
9
ViewNet - Conceptual Design and Modelling of Navigation

Jorgen E. Ziegler

Fraunhofer Institute lAO
Nobelstrasse 12, 0-70569 Stuttgart

GERMANY
Juergen.ziegler@iao.ibg.de

ABSTRACT This paper presents an approach to modelling navigation structurcs for complex, datal">ase-oriented
applications. Navigation dialogues are first classified according to a numl">er of underlying principics. The View Net
technique is introduccd for the conceptual design of the navigation structure of a system. View Nets are diagrams composed
of views and navigation links. Differcnt view types are introduced on the hasis of the mapping from conceptual ohjccts to
views and their role in the dialogue. These types are represented by specific graphical symhols which support the designer in
getting a clear overvicw of the navigation structure and for optimizing dialogues according to the user's task.

KEYWORDS design methods. modelling techniques, navigation, dialogue structures, ol">ject-oriented user interfaces

). INTRODUCTION

Thc main design issucs in developing complex, data­
hasc-oricntcd applications with graphical user interfaces
arc increasingly related to defining the dialogue structure
of an application .. in the large", i. e. to designing the
()vcrall structure of thc user intcrface. Whereas design aids,
c. g. in the form of styleguides arc available for selecting
and designing the standard interaction objects of a
graphical user interface, the issue of designing suitable
dialogue structures must usually be solved by the
developer for each application specifically. In the best
case. this process is currently supported by guidelines
which are specific to an application or an organization. As
yet, there is little methodological support for solving the
complex design decisions involved. An appropriate
conceptual design of the dialogue paths which make the
functionality of a complex system accessible is , however,
esscntial for the usal">ility of the system, particularly as
users arc I">ccoming more and more familiar with the basic
handling of graphical user interfaces.

In order to better distinguish it from those parts of the
dialogue which serve for manipUlating the different in­
teraction ohjects (Iikc huttons, entry fields or lists), thc
term "navigation" shall he used here to descrihe the user" s
movement through the different views of a system. A
"view" is defined here as a collection of elements which
represent one or more underlying application ohjects or
tasks in a coherent manner, e. g. in a window or screen
form.

A number of techniques for modelling navigation se­
quences have been developed till now which basically aim
at describing precisely the system's hehaviour depending
on the system's state and the user's input. Those
techniques are typically hased on state transition diagrams
(see e. g. Denert 1977, Jacoh 19R6) or Petri nets (see e. g.
Janssen 1993). Due to the detailed specification of trigger
events, conditions and actions, however, they entai I the
danger of ohstructing the view of the overall dialogue
structure for the developer rather than making it
transparent. Although some npproaches have heen
proposed for designing the structure of the navigation c.g.
in the field of hypermedia systems (see Nielsen 1990, Berk

Human-Computer Interaction: INlERACT'97 S. Howard, 1. Hammond & G. Lindgaard (editors)
Published by Chapman & Hall ©IFIP 1997

54 Part Two Technical Sessions

& Devlin Il)l) I. they are not well suited to database­
oriented applications where the dialogue design has to take
Ille canlinalities of ohject classes (many instances of the
same type) into account.

()II the other hane!. the existing dialogue modelling
leci1l1iques say littlc ahout thc typc and thc properties of
Ihe ,'iews of which thc navigation stmcture is composed
IIhel' generally only indicate the vicws'names), That is why
Ihl'\' can he descrihed as heing rich in transition in­
formalion hut poor in state information. Information
conLTrning the mcaning and role of a view, however, is
pertinent to the design of efficient and consistent
dialogues. arguahly more important during the early
l'(lnceptllal design stages than a detailed behavioural
specification. Till now, a method has heen lacking which
takes hoth aspects into account and which particularly
make the typc and mcaning of the vicws evident from
IIhich the navigation structure is built. This paper presents
Ihe VielVNet method which takes these requirements into
consideration and supports the conceptual design of the
lIavigation structurcs through a graphical modelling
Icchnique.

