where the dialogue design has to take
the cardinalitics of object classes (many instances of the
same type) into account.

On the other hand. the existing dialogue modelling
techniques say little about the type and the properties of
the views ol which the navigation structure is composed
(they generally only indicate the views 'names). That is why
they can be described as being rich in transition in-
formation but poor in state information. Information
concerning the meaning and role of a view, however, is
pertinent to the design of efficient and consistent
dialogues. arguably more important during the early
conceptual design stages than a detailed behavioural
specification. Till now, a method has been lacking which
takes both aspects into account and which particularly
make the type and meaning of the views evident from
which the navigation structure is built. This paper presents
the ViewNet method which takes these requirements into
consideration and supports the conceptual design of the
navigation structures through a graphical modelling
technique.

2. PRINCIPLES OF NAVIGATION
DESIGN

Navigation dialogues can be structured according to a
number of different principles. These principles relate to
the respective predominant aspect of the user’s task, such
as the function to be performed, the object to be
manipulated. or the sclection of a task step from a
complete business process o be accomplished. These
different goal components translate into different
requirements with respect to how the user will access the
lunctionality needed for performing the task and the
corresponding dialogue paths required. In general,
navigation structures may be based either on a functional
decomposition of the system. on the objects of an
application and their relations or on arbitrary associations
between different picces of information. In the following,
we will discuss some of these principles and their
implications for the usability of the system.

Function-oriented navigation: The sclection of a specific
lunction or operation represents the starting point for the
navigaion (¢. g. in a conventional hierarchical menu
system), The actual data view becomes visible and can
onfy he manipulated after one or several consccutive steps.
This type of navigation is particularly suited to well-de-
fined and repetitive tasks with little variability but has
major drawbacks if the operation component of the user's

task is not well defined at the outset or changes during the
interaction.

Process-oriented navigation can be seen as an extension
of the function-oriented principle and provides support for
a complete set of tasks helonging to a specific work or
business process. The system can control the status of the
process and according to the situation. cnable or disable
the access to the objects and functions needed. Whereas
early systems of this type used to force the user to perform
a fixed sequence of steps. today’s graphical interfaces
allow a more flexible design . c. g. through visualizing the
status of the process and currently available tasks in lists.
task bars etc..

Object-oriented navigation represents the main paradigm
in direct manipulation. It uses the objects of the application
and of their semantic relations for the design of dialogue
paths. Operations become only available when the object
to be manipulated is sclected and visible . Object-oriented
navigation represents onc of the basic principles of the
graphical user interfaces and is particularly characterized
by its high degree of consistency and flexibility.

Association-oriented navigation characlerizes the typical
navigation form in hypertext/hypermedia systems. The
nodes of the navigation structure arc represented by
individual information units (in contrast to fixed ohject
types with arbitrarily many instances in object-oriented
navigation). The possible transitions are defined through
the arbitrary associations between those information units,

These forms of navigation have diffcrent profiles con-
cerning usability criteria such as efficiency, comprchen-
sibility and flexibility. Combined forms are therefore
frequently used in real applications.In the following
section, we will focus on the different types of views
which are involved in the composition of such navigation
structures.

3. VIEW TYPES

In the ViewNet method, views are defined as logical
collections of information clements. not as concrete visual
representations. Views represent the underlying application
objects, tasks or gencral information units wholly or in part
and can be visualized in a coherent manner. Multiple views
of an object are possible. Views can be composed of a
hierarchy of subviews. In the following. we will introduce
a classification of the different types of views relevant for
user navigation and introduce a graphical notation for these
types which forms the clements of a ViewNet
representation.

Object views represent a single instance of a specific
object class (e. g. ‘customer’) in different forms. Three

ViewNet - conceptual design and modelling of navigation 55

ivpes ol object views can be distinguished: the object
reference view. which is often in the form of an icon (icon
view). the attribure view, which represents all or some attri-
butes of an object, and the graphical view which shows an
arhitrary graphical representation of an object instance
(c.g. as a map, a business graphic elc.).