2. PRINCIPLES OF NA VIGA TlON
DESIGN

Navigation dialogues can he structured according to a
numher of differcnt principles. These principles relate to
thc respcctil'C prcdominant aspect of the user's task, such
as Ihe function to hc pcrformcd, the object to be
mallipulated. or the sclection of a task step from a
compiete husiness proccss to be accomplished. These
diflcrcnt goal componcnts translatc into different
requirL'ments with respcct to how thc user will access the
fUlictionality necdcd for pcrforming the task and the
corresponding dialogue paths required. In general,
nal'igation structures may be based either on a functional
decomposition of the system. on the objects of an
application ami thcir rclations or on arbitrary associations
heilleen differcnt picces of information. In the following,
Ill' will discuss some of thesc principles and their
illiplications for thc usahility of thc system.

hlllclioll-oril'fllcd /w\'ig{/tiol1: Thc selection of a specific
lunction or opcration represents the starting point for the
navigation (c. g. in a conventional hierarchical menu
,,"stCIll \. The actual data vicw hecomes visihle and can
onlv hc manipulated ancr one or several consccutive steps.
This tvpc of navigation is pal1icularly suited to well-de­
I im'd and repetitivc tasks with little variability but has
major drawhacks if thc operation component of the user's

task is not well defined at the outsct or changes during the
interaction.

Process-oriel1ted I1m'igatiol1 can be secn as an extension
of the function-oriented principle and provides support for
a complete set of tasks helonging to a specific work Ilr
business process. The system can control the status of the
process and according to Ihc situation. enahle or disable
the access to thc objects and functions needed. Whereas
early systems of this typc used to force the user to perform
a fixed sequencc of steps. tmlay's graphical interfaces
allow a more flexiblc design. e. g. through visualizing the
status of the process and cUITcntly available tasks in lists.
task hars etc ..

Ohject-oriel1ted IIm'ig{/tioll rcprescnts the main paradigm
in direct manipulation. It uses thc objects of the application
and of their semantic relations for the design of dialogue
paths. Operations hccome only available when the ohject
to be manipulated is selectcd and visible. Object-oricnted
navigation represents one of thc basic principles of the
graphical user interfaces and is particularly characterized
by its high dcgrce of consistency and fkxibility.

Associat;o/1-oricllfed /1(/1'igatio/1 characterizes the typical
navigation form in hypertext/hypennedia systems. Thc
nodes of the navigation structure arc represented by
individual information units (in contrast to fixed object
types with arbitrarily Illany instances in ohject-oriented
navigation). The possihle transitions are defined through
the arbitrary associations bctween those information units.

These forms of navigation have different profiles con­
cerning usability criteria such as efficiency, comprehen­
sibility and flexibility. Comhined forms are therefore
frequently used in real applications. In the following
section, we will focus on the different types of views
which arc involved in the composition of such navigation
structures.

3. VIEW TYPES

In the View Net method. vicws arc defined as logical
collections of information clements. not as concrete visual
representations. Views represent thc undcrlying application
objects, tasks or gencral information units wholly or in part
and can bc visualized in a cohcrent manner. Multiple views
of an object arc possible. Views can bc composed of a
hierarchy of subviews. In the following. we will introduce
a classification of the different types of views rclevant for
uscr navigation and introduce a graphical notation for these
types which forms the clements of a VicwNct
representation.

Object views represent a single instance of a spccific
object class (e. g. 'customer') in different forms. Three

ViewNet - conceptual design and modelling o/navigation 55

t,pcs of object views can be distinguished: the object
reference view. which is often in the form of an icon (icon
,·i('\\,). thc IIrr,.il",te \'iell', which represents all or some attri­
hntes of an object, and the !!,raphical view which shows an
arhitrary graphical reprcscntation of an object instance
(c.I,!. as a map. a husiness graphic etc.).

In order to structure ohject-oriented dialogues, collection
,iews arc required which either show a partial or a
complctc collection of instances of a certain object class
(('I,!. as a list of instances) or comprise ohjects of different
types as e.g. the ohjects on a desktop (inhomogenous
(,(.I/('ction). A special case of collection views are filtered
collections through which thc user has access to pre- or
self-dcfined suhsets of the data (e. g. all payable bills). In
Illany cases. it will hc advantageous if users can set up and
Illanal,!e such filter ohjects thcmselves at the user interface
in a flexihle way.

o bject reference
viE'w. represents an

obj@(l a~ a who l@

shows some or all
attrj bLlt@~ of an obj@ct

.arbitrary gtaphlcal
rll!pr@sentation of
one or sever.)1
objects eg as a
map. busineu
9 raphi<s etc,

Col

refers to a
homogt!! n~oUl or
inh. collection of

object'

refers to a (o lle-c­
tion of objects
f iltered according
to SOme (raerla

~bt View homogeneous
collection of
objll!cts In the form

of a Ii,st
inhomo9I!'n~om.

(ollec1 ion of objects
(~9 as icons)

Figure I: Object and collection views

Function views offer functionally oriented possibilities
for navigation. as they are reprcsented, for example, by
mcnu ~crecns or modal dialogue boxes (Figure 2). Object
allrihutcs may he shown in a function view but usually
<lnly as needed for the opcration selected (e. g. search
allrihutcs in a search dialogue hox). Actor views are a
special form of a function view and rcpresent the differente
stcps of a complcx task or process the user needs to
perform. Actor views help to guide the user through the
steps of a complex process while maintaining application­
speci fic dependencics and constraints. They can be realized
in \'Cry different forms. e.g. as to-do lists, task lists or

assistant windows which are hecoming more and mor('
popular in standard office products.

Information views, represented either as single nodes or
clusters, can bc used in ass(ll'iation-orientcd navigations.
Examples for this can he found in hypertext-based help
systems or generally in hypermedia systems. In contrast to
the links between of ohject and collection views which
represent I:n or n:m rclations in an underlying ohject
model (or entity-relationship model), thc relations involved
in the navigation hetween information views are usually 01

a one-to-one typc.
Figure 3 shows composite views. Typical aggregation~

which are often used in graphical interfaces like maste,.­
detail views or lIotehooks. are depicted with their own
graphical symhol in order to get a comprehensive alld
intuitive overview of thc dialogue structure. Geller;'
buildillg blocks allow to collapse the parts of a complete
navigation suhstructure into a single element which can he
parameterized with the ohject class accessed in this
navigation. This way, for example. a scarch dialoguc for
instances of a class which consists of several views can he
parameterized with thc name of the class. Similar search
dialogues for different classes (e. g. orders, customers.
products) can then he represented by a single symbol with
an additional indication of the respective class. This
mechanims reduces the size of the diagram, improves
clarity and supports a consistent development of the
navigation structure .

~
~

~
I ~.,,<t1_ /
~

1 r thtoMal4tofi

c.llie lif'lglll
hmct iorl (II!! 9

thfough Ih~ menu}

Coll.e-Cl ionof ~
func,ions t 9 m lPnu ~ (Iultl!' of inform.tlon unih

modal dlalogulI!!

be,

r ll!!pfll!! ~lI!!rlH.a (omple. WOf\[pfOlIl!!U.
,.IIOW\ a ((IPH to prOlIl!!H ,'elatf'd

objects a nd a ctiO"'

Figurc 2: Dialoguc and information views

56 Part Two Technical Sessions

~M ... t ~

r , ... , ,~.] ~99't'lj1··Ht"'f'f. 1

~
The !!us, ' .~~.il1f~. sh

Vlrw Vlt'W\ Mld", r.f.wd 0.14111 ~ ·.".',,~t:::.::o7" Y'".r.atrly
'rl.tedobftoct~

~
"'IjtQ'f'CJ·ltOn

rn.blto,. dlfe-aomchlnq

rrprltlC'ntrd ["°,,_1 betwurwvr," obiKt
r"pl,cltto, V"W componentJ

W I "'OO~'I f'n.lb~twOW!.lng lin

~
htl'.,.,ch lul1tfU(!~"

~
~

rUildlng~1
ObtK'

Figure 3: Composite views

4. MODELLING NAVIGATION WITH
VIEWNETS

...