In order to structure object-oriented dialogues, collection
views arc required which either show a partial or a
complete collection of instances of a certain object class
(c.g. as a list of instances) or comprise objects of different
types as c.g. the objects on a desktop (inhomogenous
collection), A special case of collection views are filtered
collections through which the user has access to pre- or
self-defined subscts of the data (e. g. all payable bills). In
many cascs. it will be advantageous if users can set up and
manage such filter objects themselves at the user interface
in aflexible way.

; T B
Object Views 1
i it ———
ferstoa
object reference e i e
ontainer
leon View view, represents an View !’\Ohmcg”enc:.ou! of'
inh. collection o
object as a whole blects
objes
— o
Attribute shows some or all == refersto a collec-
attributes of an objec i i
View (Form) " 12Ct) ter View ;!ﬁn o:’cbjecl;.
e iltered according
. . to some criteria
Graphics View 2rbitrary graphical
representation of List View homogeneous
[]_} ﬂ L several collection of
objects eg as a objects in the form
map, business of a list
raphics etc. B
aan Inhom. Coll. | inhomogeneous
O O | collection of objects|
{eqg as icons)

Figure 1: Object and collection views

Function views offer functionally oriented possibilities
for navigation, as they are represented, for example, by
menu sereens or modal dialogue boxes (Figure 2). Object
attributes may be shown in a function view but usually
only as needed for the operation selected (e. g. search
altributes in a search dialogue box). Actor views are a
special form of a function view and represent the differente
steps of a complex task or process the user needs to
perform. Actor views help to guide the user through the
steps of a complex process while maintaining application-
specilic dependencies and constraints. They can be realized
in very different forms, e.g. as to-do lists, task lists or

assistant windows which arc becoming more and more
popular in standard office products.

Information views, represented cither as single nodes or
clusters, can be used in association-oriented navigations.
Examples for this can be found in hypertext-based help
systems or generally in hypermedia systems. In contrast to
the links between of object and collection views which
represent 1:n or n:m relations in an underlying object
model (or entity-relationship model), the relations involved
in the navigation between information views are usually ot
a one-to-one type.

Figure 3 shows compeosite views. Typical aggregations
which are often used in graphical interfaces like master-
detail views or notebooks. are depicted with their own
graphical symbol in order to get a comprehensive and
intuitive overviecw of the dialogue structure. Generic
building blocks allow to collapsc the parts of a complete
navigation substructure into a single element which can be
parameterized with the object class accessed in this
navigation. This way, for example, a scarch dialogue for
instances of a class which consists of several views can he
parameterized with the name of the class. Similar scarch
dialogues for different classes (e. g. orders, customers.
products) can then be represented by a single symbol with
an additional indication of the respective class. This
mechanims reduces the size ol the diagram, improves
clarity and supports a consistent development of the
navigation structure.

Calls a single Info any information unit e g
function (e. g View hypertext nodes

through the menu)

\

[Collection of -

Funet functions e.g. menu Cluster]| Cluster of infarmation wnits
Funct 2 screen

modal dialogue
box

represents a complex work process.
allows access to process-related

objects and actions

Figure 2: Dialogue and information views

56 Part Two Technical Sessions

General Adgregatianas s Sann

aggregateseveral

views and i 1efined the attributes of an object

phus a list of instances of af

separately
related object type
|) R -~ enables a direswitching
| View | represented Notebook oatarkirie il wopect
A | eplicitly View companenty
{ v -Hr“. | Structure enabledrowaing in

. hierarchical structures

;mu.mu-q Blox
| Object

Figure 3: Composite views

4. MODELLING NAVIGATION WITH
VIEWNETS

By using the view types defined and their graphical
symbols. navigational structures can be conveniently
represented in a diagrammatic form. In order to achieve a
clear overview of the navigation, especially during the
initial design steps, ViewNets in their simplest form model
only whether a user can reach other views from a given
node. Trigger events, conditions and actions are not
represcnted at this stage. For a more detailed specification
of the dynamic behaviour of the dialogue, however, the
madel can be extended in the form of dialogue nets, a
specific Petri net representation for dialogues (Janssen,
Weishecker & Ziegler, 1993). For the purpose of designing
the navigation at a conceptual level, it will in most cases be
more appropriate to abstract from the details of the
intcraction.