By using the view types defined and their graphical
s)'mhols. navigational structures can he conveniently
represented in a diagrammatic form. In order to achieve a
clear overview of the navigation, especially during the
initial design steps, ViewNets in their simplest form model
Ilnly whether a user can reach other views from a given
node. Trigger events, conditions and actions are not
n:presented at this stage. For a more detailed specification
Ill' the dynamic hehaviour of the dialogue, however, the
model can he extended in the form of dialogue nets, a
'Pl'ej fic Petri net representation for dialogues (Janssen,
weishecker & Ziegler, 1993). For the purpose of designing
the navigation at a conceptual level, it will in most cases be
more appropriate to abstract from the details of the
interaction.

f'igure 4 shows a typical object-oriented navigation
structurc which might be used, for example, in the design
of an order management system. The topmost level of the
navigation (e.g. a graphical desktop) corresponds here to
Ihe drawing surface in order to simplify the model. Starting
from an icon view of ohject collections (customers) on the
desktop. the user can reach the attribute view of a
particular object instance hy opening a list of customers
and selecting a specific instance or by a suitable search
Illechanism. Operations are made available locally in the

attribute view e.g. as buttons or menu entries. The attribute
view ,Customer' is represented here as a composite
notehook view as we assume a larger numher of attrihutes
for each customer. At this stage. the details of this
composite view arc not yet specified. Semantic relations
between different ohject \:lasses (e.g. between
,customer'and 'order') as modelled e.g. in typical domain
obj~ct . models are realized through corresponding
navIgatIOn paths by normalizing the cardinalities of these
relations through appropriate collection views (e .g. by a
list of orders given by a particular customer).
Element (a) additionally shows the possibility to access
objects through filters (e.g. Customers in Southern
Germany) which can be defined by the developer or the
user. By this mechanism. the interface can he adapted to
recurring tasks and ohject collections needed for a
particular purpose. The complete sub-structure of the
search dialogue for customers can be defined as a generic
building block and used in the same way for the class
,Order' or other object classes (b). Building blocks are
defined in separate diagrams in order to make them
reusable for different dialogues or systems. (e) shows a
functional navigation path. which is provided in addition to
the overall object-oriented navigation used in this example.
This function provides a shortcut by means of an icon or a
menu entry ,New Customer'. Functional navigation paths
may be added in order to achieve higher efficiency for
repetitive tasks and can be super-imposed on an ohject­
oriented structure which is used as a consistent and flexible
basis of the overall system. On the hasis of an initial
ViewNet representation, dialogue sequences can he further
optimized with respect to the users' tasks which may lead
to changing the type and contents of some of the views. In
order to represent 'order data' and 'order items', for
example, one could argue that a composed master-detail
view showing hoth kinds of data simultaneously will he
more transparent to the user and can save dialogue steps
(Figure 5). A ViewNet model forms a useful hasis for such
optimizations, particularly for translating object relations
with cardinalities I:n or m:n into appropriate navigation
sequences. The immediate visihility of the view types
facilitates the conceptual design and supports the
developer in providing dialogues which are adequate to the
task.

ViewNet - conceptual design and modelling of navigation 57

~
I

I
I !

Q
I

I

Figure 4: Example of a navigational structure modelled hy a ViewNet (order management system).

Vie\\Ncts arc not only useful for applications of the
class-instance type in which more or less fixed views (e.g.
'LTcen forms) arc filled with changing contents. They can
also reprcscnt navigation between hypertext-like
information units or mixcd forms.

Fi[!ure (, shows a part of an internet-based product in­
formation system which utilizes hoth database and hy­
pertext componcnts. If an appropriate clustering is used for
the hypertcxt part of the system, a good overview
representation can he maintained. The designer can quickly
dislinguish hctween the hypcrtext- and datahase-oriented
parts of thc system and optimize it according to the
users'needs.

Figure 5: Optimized views and navigation steps for a
part of the example in figure 4.

5 DISCUSSION

The ViewNet modelling techniquc prcsented here fa­
cilitates an understanding of thc role and semantics of the
different views involved in the navigation structure of a
system. This contrasts with existing dialogue modelling
techniques which focus on descrihing the dynamics of the
dialogue in detail. The development of the conceptual
structure of an application is supported by introducing
different types of views. By using graphic pictograms to
represent the different typcs of views. the designer as well
as the users involved in the development process can morc
easily understand and modify the navigation structure. It is
particularly important that the designers' attention is
directed to the principles underlying the design of thc
navigation structure such as ohject-oriented VTr'll'
function-oriented navigation. The' trade-otls hctwccn
different approaches can he highlighted and usahilitv
issues arising from the design of the navigation stl1lcture
be reflected in a systematic manner..