Figurc 4 shows a typical object-oriented navigation
structure which might be used, for example, in the design
ol an order management system. The topmost level of the
navigation (e.g. a graphical desktop) corresponds here to
the drawing surface in order to simplify the model. Starting
from an icon view of object collections (customers) on the
desktop. the user can rcach the attribute view of a
particular object instance by opening a list of customers
and sclecting a specific instance or by a suitable search
mechanism. Operations are made available locally in the

The master-detail view shgws

attribute view e.g. as buttons or menu entries. The attribute
view ,Customer” is rcpresented here as a composite
notebook view as we assume a larger number of attributes
for each customer. At this stage, the details of this
composite view arc not yet specified. Semantic relations
between different object classes (e.g. between
,customer’and ’order’) as modelled e.g. in typical domain
object models are realized through corresponding
navigation paths by normalizing the cardinalities of these
relations through appropriate collection views (e.g. by a
list of orders given by a particular customer).

Element (a) additionally shows the possibility to access
objects through filters (e.g. Customers in Southern
Germany) which can be defined by the developer or the
user. By this mechanism. the interface can be adapted to
recurring tasks and object collections needed for a
particular purpose. The complete sub-structure of the
search dialogue for customers can be defined as a generic
building block and used in the same way for the class
,Order” or other object classes (b). Building blocks are
defined in separate diagrams in order to make them
reusable for different dialogues or systems. (c) shows a
functional navigation path, which is provided in addition to
the overall object-oriented navigation used in this example.
This function provides a shortcut by means of an icon or a
menu entry ,New Customer’”. Functional navigation paths
may be added in order to achieve higher efficiency for
repetitive tasks and can be super-imposed on an object-
oriented structure which is used as a consistent and flexible
basis of the overall system. On the basis of an initial
ViewNet representation, dialogue sequences can be further
optimized with respect to the users” tasks which may lead
to changing the type and contents of some of the views. In
order to represent ‘order data’ and ‘order items’, for
example, one could argue that a composed master-detail
view showing both kinds of data simultaneously will be
more transparent to the user and can save dialogue steps
(Figure 5). A ViewNet model forms a useful basis for such
optimizations, particularly for translating object relations
with cardinalities 1:n or m:n into appropriate navigation
sequences. The immediate visibility of the view types
facilitates the conceptual design and supports the
developer in providing dialogues which are adequate to the
task.

ViewNet - conceptual design and modelling of navigation 57

= Ent
culstomer customer (ord;yr)
con filter
search E
|
i
)
,
customer list orders items '
e t—— p—— I
————— 1
R — 1
< pr I =
// *
/ customer order product
new data data data

custome

Figurc 4: Example of a navigational structure modelled by a ViewNet (order management system).

VicwNets arc not only useful for applications of the
class-instance type in which more or less fixed views (e.g.
sereen forms) are filled with changing contents. They can
also represent navigation between hypertext-like
information units or mixed forms.

Figure 6 shows a part of an internet-based product in-
formation system which utilizes both database and hy-
pertext components. If an appropriate clustering is used for
the hypertext part of the system, a good overview
representation can be maintained. The designer can quickly
distinguish hetween the hypertext- and database-oriented
parts of the system and optimize it according to the
usersneeds.

order
——» items

orders

product
data

—

Figure 5: Optimized views and navigation steps for a
part of the example in figure 4.

S DISCUSSION

The ViewNet modelling technique presented here fa-
cilitates an understanding of the role and semantics of the
different views involved in the navigation structurc of a
system. This contrasts with existing dialogue modelling
techniques which focus on describing the dynamics of the
dialogue in detail. The development of the conceptual
structure of an application is supported by introducing
different types of views. By using graphic pictograms (o
represent the different types of views. the designer as well
as the users involved in the development process can more
easily understand and modify the navigation structure. It is
particularly important that the designers” attention is
directed to the principles underlying the design of the
navigation structure such as object-oriented versus
function-oriented navigation. The trade-offs between
different approaches can be highlighted and usability
issues arising from the design of the navigation structurc
be reflected in a systematic manner..

58 Part Two Technical Sessions

Reference
info

Product list
A
Product
? data
A 4
Prod. search"—r

Figure 6: Example of a mixed hypertext/database-
oriented navigation.

When applying the ViewNet approach, the problem of
structuring the navigation for a large system can be more
decomposed into several design steps. In many cases, it
will be advantageous to develop first an object-oriented
navigation structure as the basis of the application.
Additional task- or process-related navigation paths can
then be super-imposed on that structure in a second step.

The ViewNet technique can be consistently embedded in
an overall software engineering process, especially in
object-oricnted development methods such as OMT
(Object Modelling Technique, Rumbaugh et al. 1991).
ViewNet forms part of a larger system development
method which comprises the following steps and
techniques and which is described in detail in (Ziegler
1997):

e Development of an object model of the application in

OMT notation

e Spccification of tasks and work processes using a
statechart-like representation (Task-Object Charts,
Zicgler 1997)

e Sysiemaltic, rule-driven derivation of the navigation
structure from the object and task model using the
VicwNet representation

e Specification of the dynamic behaviour of the
dialogue by extending ViewNets into Petri-net based
Dialogue Nets

o Visual design of the user interface

L]

An initial ViewNet model can be easily extended by
including a definition of the dynamics of the dialogue. This
can be done by adding transition information, for instance,
with the constructs used in dialogue nets. The further
refinement of a ViewNet model, however, is beyond the
scope of this paper. We claim that, especially in the early

design phases, the development of the conceptual structure
of the navigation is more important than the dynamic
aspects of the interaction.

The ViewNet technique has as yet been applied in a
number of development projects and assessed in a
qualititative fashion. Its main value was seen in its
informality and the intuitive graphical representation which
was comprehensible for users participating in the
development. The representation technique proved to he
particularly useful in group discussions in which the re-
quirements of an application and the initial dialogue
strucures were developed. In such situations it is important
that all participants can sec the design on a large
whiteboard or display. Currently, the technique is applied
in a paper-based form or by using of a standard
diagramming tool with predefined ViewNet symbols.
Future work will focus on appropriate tool support.
particularly for working in joint development sessions.

6. REFERENCES

Berk, E. & Devlin. J. (1991): Hypertext/Hypermedia
Handbook. New York: McGraw-Hill.

Denert, E. (1977): Specification and design of dialog
system with state transition diagrams. In Morlet, E. &
Ribbens, D. (Eds.), Proc. Int. Computing Symposium.
Amsterdam: Noth-Holland, 417-427.

Jacob, R.LK. (1986): A specification language for direct
manipulation user interfaces. ACM Transactions on
Graphics, Vol. 5, 283-317.

Janssen, C.; Weisbecker, A. & Ziegler, J. (1993):
Generating user interfaces from data models and dialogue
net specifications. In Proceedings of INTERCHI
(Amsterdam, 24-29 April), New York: ACM, 418-423.

Janssen, Chr. (1993): Dialognetze zur Beschreibung von
Dialogablidufen in graphisch-interaktiven Systemen. In K.-
H. Rodiger (Hrsg.): Soltware-Ergonomie “93. Stuttgart:
Teubner, 67-76 (in German).

Nielsen, J. (1990): The art of navigating through hy-
pertext. Communications of the ACM, March 1990, Vol.
33, No. 3, 296-310

Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F. &
Lorensen, W. (1991): Object-Oricnted Modelling and De-
sign. Englewood Cliffs N.J.: Prentice-Hall.

Ziegler, J. E. (1997): Eine Vorgehensweise zur
objektorientierten Entwicklung graphisch-interaktiver
Informationssysteme. Heidelberg: Springer-Verlag (in
German).