58 Part Two Technical Sessions

Figure 6: Example of a mixed hypertextldatabase­
oriented navigation.

When applying the View Net approach, the problem of
,tructuring the navigation for a large system can be more
decomposcd into several design steps. In many cases, it
wi II he advantageous to develop first an object-oriented
navigation structure as the basis of the application.
Additional task- or process-related navigation paths can
then he sUJlcr-imposed on that structure in a second step.

The VicwNet technique can be consistently embedded in
an ovcrall software engineering process, especially in
ohjcct-orientcd development methods such as OMT
(Ohject Modelling Technique, Rumbaugh et al. 1991).
ViewNct forms part of a larger system development
method which comprises the following steps and
techniqucs and which is described in detail in (Ziegler
1')1)7):

• Development of an object model of the application in
OMT notation

• Specification of tasks and work processes using a
statechart-like representation (Task-Object Charts,
Ziegler 1<)1)7)

• Systematic. rule-driven derivation of the navigation
structure from the object and task model using the
View Net representation

• Speci lication of the dynamic behaviour of the
dialogue by extending View Nets into Petri-net based
Dialogue Nets

• Visual dcsign of the user interface

•
An initial View Net model can be easily extended by

including a dcfinition of the dynamics of the dialogue. This
can be done hy adding transition information, for instance,
with thc constructs used in dialogue nets. The further
refinement of a VicwNet model. howcvcr, is beyond the
s\:Ope of this paper. We elaim that, especially in the early

design phascs, thc dcvclopmcnt of thc conceptual structurc
of the navigation is more important than thc dynamic
aspects of the interaction.

The VicwNet tcchniquc has as yet becn applicd in a
number of development projects and assessed in a
qualititative fashion. Its main value was secn in its
informality and the intuitive graphical representation which
was comprehensible for users participating in the
development. The represcntation technique proved to he
particularly useful in group discussions in which thc rc­
quirements of an application and the initial dialogue
strucures were developed. In such situations it is important
that all participants can see the design on a largc
whiteboard or display. Currently. the technique is applied
in a paper-based form or by using of a standard
diagramming tool with predefined ViewNet symhols.
Future work will focus on appropriate tool support.
particularly for working in joint development sessions.

6. REFERENCES

Berk. E. & Devlin. J. (1991): HypertextlHypermedia
Handbook. New York: McGraw-Hili.

Denert, E. (1977): Specification and design of dialog
system with state transition diagrams. In Morlet. E. &
Ribbens, D. (Eds.). Proc. Int. Computing Symposium.
Amsterdam: Noth-Holland. 417-427.

Jacob, R.J.K. (1986): A specification language for direct
manipulation user interfaces. ACM Transactions on
Graphics, Vol. 5, 283-317.

Janssen, C.; Weisbecker. A. & Ziegler. J. (1993):
Generating user interfaces from data models and dialogue
net specifications. In Proceedings of INTERCHI
(Amsterdam, 24-29 April). New York: ACM. 418-423.

Janssen. Chr. (1993): Dialognetze ZlIr Beschreibung von
Dialogabillufen in graphisch-interaktiven Systemen. In K.­
H. Rodiger (Hrsg.): Software-Ergonomie '93. Stuttgart:
Teubner, 67-76 (in German).

Nielsen, J. (1990): Thc all of navigating through hy­
pertext. Communications of the ACM. March 1990. Vol.
33, No.3, 296-310

Rumbaugh, J.; Blaha. M.; Premerlani. W.; Eddy. F. &
Lorensen, W. (1991): Object-Oriented Modelling and De­
sign. Englewood Cliffs N.J.: Prentice-Hall.

Ziegler, 1. E. (1997): Eine V orgehensweise zur
objektorientierten Entwicklung graphisch-interaktivcr
Informationssysteme. Heidelherg: Springer-Verlag (i n
German).

